模拟高原低氧条件下大鼠牙周炎动物模型中TNF-α、PGE_2和IL-8在牙周组织中的表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牙周炎(periodontal)是口腔两大类主要疾病之一。现已证实牙菌斑中细菌及其产物是引发牙周病必须的始动因子,细菌及其毒性产物如细菌内毒素和细菌酶可直接损伤牙周上皮及结缔组织,同时又可激活宿主的防御细胞,释放多种炎症介质细胞因子如肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)、白细胞介素-8(interleukin-8,IL-8)、前列腺素E2( Prostaglandin E2 ,PGE2 )等,产生牙周局部炎症反应,导致牙周组织和牙槽骨的吸收破坏。在高原环境下,牙周病的患病率显著高于其他地区,牙周病检出率高达80.8%[1]。鉴于以上高发病率,对于高原牙周病的病理生理机制的研究显得尤为迫切。但目前对于在高原地区牙周炎的发生发展机制的研究还属于初步阶段,在高原环境下,低压低氧的环境因素如何影响牙周组织的改变,如何改变细胞因子的分泌及活性作用,以上的细胞因子改变与牙周病的疾病过程有何相关等等问题尚未有研究报道,因此,探讨及解决以上问题,可以为预防及降低高原牙周病的发病率提出理论依据。本实验模拟高原环境,建立低氧条件下大鼠牙周炎动物模型,观察大鼠牙周组织病理变化,检测各组大鼠牙周临床指标,用免疫组化法检测牙周组织中TNF-α、PGE2和IL-8的表达情况,用ELISA法检测各组大鼠龈沟液中TNF-α、PGE2、IL-8的含量,初步研讨低氧环境对牙周炎龈沟液中TNF-α、PGE2、IL-8水平变化的影响,以及低氧条件下三种炎症因子与牙周指数的相关性。为探索高原牙周炎发病、发展及转归的规律,为高原、高寒环境下牙周炎进一步的防治提供参考依据。
     研究方法:
     1.建立低氧条件下大鼠牙周炎动物模型:将80只SD大鼠,随机分为缺氧对照组、缺氧实验组、常氧对照组及常氧实验组,每组雌雄大鼠各20只,参照Fischer等[2]方法,分别在常氧与低氧环境(模拟海拔5000 m高原、23 h /d)下建立大鼠牙周炎模型(缺氧实验组、常氧实验组),
     2.建模后8周记录各组大鼠体重等生理指标及牙周临床指标:牙龈附着丧失程度(attachment lost, AL)、菌斑指数(plaque index , PLI)、出血指数( bleeding index , BI),提取龈沟液并切取牙周组织标本。
     3.采用HE染色检测牙周组织病理改变;采用免疫组化法检测牙周组织中TNF-α、PGE2、IL-8的表达。
     4.用ELISA法分别检测每组大鼠龈沟液中TNF-α、PGE2、IL-8的含量,并分析其与牙周临床指数的相关性。
     研究结果:
     1.缺氧实验组体重一直呈下降趋势,8周时牙周袋形成,牙周膜炎症明显。牙槽嵴吸收明显呈蚕食状,可见明显的破骨细胞位于骨吸收陷窝,牙槽骨呈骨质疏松状态。牙周临床指标与其他各组比较差别非常显著(P < 0. 01)。
     2.大鼠牙周组织中TNF-α、PGE2主要于破骨细胞、牙周膜成纤维细胞的胞浆中表达阳性,IL-8阳性着色部位主要于中性粒细胞的胞浆中表达阳性,呈棕黄色。TNF-α、PGE2、IL-8在缺氧实验组的表达明显高于常氧实验组(P<0.05)及缺氧对照组(P<0.05)。
     3.缺氧实验组大鼠龈沟液量、TNF-α、PGE2水平均高于其余各组,且与常氧实验组比较有显著差异(P<0.01),而IL– 8均低于其余各组,且与常氧实验组比较有显著差异(P<0.01)。
     4.缺氧实验组中TNF-α、PGE2与AL、PLI、BI呈正相关(P < 0. 01),而IL-8与AL、PLI呈负相关(P < 0. 01),与BI无相关(P>0.05)。
     结论:
     1.本实验成功建立模拟高原低氧条件下牙周炎动物模型,牙周组织病理变化表现为典型的活动期牙周炎的病理改变,且炎症反应程度重、炎症发展快。
     2.与常氧实验组相比,在模拟海拔5000米低氧环境下,牙周炎模型大鼠牙周组织中TNF-α、PGE2的表达增高而IL-8表达降低,提示牙周组织中TNF-α、PGE2、IL-8的表达水平不同与低氧环境有关。
     3.模拟高原低氧条件下,牙周炎龈沟液中TNF-α、PGE2浓度与牙周临床指标AL、PLI、BI有明显的正相关,而IL-8与AL、PLI呈负相关。提示缺氧环境下牙周炎病程发展快、炎症反应程度重与牙周组织中TNF-α、PGE2增高,IL -8浓度降低有关。
Background:
     Periodontal diseases are chronic inflammatory diseases that lead eventually to loss of the supporting structures of the teeth,including resorption of the alveolar bone of the jaw. Periodontal diseases are the most prevalent of the diseases of the bone resorption in humans. The cytokines are considered most frequently as active promoters of resorption process. Thus cytokines is not only generally thought of as an immune factor, but it can be taken as the initial process of bone resorption. The gingival cytokines such as tumor necrosis factor-α(TNF-α), interleukin-8(IL-8) and Prostaglandin E2 (PGE2) profile in periodontal disease includes the presence of resorptive cytokines and is key stimulator of bone resorption. However the influence of hypoxia and high altitude environment on the expression of cytokines in periodontium as well as bone resorption in humans is not clear. So it is helpful for us to modulating inflammation and minimizing soft tissue destruction and bone resorption by investigating the pathophysiological process of periodontitis in patients in high altitude area especially in China's Tibet region.
     Objective:
     To investigate the expression and concentrations of inflammatory cytokines(TNF-α、PGE2 and IL- 8)in gingival crevicular fluid(GCF) in a rat model of periodontitis exposed to hypoxia at high altitude, and the relationship between cytokines and clinical index for periodontitis was evaluated too.
     Materials and methods:
     Animals
     Eighty SD rats (200–250 g) were randomly assigned to four of the following groups: the hypoxia group (n=20), the hypoxia control group (n=20), the normoxia group (n=20) and the normoxia control group (n=20). After that the hypoxia group and the hypoxia control group were raised under general hypoxia(simulating the altitude 5000 meters, 23h per day) for 8 weeks ,while the normoxia group and the normoxia control group were raised under normoxia environment separately. And then the rats were sacrificed and analyzed. All experiments were conducted in accordance with the National of Health guidelines for the welfare of experimental animals.
     Pathological assay, HE staining and immunohistochemical staining
     Histological assessment was carried out routine hematoxylin and eosin staining. Pathological assay and HE staining were used to detect the general conditions and pathological changes of rat periodontal tissues. and immunohistochemical staining was conducted to determine the expressions of TNF-α、PGE2 and IL- 8 in different groups.
     Cytokine quantification by enzyme linked immunosorbent assay (ELISA)
     GCF sampling was isolated with cotton wool rolls to decrease the risk of salivary contamination. And ELISA assays weas used for detectiong the concentrations of PGE2, TNF-αand IL- 8 in GCF volume.
     Result
     Histologic change and clinical index differences
     The specimens taken from the anoxia group were infiltrated with a significant inflammatory cell and fibroblasts, and showed a significant loss of connective tissue attachment and resorption of alveolar bone compared with the other groups. The index of periodontitis and bone resorption such as attachment lost (AL), plaque index (PLI) and bleeding index (BI) were recorded in each groups. There were significant difference in index between each groups (P<0.05).
     Histologic and immunohistochemical stain observation
     Immunohistochemical stain observation showed that the expression of TNF-α, PGE2 and IL–8 were located in cytoplasm in four rats groups. While the expression of TNF-α、PGE2 and IL–8 in the anoxia group were significantly higher than the hypoxia control group(P<0.05) and the normoxia group (P<0.05).
     Cytokine quantification
     Cytokine quantification was measured in the volume of collected GCF sample and there was significant difference among the four groups. Anoxia group revealed much higher TNF-αand PGE2 levels than normoxia group (P < 0.01). While the level of IL–8 in anoxia group was lower than normoxia group (P< 0.01). GCF total amount of TNF-αand PGE2 exhibited significant positive correlations with clinical periodontal measurements such as AL、PLI、BI (P < 0.05). Conversely, the amount of IL–8 exhibited significant negative correlations with clinical periodontal measurements such as AL、PLI (P< 0.01), and exhibited no correlations with BI (P>0.05) .
     Conclusion:
     1. In our experiments, the successful rat's periodontitis model under simulated high altitude hypoxia environment was established. In our model, the influence of hypoxia and high altitude environment can accelerate and aggravate the pathophysiological process of periodontitis.
     2. At a simulated altitude of 5,000 meters hypoxia environment in our model, the levels of TNF-αand PGE2 increased, while the level of IL–8 decreased, indicating the high altitude and hypoxia environment may influence the expression and secretion of TNF-α, PGE2 and IL–8 in the periodontal tissues.
     3. In our simulated high altitude hypoxia environment, TNF-α, PGE2 and IL–8 exhibited significant correlations with clinical periodontal measurements, indicating that the difference of expression and secretion of cytokines, such as TNF-α, PGE2 and IL–8 may modify the micro-environment of periodontal tissues. Ultimately they may induce osteoclast formation and activation, accelerating and aggravating the pathophysiological process of periodontitis and bone resorption in patients in high altitude area.
引文
[1].李刚,唐荣银,王成龙,等.现役军人牙周疾病抽样调查与流行病学研究[J].解放军防医学杂志,2000,18(1):30-33.
    [2].肖娴,张纲,谭颖徽等.驻高原和平原官兵口腔健康状况现状调查[J].解放军防医学杂志,2010,4(3):41-43
    [3]. Lstgartcn.MA.Nature of periodontal disease:pathogenie mechanisms. J PeriodontalRes,1987,22:172一178
    [4]. Garlet GP, Martins W Jr, Ferreira BR.Patterns of chemokines and chemokine receptors expression in different forms of human periodontal disease [J] Periodont,2003,38 (2):210–217.
    [5].曹采方,主编.牙周病学[M].北京:人民卫生出版社,2000:34.
    [6]. Silva JA, Lorencini M, Reis JR.The influence of type I diabetes mellitus in periodontal disease induced changes of the gingival epithelium and connective tissue [J]. Tissue and Cell.2008, 4(40):283-292.
    [7]. Goncalves PF, Nogueira Filho Gda R, Sallum EA, et al. Immunosup pressant therapy and bone loss in ligature-induced periodontitis -a study in rats [J]. Pesqui Odontol Bras ,2003 ,17 (1):46 - 50
    [8].耿卫艳,谭颖徽,施生根等.重度牙周炎病人非刺激性全唾液中IL-6和TNF-α检测[J]牙体牙髓牙周病学杂志,2009,10,(5):527-531
    [9]. Di Paola R, Marzocco S, Mazzon E, et al. Effect of aminoguanidine in ligature- induced periodontitis in rats [J]. J Dent Res ,2004 ,83 (4):343– 348
    [10]. Saxlin T , Suominen-Taipale L , Leiviska J , et al.Role of serum cytokines tumournecrosis factor-a and interleukin-6 in the association between bodyweight and periodontal infection [ J ].Clin Periodontol ,2009,36(3):100–105 .
    [11]. Trombone AP, Ferreira SB Jr, Raimundo FM. Experimental periodontitis in mice selected for maximal or minimal inflammatory reactions: increased inflammatory immune responsiveness drives increased alveolar bone loss without enhancing the control of periodontal infection [J]. Journal of Periodontal Research ,2009,44(4):443-451
    [12]. Jordi Rius, Monica GumaChristian Schachtrup. NF-kB links innate immunity to thehypoxic response through transcriptional regulation of HIF-1a. [J ]nature,.2008.453
    [13].赵强邓廉夫.低氧及相关因子对破骨细胞形成与活性的调节作用[J]国际骨科学杂志,2007,28(2):74-76
    [14]. Tomofuji T, Azuma T, Kusano H ,et al.Oxidative damage of periodontal tissue in the rat periodontitis model:Effects of a high-cholesterol diet.FEBS Letters, 2006,580(12):3601-3604
    [15].李生娇,曹志中,周中华.糖皮质激素对牙周炎发病作用的实验研究[J] .临床口腔医学杂志, 2002 ,18(4) :253 - 255.
    [16].吴世莲,刘丽,牙周炎动物模型的研究概况口腔医学, 2006 ,26(10),385-387
    [17]. Galvao MP, Chapper A, Rosing CK, et al. Methodological considerations on descriptive studies of induced periodontal diseases in rats [J]. Pesqui Odontol Bras , 2003 ,17(1):56 - 62.
    [18]. Tomofuji T, Ekuni D, Irie K, et,al.Preventive effects of a cocoa-enriched diet on gingival oxidative stress in experimental periodontitis[J].Periodontol. 2009 ,80(11):1799-808
    [19]. Bodet C. Chandad F,Grenier D .Inflammatory responses of a macrophage/epithelial cell co-culture model to mono and mixed infections with Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia[J].Microbes Infect. 2006 ;8(1):27-35.
    [20]. Patrieia A,Mariot,Auro N,et al.Effeets of Periodontal therapy onglyeemie control and inflammatory markers [J].Periodontol,2008,79(5):77-78
    [21].曹祯吾,张运华。4500高原1000名官兵牙周炎的调查分析。解放军预防医学杂志,1994,13(2),150-151
    [22].高钰琪.主编.高原军事医学.第一版,重庆:重庆出版社.2005:35-89
    [23]. .Yamasaki N, Tsuboi H, Hirao M,.High oxygen tension prolongs the survival of osteoclast precursors via macrophage colony-stimulating factor [J] Bone ,2009,44(5):71–79
    [24]. Lamaster IB,Evaluation of compoments of gingival crevicular fluid as diagnostic. Ann Periodontol ,1997,2(2):123
    [25]. Ikezawa I, Tai H, Shimada Y, et al. Imbalance between soluble tumor necrosis factor receptors type 1 and 2 in chronic periodontitis [J]. J Clin Periodontol, 2005, 32(10):1047- 1054.
    [26]. Graves DT,CochranD.The contribution of interleukin 1and tumor necrosis factor to periodontal tissue destruction [J] J Periodontol,2003,74(3):391-401.
    [27]. Frank AR,Gloria JR,SuzanneMM.Effects of Porphyromon as gingivalis and Eseherichia colilipopolysacarides on mononuclear Phagocyte. JInfect Immun,1997,65(8):3248一3258
    [28]. Renate B,Antoinette W,Jeannette P,et al.Tumor necrosis factor-alpha:Altermative role as an inhibitor of osteoclast formation in vitro[J].Bone,2006,39(2):325-335.
    [29]. BuhlinK,GustafssonA,PoekleyAqet al.Risk factors for cardiovaseular disease in patients with periodontitis .Eur HeartJ,2003,24:2099 -2107.
    [30].赵胜杰,杨霞,侯桂华,等..牙龈组织中THF2ct含量RIA及其与牙周炎相关关系的观察[J].同位素,1999,12(3):159-163
    [31]. Holmlund A, Hanstrom L, Lerner UH. Bone resorbing activity andcytokine levels in gingival crevicular fluid before and after treatment of periodontal disease [J]. J Clin Periodontol, 2004, 31(6):475- 482.
    [32]. H.J. Knowles, N.A. Athanasou,et al. Acute hypoxia and osteoclast activity: A balance between enhanced resorption and increased apoptosis[J ]Bone , 2009, 131–141
    [33]. Giannopoulou C, Kamma J. Mombelli A. Effect of inflammation smoking and stress on gingival crevicular fluid cytokine level [J]. J Clin Per iodontol, 2003, 30(2): 145
    [34]. Nemcovsky CE,Bony L,Shanberger S,et al.Bone apposition in surgical bony defect following orthodontic movement:A comparative histomorphometric study between root-and periodontal ligament-damaged and periodontally intact rat molar [J].Periodontol,2004,75(7):1013-1019.
    [35]. Nakashima K,Giannopoulou C,Andersen E,et al.Alongitudinal study of variouscrevicular fluid componentsas markers of periodontal disease activity[J].ClinPeriodontol,1996,23(9):832.
    [36].宫苹,谭震,赵清.成骨细胞和牙周膜成纤维细胞交互作用的初探[J].华西口腔医学杂志,2004,22(8):275-277.
    [37]. AnnitageGC, Analysis of gingival crevice fluid and risk of progression of Periodontitis. Periodontology 2000,2004,34:109-119.
    [38]. Graves D. Cytokines that promote periodontal tissue destruction[J].Periodontol.2008 ,79(8):1585-91.
    [39]. P.J. Baker, The role of immune responses in bone loss during periodontal disease. Microbes Infect. 2000 ,2(10):1181–1192
    [40]. Erdemir EO, Duran I, Haliloglu S .Effects of smoking on clinical parameters and the gingival crevicular fluid levels of IL-6 and TNF-alpha in patients with chronic periodontitis. [J] Clin Periodontol. 2004 ,31(2):99-104
    [41]. Brunius G, Domeij H, Gustavsson A.Bradykinin upregulates IL-8 production in human gingival fibroblasts stimulated by interleukin-1beta and tumor necrosis factor alpha,Regul Pept. 2005,126(3):183-188.
    [42]. Teng YT.The role of acquired immunity and periodontal disease progression [J]. Crit Rev Oral Biol Med. 2003;14(4):237-52
    [43]. Schierano G, Pejrone G, Brusco P.TNF-alpha TGF-beta2 and IL-1beta levels in gingival and peri-implant crevicular fluid before and after de novo plaque accumulation. [J]Clin Periodontol. 2008,35(6):532-8.
    [1].肖娴,张纲,谭颖徽等.驻高原和平原官兵口腔健康状况现状调查[J].解放军防医学杂志,2010,4(3):41-43
    [2]. Cochran DL.Inflammation and bone loss in periodontal disease[J] .Periodontol. 2008,79(8 ):1569-76
    [3]. Garlet GP, Cardoso CR, Silva TA.Cytokine pattern determines the progression of experimental periodontal disease induced by Actinobacillus actinomycetemcomitans through the modulation of MMPs, RANKL, and their physiological inhibitors[J]. Oral Microbiol Immunol. 2006 ,21(1):12-20
    [4]. Trombone AP, Ferreira SB Jr, Raimundo FM.Experimental periodontitis in mice selected for maximal or minimal inflammatory reactions: increased inflammatory immune responsiveness drives increased alveolar bone loss without enhancing the control of periodontal infection [J]. Periodontal Res. 2009 :44 (4):443-51.
    [5]. Liu RK, Cao CF, Meng HX, Gao Y,et al.Polymorphonuclear neutrophils and their mediatorsin gingival tissues from generalized aggressive periodontitis. Journal of Periodontology,2001,72(11):1545-1553.
    [6]. Taubman MA, Valverde P, Han X.Immune response: the key to bone resorption in periodontal disease [J].Periodontol. 2005,76(11 ):2033-41.
    [7]. Teng YT.The role of acquired immunity and periodontal disease progression [J]. Crit Rev Oral Biol Med. 2003;14(4):237-52
    [8]. Delima AJ, Oates T, Assuma R, Soluble antagonists to interleukin-1 (IL-1) and tumor necrosis factor (TNF) inhibits loss of tissue attachment in experimental periodontitis[J]. Clin Periodontol. 2001 :28(3):233-40.
    [9].裘松波,杨健,谭颖徽等.核因子-κB受体活化因子配体在大鼠正畸牙压力侧牙周组织中的表达[J].牙体牙髓牙周病学杂志,2005,15(2):77-79.
    [10].熊元治,马颖才,禇行琦,等.不同海拔地区正常男性成年人血浆前列环素、血栓素、降钙素和内皮素水平变化.高原医学杂志,2005 ,15 (2) :18~19.
    [11]. Kornman KS, di Giovine FS.Genetic variations in cytokine expression: a risk factor for severity of adult periodontitis. Ann Periodontol. 1998 :3(1):327-38.
    [12]. Feng J Aboyoussef H , et al.The effect of gingival retraction procedures onPeriodontal indiees and crevieular fluid eytokine levels:a Pilotstudy.Journal of Prosthodont,2006,15(2):108-112.
    [13]. Walmsley, S. R. et al. Hypoxia-induced neutrophil survival is mediated by HIF-1a dependent NF-κB activity. [J ] Exp. Med.,2005,201, 105–115.
    [14]. Oshiro T,Shiotani A,Shibasaki Y,et al.Osteoclast induction in periodontal tissue during experimental movement of incisors in osteoprotegerin-deficient mice[J].Anat Rec,2002,266(4):218-225.
    [15]. Lu HK,Chen YL,Chang HC,et a1.Identification of the osteoprotegerin/receptor activator of nuclear factor-kappa B ligand system in gingival crevicular fluid and tissue of patients with chronic periodontitis[J].Periodontal Res,2006,41(4):354-360.
    [16]. Fukushima H,Jimi E,Okamoto F,et a1.IL-1 induced receptor activator of NF-kappa B ligand in human periodontal ligament cells involves ERK-dependent PGE2 production[J].Bone,2005,36(2):267-275.
    [17]. Taubman MA,Kawai T.Involvement of T-lymphocytes in periodontal disease and in direct and indirect induction of bone resorption.Crit-Rev-Oral-Biol-Med,2001,12(2):l25-135.
    [18].高钰琪.主编.高原军事医学.第一版,重庆:重庆出版社.2005:35-89.
    [19].蒲东全,刘鲁川,宋远雄,张海元,毛永利,朱立强.不同海拔高度部队驻军官兵牙周健康调查.牙体牙髓牙周病学杂志,2009,19(1):35-38.
    [20]. Han X,Kawi T,Eastcott J w,et a1.Bacterial-responsive B lymphocytes induce periodontal bone resorption[J].Immunology,2006,176(1):625-631.
    [21]. Liu D, Xu JK, Figliomen iL, et al.Expression of RANKL and OPG mRNA in periodontal disease:possible involvement in bone destruction[J].Mol Med,2003, 11(1):17-21.
    [22]. Jiang Y,Mehta C K,Hsu T Y,et a1.Bacteria induce osteoclastogenesis via an osteoblast-independent pathway.Infection and Immunity,2002,70(6):3143-3148.
    [23].赵强邓廉夫.低氧及相关因子对破骨细胞形成与活性的调节作用[J]国际骨科学杂志,2007,28(2):74-76
    [24]. Arnett TR ,Gibbons DC ,Utting JC ,et al . Hypoxia is a major stimulator of osteoclast formation and bone resorption[J ] . Cell Physiol ,2003 ,196 (1):228
    [25]. Hofbauer LC,Lacey DL,Dunstan CR,et al.Interleukin-1beta and tumor necrosis factoralpha,but not interleukin-6,stimulate osteoprotegerin ligand gene expression in human osteoblastic cells[J].Bone,1999,25(1):255-259.
    [26]. Naomi Yamasaki, Hideki Tsuboi, Makoto Hirao.High oxygen tension prolongs the survival of osteoclast precursors via macrophage colony-stimulating factor [J ] Bone ,2009,44(5):71–79
    [27]. John J. Haddad, Hisham L. Harbb. Cytokines and the regulation of hypoxia-inducible factor (HIF)-1a[J ]International Immunopharmacology ,5 (2005) 461–483
    [28]. Lee E, Yang YH, Ho YP,et,al.Potential Role of Vascular Endothelial Growth Factor, Interleukin-8 and Monocyte Chemoattractant Protein-1 in Periodontal Diseases The Kaohsiung Journal of Medical Sciences,2003, 19(8):406-414.
    [29]. Crotti T,Smith MD,Hirsch R,et a1.Receptor activator NF kappa B ligand(RANKL)and osteoprotegerin(OPG)protein expression in period[J].Periodontal Res,2003,38(4):380-387

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700