人类γδT细胞生物学效应的信号转导机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
γδT细胞能够以主要组织相容性复合体(major histocompatibility complex, MHC)非限制性方式识别多种肿瘤相关抗原,有效的杀伤肿瘤细胞,并能分泌干扰素(interferon, IFN)-γ等细胞因子。因此,γδT细胞已成为当前恶性肿瘤免疫治疗中一种很有前景的候选细胞。
     γδT细胞表面除表达γ和δ链组成的T细胞受体(T cell receptor γδ, TCRγδ)外,还表达自然杀伤(natural killer, NK)细胞的重要功能受体NKG2D。这两种受体分子在γδT细胞对肿瘤细胞的杀伤中发挥重要的作用。目前,大部分文献报导倾向于γδT细胞活化为TCRγδ依赖性的,而NKG2D仅起共刺激作用。然而,为什么单独的TCRγδ刺激即可活化γδT细胞,NKG2D的共刺激作用又是如何发挥的?只有进一步回答这些问题,才能澄清γδT细胞生物学效应(主要为细胞毒效应)的分子机制,尤其是信号转导机制。
     鉴此,本研究主要针对以下三个科学问题展开:一是γδT细胞杀伤肿瘤细胞的主要效应途径是什么?二是TCRγδ和NKG2D在活化γδT细胞杀伤功能中的具体作用是什么?三是γδT细胞杀伤功能活化的调控机制是什么?本文分以下两部分就上述三个科学问题进行研究。
     第一部分工作旨在进一步澄清γδT细胞杀伤肿瘤细胞的相关机理。首先,我们比较了穿孔素-颗粒酶和Fas-FasL两条途径在γδ T细胞杀伤肿瘤细胞中的贡献。我们选取了五种不同组织来源的肿瘤细胞作为γδT细胞杀伤途径研究的靶细胞,包括Daudi(人Burkkit淋巴瘤细胞)、G401(人肾癌Wilms细胞)、NCI-H446(人小细胞肺癌细胞)、HR8348(人结直肠癌细胞)和MGC-803(人胃癌细胞)。流式细胞术检测结果表明,这五种不同组织来源的肿瘤细胞表面Fas受体呈现不同程度的表达:Daudi为5.14%、G401为7.24%、NCI-H556为44.10%、HR8348为69.40%以及MGC-803为82.30%。然后,对这五种Fas受体表达水平不同的肿瘤细胞进行穿孔素-颗粒酶途径及Fas-FasL途径的封闭实验。结果表明,封闭穿孔素-颗粒酶途径后,γδT细胞对这五种肿瘤细胞的杀伤能力均显著降低,而封闭Fas-FasL途径对γδT细胞杀伤能力无显著影响。随后的酶联免疫吸附试验(enzyme-linked immunosorbent assay, ELISA)结果显示,穿孔素-颗粒酶途径封闭的γδT细胞与靶细胞共孵育后分泌IFN-γ的能力亦显著降低。而Fas-FasL途径封闭后,γδT细胞分泌IFN-y的能力无显著变化。以上结果表明γδT细胞杀伤肿瘤细胞的主要途径为穿孔素-颗粒酶途径。
     随后,利用激活抗体包被的P815靶细胞杀伤体系,探讨了TCRγδ和NKG2D在活化γδT细胞杀伤功能中的作用,并分析了二者功能存在差异的原因。P815靶细胞杀伤实验结果表明,单独给予抗TCRγδ抗体刺激即可活化γδT细胞,杀伤抗体包被的P815靶细胞,并分泌IFN-γ;而单独的抗NKG2D抗体刺激却不能活化γδT细胞的杀伤功能,也不能引起IFN-γ的分泌。然而,抗NKG2D抗体可以增强抗TCRγδ抗体刺激所引起的γδT细胞的杀伤功能和分泌IFN-γ的能力。流式细胞术检测结果表明,抗TCRγδ抗体和抗NKG2D抗体均可引起γδT细胞的脱颗粒反应;激光共聚焦检测结果表明,单独的抗TCRγδ抗体刺激即可引起γδT细胞裂解性颗粒的极化,单独的抗NKG2D抗体刺激却不能。尽管如此,抗NKG2D抗体可以在某种程度上增强抗TCRγδ抗体所引起的裂解性颗粒极化。结合杀伤实验结果,提示引起γδT细胞裂解性颗粒极化能力的不同是TCRγδ和NKG2D在活化γδT细胞杀伤功能方面存在功能差异的主要原因。
     第二部分研究工作旨在明确调控γδT细胞杀伤功能活化的相关信号通路。首先对γδT细胞杀伤功能相关的活化信号通路进行了研究,主要集中在Vavl信号通路、磷酸脂酶C-γ1(Phospholipase C-γ1, PLC-γ1)信号通路、丝裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)/细胞外信号调节激酶(extracellular signal-regulated kinase, Erk)信号通路、磷脂酰肌醇3-激酶(phosphatidylinositol3-kinase, PI3K)信号通路等四条与αβ T细胞和NK细胞活化相关的信号通路。运用Western blot技术,证实了单独的抗TCRγδ抗体刺激即可显著性活化Vav1信号通路、PLC-γ1信号通路以及Erk信号通路;而单独给予抗NKG2D抗体刺激则无此作用;在联合给予抗NKG2D抗体刺激时,这三条信号通路的活化显著增强。PI3K信号通路在给予抗TCRγδ抗体刺激或抗NKG2D抗体刺激时均明显活化,而联合给予二者刺激时,PI3K信号通路活化亦未见增强。结合杀伤实验结果,提示Vav1信号通路、PLC-γ1信号通路以及Erk信号通路与γδT细胞杀伤功能密切相关。利用siRNA技术敲低γδT细胞内的Vav1分子表达时,发现γδT细胞对靶细胞的杀伤、IFN-γ分泌以及裂解性颗粒极化能力均显著降低;同时,敲低Vavl亦可显著抑制PLC-γ1信号通路以及Erk信号通路的活化。利用信号通路抑制剂抑制γδT细胞内的PLC-γ1信号通路以及Erk信号通路时,发现抑制PLC-γ1信号通路可显著抑制γδT细胞的杀伤、IFN-γ分泌以及裂解性颗粒极化,而抑制Erk信号通路对γδT细胞的杀伤功能及裂解性颗粒极化均无显著影响,但抑制Erk信号通路可抑制γδT细胞IFN-γ的分泌。此外,抑制PLC-γ1信号通路可显著抑制γδT细胞内Erk信号通路的活化。上述结果提示,Vav1-PLC-γ1信号通路位于Erk信号通路上游,并在γδT细胞杀伤功能活化中具有重要的作用。
     随后的研究工作证实了Cbl-b在γδT细胞杀伤功能活化中的负调控作用。利用siRNA技术敲低γδT细胞内Cbl-b分子表达时,γδT细胞对靶细胞的杀伤能力、杀伤功能相关的Vav1-PLC-γ1信号通路活化以及裂解性颗粒极化均显著提高;特别值得一提的是,单独的抗NKG2D抗体刺激即可活化与γδT细胞的杀伤功能相关的Vav1-PLC-γ1信号通路,并引起裂解性颗粒极化,提示Cbl-b是单独使用抗NKG2D抗体不能活化γδT细胞杀伤功能的主要负调控因素,亦提示γδT细胞杀伤功能活化需要一个较强的活化信号来克服活化抑制信号;Vav1过表达实验进一步证实了这一点。此外,RNAi实验也证实了Cbl-b是通过抑制Vavl磷酸化而发挥其负调控功能的。
     综上所述,本研究得出以下主要结论:1、γδT细胞杀伤靶细胞主要通过穿孔素-颗粒酶途径;2、γδT细胞杀伤功能为TCRγδ依赖性的,NKG2D可增强TCRγδ依赖性的γδT细胞杀伤功能;3、引起裂解性颗粒极化能力的不同是TCRγδ和NKG2D在活化γδT细胞杀伤功能方面存在差别的原因;4、Vav1-PLC-γ1信号通路与γδT细胞杀伤功能密切相关;5、Cbl-b负调控γδT细胞杀伤功能;6、γδT细胞杀伤功能的活化需要一个较强的活化信号来克服活化抑制信号,最终使γδT细胞发挥杀伤能力。本研究深入揭示了TCR依赖性γδT细胞杀伤活性的分子机制,发现γδT细胞杀伤功能的实现需要经Vav1-PLC-γ1信号通路的活化来消除E3泛素连接酶Cbl-b的抑制作用,为深入阐明γδT细胞生物学效应的作用机制提供了研究资料。
y8T cells are able to target a broad spectrum of tumors because of their unique properties, including major histocompatibility complex (MHC)-independent recognition, potent cytotoxicity, and cytokine (like IFN-γ) secretion. Therefore, γδ T cells have recently become attractive candidate effector cells for tumor immunotherapy.
     Besides T cell antigen receptor y8(TCRyδ), y8T cells also highly express natural killer group2, member D (NKG2D). TCRyS and NKG2D are considered as two important receptors of y8T cells that play important roles in the recognition of tumor cells. Evidences of TCRγδ-dependent y8T cells activation have been well documented, whereas NKG2D is generally accepted to act as a costimulatory receptor for γδ T cell cytotoxicity. However, why TCRγδ alone can activate γδ T cell cytotoxicity, and how does NKG2D costimulatory effect take place? Only when these questions are answered, the molecular mechanisms, especially the signal transduction underlying the biological effects of γδ T cells (mainly cytotoxic effect) could be well clarified.
     In view of these facts, our current study focused on the following three scientific questions. First, what is the principal pathway related to γδ T cell mediated tumor killing? Second, what are the specific functions of TCRγδ and NKG2D in the activation of γδ T cell cytotoxicity? Third, what is the regulative mechanism of y8T cell cytotoxicity?
     The first part of this work aimed at further clarifying y8T cell killing mechanism. First of all, the individual contribution of perforin-granzyme pathway and Fas-FasL pathway to y8T cell mediated tumor killing was compared. Five tumor cell lines were selected as the target cells, including Daudi (Human Burkkit lymphoma cells), G401(Human renal cancer Wilms cells), NCI-H446(Human small cell lung cancer cells), HR8348(Human colorectal cancer cells), and MGC-803(Human gastric cancer cells). Flow cytometry (FCM) analysis showed that these five tumor cell lines have different levels of Fas expression:Daudi5.14%, G4017.24%, NCI-H55644.10%, HR834869.40%, and MGC-80382.30%. Cytotoxicity assay following perforin-granzyme pathway and Fas-FasL pathway blockade showed that Fas-FasL signaling blockade with supplemented soluble anti-FasL antibody did not impair the specific lysis of tumor target cells or the release of IFN-y by γδ T cells. In contrast, concanamycin A (CMA), a perforin inhibitor that accelerates perforin degradation within lytic granules, dramatically blocked γδ T cell cytotoxicity. Hence, we can conclude that the perforin-granzyme pathway makes the major contribution to γδ T cell cytotoxicity.
     Later, the function of TCRy8receptor and NKG2D receptor in the activation of γδ T cell cytotoxicity was explored through using TCRγδ antibody and/or NKG2D antibody redirected P815cells as target. The results of P815redirected cytotoxicity showed that anti-TCRy5but not anti-NKG2D activating antibodies initiated γδ T cell specific killing of P815target cells, accompanied by the significant release of IFN-y. Interestingly, NKG2D ligation augmented TCRγδ activation-mediated cytotoxicity and IFN-y production. To compare the contribution of TCRγδ and NKG2D on perforin-granzyme pathway, we first measured cellular degranulation based on cell surface expression of CD107a (LAMP-1). No significant difference was observed in CD107a expression in γδ T cells after TCRγδ or NKG2D activation. Intracellular staining of the perforin-containing granules showed that TCRγδ but not NKG2D engagement induced lytic granule polarization, and NKG2D in combination with TCRγδ activation merely enhanced this effect. These results, taken together, suggest that TCRγδ-induced T cell cytotoxicity mainly depends on lytic granule polarization.
     The second part of the work was to look for the signal transduction mechanisms responsible for the regulation of γδ T cell cytotoxicity. First, we studied the activation signal pathways related to γδ T cell cytotoxicity. Four important signaling pathways that are associated with αβ T cell and NK cell cytotoxicitywere studied. They are Vavl, PLC-y, mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (Erk) and PI3K. Western blot analysis showed that stimulation of TCRγδ but not NKG2D induced strong phosphorylation of Vav1, PLC-γ1and Erk, which were enhanced when both TCRy8and NKG2D were engaged. In contrast, phosphorylation of Akt, a downstream target of PI3K activation, showed no enhancement following the coengagement of TCRyS and NKG2D compared to either TCRγδ or NKG2D stimulation alone. These results combined with the cytotoxicity results, suggest that Vav1, PLC-yl and Erk pathways play the major role in y8T cell cytotoxicity. Knockdown of Vavl in γδ T cells by small interference RNA (siRNA) could block γδ T cell-mediated killing, lytic granule polarization and IFN-y release. In the mean while, knockdown of Vavl completely abrogated the phosphorylation of PLC-yl and Erk. Using inhibitor of signaling pathways, we found that the PLC-y inhibitor U73122can fully abrogate y8T cell cytotoxicity, lytic granule polarization and IFN-y release. However, MEK inhibitor U0126, an upstream activator of Erk, did not abrogate γδ T cell cytotoxicity and lytic granule polarization, even under high concentrations. Intriguingly, IFN-y production was inhibited by U0126. In addition, Erk phosphorylation was inhibited by U73122, indicating that Erk might be a downstream molecule of the PLC-y pathway. These results suggest that, unlike IFN-y production, y8T cell cytotoxicity is an independent event downstream of Vavl-PLC-yl but not Erk.
     Subsequent research confirmed that Cbl-b played inhibitory role in γδ T cell cytotoxicity activation. Knockdown of Cbl-b in γδ T cells by small interference RNA (siRNA) enhanced γδ T cell cytotoxicity towards redirected P815cells following TCRγδ and/or NKG2D engagement. After Cbl-b knockdown, lytic granule polarization toward target cells, phosphorylated Vavl, PLC-yl and Erk were all upregulated following TCRγδ or NKG2D activation. Interestingly, knockdown of Cbl-b enabled unresponsive γδ T cells to respond to the engagement of NKG2D. NKG2D engagement induced the phosphorylation of Vav1and PLC-γ1, as well as lytic granule polarization when Cbl-b expression was knocked down. Taken together, our data suggest that Cbl-b imposes a requirement of TCRγδ-dependent activation, and the activation of γδ T cell cytotoxicity requires a strong signal to overcome the activation threshold set by the inhibitory effect of Cbl-b. Vavl overexpression experiments further confirmed this conclusion. At the same time, RNAi results showed that Cbl-b might regulate y8T cell cytotoxicity by targeting phosphorylated Vavl.
     In conclusion, our major findings in this study include (1) Perforin-granzyme pathway mediates γδ T cell cytotoxicity towards tumor cells.(2) γδ T cell cytotoxicity is TCRγδ dependent. NK.G2D ligation augments γδ T cell cytotoxicity mediated by TCRγδ engagement.(3) Difference in lytic granule polarization is the main reason why TCRγδ and NKG2D have different function in the activation of γδ T cell cytotoxicity.(4) Vav1-PLCγ1is required for γδ T cell cytotoxicity.(5) Cbl-b inhibits Vavl-dependent γδ T cell activation signals.(6) The activation of γδ T cell cytotoxicity requires a strong signal to overcome the activation threshold set by the inhibitory effect of Cbl-b. This study further reveals the molecular mechanisms underlying TCRγδ dependent γδT cell cytotoxicity, and verifies that the activation of Vavl-PLCγ1pathway is required to overcome the inhibition by E3ubiquitin ligase Cbl-b in γδT cell cytotoxicity, thereby providing important information regarding the biological effects of γδT cells.
引文
1. Porcelli S, Brenner MB, Band H. Biology of the human gamma delta T-cell receptor. Immunol Rev.1991; 120:137-183.
    2. Gomez TS, Billadeau DD. T cell activation and the cytoskeleton:you can't have one without the other. Adv Immunol.2008;97:1-64.
    3. Girardi M. Immunosurveillance and immunoregulation by gammadelta T cells. J Invest Dermatol.2006;126(1):25-31.
    4. Peng G, Wang HY, Peng W, Kiniwa Y, Seo KH, Wang RF. Tumor-infiltrating gammadelta T cells suppress T and dendritic cell function via mechanisms controlled by a unique toll-like receptor signaling pathway. Immunity.2007;27(2):334-348.
    5. Morita CT, Mariuzza RA, Brenner MB. Antigen recognition by human gamma delta T cells:pattern recognition by the adaptive immune system. Springer Semin Immunopathol.2000;22(3):191-217.
    6. Moser B, Eberl M. gammadelta T cells:novel initiators of adaptive immunity. Immunol Rev.2007;215:89-102.
    7. Kabelitz D, Wesch D, He W. Perspectives of gammadelta T cells in tumor immunology. Cancer Res.2007;67(1):5-8.
    8. Chen ZW, Letvin NL. Vgamma2Vdelta2+ T cells and anti-microbial immune responses. Microbes Infect.2003;5(6):491-498.
    9. Dieli F, Troye-Blomberg M, Ivanyi J, et al. Granulysin-dependent killing of intracellular and extracellular Mycobacterium tuberculosis by Vgamma9/Vdelta2 T lymphocytes. J Infect Dis.2001;184(8):1082-1085.
    10. Ottones F, Dornand J, Naroeni A, Liautard JP, Favero J. V gamma 9V delta 2 T cells impair intracellular multiplication of Brucella suis in autologous monocytes through soluble factor release and contact-dependent cytotoxic effect. J Immunol. 2000;165(12):7133-7139.
    11. Oliaro J, Dudal S, Liautard J, Andrault JB, Liautard JP, Lafont V. Vgamma9Vdelta2 T cells use a combination of mechanisms to limit the spread of the pathogenic bacteria Brucella. JLeukoc Biol.2005;77(5):652-660.
    12. Gao Y, Yang W, Pan M, et al. Gamma delta T cells provide an early source of interferon gamma in tumor immunity. JExp Med.2003;198(3):433-442.
    13. Bendelac A, Bonneville M, Kearney JF. Autoreactivity by design:innate B and T lymphocytes. Nat Rev Immunol.2001; 1 (3):177-186.
    14. Martinet L, Jean C, Dietrich G, Fournie JJ, Poupot R. PGE2 inhibits natural killer and gamma delta T cell cytotoxicity triggered by NKR and TCR through a cAMP-mediated PKA type I-dependent signaling. Biochem Pharmacol. 2010;80(6):838-845.
    15. Kong Y, Cao W, Xi X, Ma C, Cui L, He W. The NKG2D ligand ULBP4 binds to TCRgamma9/delta2 and induces cytotoxicity to tumor cells through both TCRgammadelta and NKG2D. Blood.2009; 114(2):310-317.
    16. Dai Y, Chen H, Mo C, Cui L, He W. Ectopically expressed human tumor biomarker MutS homologue 2 is a novel endogenous ligand that is recognized by human gammadelta T cells to induce innate anti-tumor/virus immunity. J Biol Chem. 2012;287(20):16812-16819.
    17. Mo C, Dai Y, Kang N, Cui L, He W. Ectopic expression of human MutS homologue 2 on renal carcinoma cells is induced by oxidative stress with interleukin-18 promotion via p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) signaling pathways. J Biol Chem. 2012;287(23):19242-19254.
    18. Rothenfusser S, Buchwald A, Kock S, Ferrone S, Fisch P. Missing HLA class I expression on Daudi cells unveils cytotoxic and proliferative responses of human gammadelta T lymphocytes. Cell Immunol.2002;215(1):32-44.
    19. Nedellec S, Sabourin C, Bonneville M, Scotet E. NKG2D costimulates human V gamma 9V delta 2 T cell antitumor cytotoxicity through protein kinase C theta-dependent modulation of early TCR-induced calcium and transduction signals. J Immunol.2010;185(1):55-63.
    20. Vantourout P, Martinez LO, Fabre A, Collet X, Champagne E. Ecto-F1-ATPase and MHC-class I close association on cell membranes. Mol Immunol. 2008;45(2):485-492.
    21. Kim HS, Das A, Gross CC, Bryceson YT, Long EO. Synergistic signals for natural cytotoxicity are required to overcome inhibition by c-Cbl ubiquitin ligase. Immunity.2010;32(2):175-186.
    22. Carlsten M, Bjorkstrom NK, Norell H, et al. DNAX accessory molecule-1 mediated recognition of freshly isolated ovarian carcinoma by resting natural killer cells. Cancer Res.2007;67(3):1317-1325.
    23. Huang F, Gu H. Negative regulation of lymphocyte development and function by the Cbl family of proteins. Immunol Rev.2008;224:229-238.
    24. Bukowski JF, Morita CT, Tanaka Y, Bloom BR, Brenner MB, Band H. V gamma 2V delta 2 TCR-dependent recognition of non-peptide antigens and Daudi cells analyzed by TCR gene transfer. J Immunol.1995;154(3):998-1006.
    25. Zhou J, Kang N, Cui L, Ba D, He W. Anti-gammadelta TCR antibody-expanded gammadelta T cells:a better choice for the adoptive immunotherapy of lymphoid malignancies. Cell Mol Immunol.2012;9(1):34-44.
    26. Lang F, Peyrat MA, Constant P, et al. Early activation of human V gamma 9V delta 2 T cell broad cytotoxicity and TNF production by nonpeptidic mycobacterial ligands. J Immunol.1995;154(11):5986-5994.
    27. Morita CT, Beckman EM, Bukowski JF, et al. Direct presentation of nonpeptide prenyl pyrophosphate antigens to human gamma delta T cells. Immunity. 1995;3(4):495-507.
    28. Alexander AA, Maniar A, Cummings JS, et al. Isopentenyl pyrophosphate-activated CD56+ {gamma}{delta} T lymphocytes display potent antitumor activity toward human squamous cell carcinoma. Clin Cancer Res. 2008; 14(13):4232-4240.
    29. He W, Hao J, Dong S, et al. Naturally activated V gamma 4 gamma delta T cells play a protective role in tumor immunity through expression of eomesodermin. J Immunol.2010;185(1):126-133.
    30. Wrobel P, Shojaei H, Schittek B, et al. Lysis of a broad range of epithelial tumour cells by human gamma delta T cells:involvement of NKG2D ligands and T-cell receptor- versus NKG2D-dependent recognition. Scand J Immunol. 2007;66(2-3):320-328.
    31. Cantoni C, Bottino C, Vitale M, et al. NKp44, a triggering receptor involved in tumor cell lysis by activated human natural killer cells, is a novel member of the immunoglobulin superfamily. JExpMed.1999;189(5):787-796.
    32. Chiossone L, Vitale C, Cottalasso F, et al. Molecular analysis of the methylprednisolone-mediated inhibition of NK-cell function:evidence for different susceptibility of IL-2- versus IL-15-activated NK cells. Blood. 2007; 109(9):3767-3775.
    33. Parsons MS, Zipperlen K, Gallant M, Grant M. Killer cell immunoglobulin-like receptor 3DL1 licenses CD16-mediated effector functions of natural killer cells. J Leukoc Biol.2010;88(5):905-912.
    34. Tybulewicz VL. Vav-family proteins in T-cell signalling. Curr Opin Immunol. 2005;17(3):267-274.
    35. Graham DB, Cella M, Giurisato E, et al. Vav1 controls DAP10-mediated natural cytotoxicity by regulating actin and microtubule dynamics. J Immunol. 2006;177(4):2349-2355.
    36. Upshaw JL, Arneson LN, Schoon RA, Dick CJ, Billadeau DD, Leibson PJ. NKG2D-mediated signaling requires a DAP10-bound Grb2-Vavl intermediate and phosphatidylinositol-3-kinase in human natural killer cells. Nat Immunol. 2006;7(5):524-532.
    37. Nau MM, Lipkowitz S. Comparative genomic organization of the cbl genes. Gene. 2003;308:103-113.
    38. Griffiths EK, Sanchez O, Mill P, et al. Cbl-3-deficient mice exhibit normal epithelial development. Mol Cell Biol.2003;23(21):7708-7718.
    39. Schmidt MH, Dikic I. The Cbl interactome and its functions. Nat Rev Mol Cell Biol.2005;6(12):907-918.
    40. Fang D, Wang HY, Fang N, Altman Y, Elly C, Liu YC. Cbl-b, a RING-type E3 ubiquitin ligase, targets phosphatidylinositol 3-kinase for ubiquitination in T cells. J Biol Chem.2001;276(7):4872-4878.
    41. Tsygankov AY, Teckchandani AM, Feshchenko EA, Swaminathan G. Beyond the RING:CBL proteins as multivalent adapters. Oncogene.2001;20(44):6382-6402.
    42. Corvaisier M, Moreau-Aubry A, Diez E, et al. V gamma 9V delta 2 T cell response to colon carcinoma cells. J Immunol.2005;175(8):5481-5488.
    43. Gober HJ, Kistowska M, Angman L, Jeno P, Mori L, De Libero G. Human T cell receptor gammadelta cells recognize endogenous mevalonate metabolites in tumor cells. JExp Med.2003; 197(2):163-168.
    44. Fisch P, Meuer E, Pende D, et al. Control of B cell lymphoma recognition via natural killer inhibitory receptors implies a role for human Vgamma9/Vdelta2 T cells in tumor immunity. Eur J Immunol.1997;27(12):3368-3379.
    45. Ferrarini M, Heltai S, Toninelli E, Sabbadini MG, Pellicciari C, Manfredi AA. Daudi lymphoma killing triggers the programmed death of cytotoxic V gamma 9/V delta 2 T lymphocytes. J Immunol.1995;154(8):3704-3712.
    46. Li Z, Xu Q, Peng H, Cheng R, Sun Z, Ye Z. IFN-gamma enhances HOS and U2OS cell lines susceptibility to gammadelta T cell-mediated killing through the Fas/Fas ligand pathway. Int Immunopharmacol.2011; 11 (4):496-503.
    47. Mami-Chouaib F, Flament C, Asselin-Paturel C, Gaudin C, Chouaib S. TCR alpha/beta and TCR gamma/delta CD4-/CD8- HLA-DR alloreactive CTL clones do not use Fas/Fas ligand pathway to lyse their specific target cells. Hum Immunol. 1996;51(1):13-22.
    48. Spada FM, Grant EP, Peters PJ, et al. Self-recognition of CD1 by gamma/delta T cells:implications for innate immunity. J Exp Med.2000;191(6):937-948.
    49. Dalton JE, Howell G, Pearson J, Scott P, Carding SR. Fas-Fas ligand interactions are essential for the binding to and killing of activated macrophages by gamma delta T cells. J Immunol.2004;173(6):3660-3667.
    50. Kataoka T, Shinohara N, Takayama H, et al. Concanamycin A, a powerful tool for characterization and estimation of contribution of perforin- and Fas-based lytic pathways in cell-mediated cytotoxicity. J Immunol.1996;156(10):3678-3686.
    51. Estefania E, Flores R, Gomez-Lozano N, Aguilar H, Lopez-Botet M, Vilches C. Human KIR2DL5 is an inhibitory receptor expressed on the surface of NK and T lymphocyte subsets. J Immunol.2007;178(7):4402-4410.
    52. Gross CC, Brzostowski JA, Liu D, Long EO. Tethering of intercellular adhesion molecule on target cells is required for LFA-1-dependent NK cell adhesion and granule polarization. J Immunol.2010;185(5):2918-2926.
    53. Bryceson YT, March ME, Barber DF, Ljunggren HG, Long EO. Cytolytic granule polarization and degranulation controlled by different receptors in resting NK cells. J Exp Med.2005;202(7):1001-1012.
    54. Das A, Long EO. Lytic granule polarization, rather than degranulation, is the preferred target of inhibitory receptors in NK cells. J Immunol. 2010;185(8):4698-4704.
    55. Smith-Garvin JE, Koretzky GA, Jordan MS. T cell activation. Annu Rev Immunol. 2009;27:591-619.
    56. Quann EJ, Liu X, Altan-Bonnet G, Huse M. A cascade of protein kinase C isozymes promotes cytoskeletal polarization in T cells. Nat Immunol. 2011;12(7):647-654.
    57. Huang Y, Wange RL. T cell receptor signaling:beyond complex complexes. J Biol Chem.2004;279(28):28827-28830.
    58. Lewis RS. Calcium signaling mechanisms in T lymphocytes. Annu Rev Immunol. 2001; 19:497-521.
    59. Feske S. Calcium signalling in lymphocyte activation and disease. Nat Rev Immunol.2007;7(9):690-702.
    60. Peterson ME, Long EO. Inhibitory receptor signaling via tyrosine phosphorylation of the adaptor Crk. Immunity.2008;29(4):578-588.
    61. Stebbins CC, Watzl C, Billadeau DD, Leibson PJ, Burshtyn DN, Long EO. Vav1 dephosphorylation by the tyrosine phosphatase SHP-1 as a mechanism for inhibition of cellular cytotoxicity. Mol Cell Biol.2003;23(17):6291-6299.
    62. Thien CB, Langdon WY. c-Cbl and Cbl-b ubiquitin ligases:substrate diversity and the negative regulation of signalling responses. Biochem J.2005;391(Pt 2):153-166.
    63. Chiang J, Hodes RJ. Cbl enforces Vav1 dependence and a restricted pathway of T cell development. PLoS One.2011;6(4):e18542.
    64. Rincon-Orozco B, Kunzmann V, Wrobel P, Kabelitz D, Steinle A, Herrmann T. Activation of V gamma 9V delta 2 T cells by NKG2D. J Immunol. 2005;175(4):2144-2151.
    65. Kuylenstierna C, Bjorkstrom NK, Andersson SK, et al. NKG2D performs two functions in invariant NKT cells:direct TCR-independent activation of NK-like cytolysis and co-stimulation of activation by CDld. Eur J Immunol. 2011;41(7):1913-1923.
    66. Knyazhitsky M, Moas E, Shaginov E, Luria A, Braiman A. Vavl oncogenic mutation inhibits T cell receptor-induced calcium mobilization through inhibition of phospholipase Cgammal activation. JBiol Chem.2012;287(23):19725-19735.
    67. Reynolds LF, Smyth LA, Norton T, et al. Vavl transduces T cell receptor signals to the activation of phospholipase C-gammal via phosphoinositide 3-kinase-dependent and -independent pathways. J Exp Med.2002;195(9):1103-1114.
    68. Reynolds LF, de Bettignies C, Norton T, Beeser A, Chernoff J, Tybulewicz VL. Vav1 transduces T cell receptor signals to the activation of the Ras/ERK pathway via LAT, Sos, and RasGRP1. JBiol Chem.2004;279(18):18239-18246.
    69. Lewis CM, Broussard C, Czar MJ, Schwartzberg PL. Tec kinases:modulators of lymphocyte signaling and development. Curr Opin Immunol.2001;13(3):317-325.
    70. Cruz-Orcutt N, Houtman JC. PI3 kinase function is vital for the function but not formation of LAT-mediated signaling complexes. Mol Immunol. 2009;46(11-12):2274-2283.
    71. Paolino M, Thien CB, Gruber T, et al. Essential role of E3 ubiquitin ligase activity in Cbl-b-regulated T cell functions. J Immunol.2011;186(4):2138-2147.
    72. Bachmaier K, Krawczyk C, Kozieradzki 1, et al. Negative regulation of lymphocyte activation and autoimmunity by the molecular adaptor Cbl-b. Nature. 2000;403(6766):211-216.
    73. Chiang YJ, Kole HK, Brown K, et al. Cbl-b regulates the CD28 dependence of T-cell activation. Nature.2000;403(6766):216-220.
    74. Jeon MS, Atfield A, Venuprasad K, et al. Essential role of the E3 ubiquitin ligase Cbl-b in T cell anergy induction. Immunity.2004;21(2):167-177.
    75. Gronski MA, Boulter JM, Moskophidis D, et al. TCR affinity and negative regulation limit autoimmunity. Nat Med.2004;10(11):1234-1239.
    1. Smith-Garvin JE, Koretzky GA, Jordan MS. T cell activation. Annu Rev Immunol. 2009;27:591-619.
    2. Acuto O, Michel F. CD28-mediated co-stimulation:a quantitative support for TCR signalling. Nat Rev Immunol.2003;3(12):939-951.
    3. Duttagupta PA, Boesteanu AC, Katsikis PD. Costimulation signals for memory CD8+T cells during viral infections. Crit Rev Immunol.2009;29(6):469-486.
    4. Chen L. Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nat Rev Immunol.2004;4(5):336-347.
    5. Croft M. The role of TNF superfamily members in T-cell function and diseases. Nat Rev Immunol.2009;9(4):271-285.
    6. Eagle RA, Trowsdale J. Promiscuity and the single receptor:NKG2D. Nat Rev Immunol.2007;7(9):737-744.
    7. Gasser S, Orsulic S, Brown EJ, Raulet DH. The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature. 2005;436(7054):1186-1190.
    8. Champsaur M, Lanier LL. Effect of NKG2D ligand expression on host immune responses. Immunol Rev.2010;235(1):267-285.
    9. Groh V, Rhinehart R, Randolph-Habecker J, Topp MS, Riddell SR, Spies T. Costimulation of CD8alphabeta T cells by NKG2D via engagement by MIC induced on virus-infected cells. Nat Immunol.2001;2(3):255-260.
    10. Das H, Groh V, Kuijl C, et al. MICA engagement by human Vgamma2Vdelta2 T cells enhances their antigen-dependent effector function. Immunity.2001; 15(1):83-93.
    11. Nedellec S, Sabourin C, Bonneville M, Scotet E. NKG2D costimulates human V gamma 9V delta 2 T cell antitumor cytotoxicity through protein kinase C theta-dependent modulation of early TCR-induced calcium and transduction signals. J Immunol.2010;185(1):55-63.
    12. Rincon-Orozco B, Kunzmann V, Wrobel P, Kabelitz D, Steinle A, Herrmann T. Activation of V gamma 9V delta 2 T cells by NKG2D. J Immunol. 2005;175(4):2144-2151.
    13. Nitahara A, Shimura H, Ito A, Tomiyama K, Ito M, Kawai K. NKG2D ligation without T cell receptor engagement triggers both cytotoxicity and cytokine production in dendritic epidermal T cells. J Invest Dermatol.2006; 126(5):1052-1058.
    14. Wu J, Groh V, Spies T. T cell antigen receptor engagement and specificity in the recognition of stress-inducible MHC class I-related chains by human epithelial gamma delta T cells. J Immunol.2002; 169(3):1236-1240.
    15. Kong Y, Cao W, Xi X, Ma C, Cui L, He W. The NKG2D ligand ULBP4 binds to TCRgamma9/delta2 and induces cytotoxicity to tumor cells through both TCRgammadelta and NKG2D. Blood.2009; 114(2):310-317.
    16. Ribot JC, debarros A, Silva-Santos B. Searching for "signal 2":costimulation requirements of gammadelta T cells. Cell Mol Life Sci.2011;68(14):2345-2355.
    17. Correia DV, d'Orey F, Cardoso BA, et al. Highly active microbial phosphoantigen induces rapid yet sustained MEK/Erk-and PI-3K/Akt-mediated signal transduction in anti-tumor human gammadelta T-cells. PLoS One. 2009;4(5):e5657.
    18. Gomes AQ, Correia DV, Grosso AR, et al. Identification of a panel of ten cell surface protein antigens associated with immunotargeting of leukemias and lymphomas by peripheral blood gammadelta T cells. Haematologica. 2010;95(8):1397-1404.
    19. Lanca T, Correia DV, Moita CF, et al. The MHC class Ib protein ULBP1 is a nonredundant determinant of leukemia/lymphoma susceptibility to gammadelta T-cell cytotoxicity. Blood.2010;115(12):2407-2411.
    20. Fraser JD, Irving BA, Crabtree GR, Weiss A. Regulation of interleukin-2 gene enhancer activity by the T cell accessory molecule CD28. Science. 1991;251(4991):313-316.
    21. Lindstein T, June CH, Ledbetter JA, Stella G, Thompson CB. Regulation of lymphokine messenger RNA stability by a surface-mediated T cell activation pathway. Science.1989;244(4902):339-343.
    22. Boise LH, Minn AJ, Noel PJ, et al. CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-XL. Immunity.1995;3(1):87-98.
    23. Sperling Al, Linsley PS, Barrett TA, Bluestone JA. CD28-mediated costimulation is necessary for the activation of T cell receptor-gamma delta+T lymphocytes. J Immunol.1993;151(11):6043-6050.
    24. Ohteki T, MacDonald HR. Expression of the CD28 costimulatory molecule on subsets of murine intestinal intraepithelial lymphocytes correlates with lineage and responsiveness. Eur J Immunol.1993;23(6):1251-1255.
    25. Rakasz E, Sandor M, Hagen M, Lynch RG. Activation features of intraepithelial gamma delta T-cells of the murine vagina. Immunol Lett.1996;54(2-3):129-134.
    26. Rakasz E, Hagen M, Sandor M, Lynch RG. Gamma delta T cells of the murine vagina:T cell response in vivo in the absence of the expression of CD2 and CD28 molecules. Int Immunol.1997;9(1):161-167.
    27. Witherden DA, Verdino P, Rieder SE, et al. The junctional adhesion molecule JAML is a costimulatory receptor for epithelial gammadelta T cell activation. Science. 2010;329(5996):1205-1210.
    28. Hanrahan CF, Kimpton WG, Howard CJ, et al. Cellular requirements for the activation and proliferation of ruminant gammadelta T cells. J Immunol. 1997;159(9):4287-4294.
    29. Koskela K, Arstila TP, Lassila O. Costimulatory function of CD28 in avian gammadelta T cells is evolutionary conserved. Scand J Immunol. 1998;48(6):635-641.
    30. Testi R, Lanier LL. Functional expression of CD28 on T cell antigen receptor gamma/delta-bearing T lymphocytes. Eur J Immunol.1989;19(1):185-188.
    31. Takamizawa M, Fagnoni F, Mehta-Damani A, Rivas A, Engleman EG. Cellular and molecular basis of human gamma delta T cell activation. Role of accessory molecules in alloactivation. J Clin Invest.1995;95(1):296-303.
    32. Lafont V, Liautard J, Gross A, Liautard JP, Favero J. Tumor necrosis factor-alpha production is differently regulated in gamma delta and alpha beta human T lymphocytes. JBiol Chem.2000;275(25):19282-19287.
    33. Penninger JM, Timms E, Shahinian A, et al. Alloreactive gamma delta thymocytes utilize distinct costimulatory signals from peripheral T cells. J Immunol. 1995;155(8):3847-3855.
    34. Crawford K, Stark A, Kitchens B, et al. CD2 engagement induces dendritic cell activation:implications for immune surveillance and T-cell activation. Blood. 2003;102(5):1745-1752.
    35. Tibaldi EV, Salgia R, Reinherz EL. CD2 molecules redistribute to the uropod during T cell scanning:implications for cellular activation and immune surveillance. Proc Natl Acad Sci USA.2002;99(11):7582-7587.
    36. Espagnolle N, Depoil D, Zaru R, et al. CD2 and TCR synergize for the activation of phospholipase Cgammal/calcium pathway at the immunological synapse. Int Immunol.2007;19(3):239-248.
    37. Pawelec G, Schaudt K, Rehbein A, Olive D, Buhring HJ. Human T cell clones with gamma/delta and alpha/beta receptors are differently stimulated by monoclonal antibodies to CD2. Cell Immunol.1990;129(2):385-393.
    38. Wesselborg S, Janssen O, Pechhold K, Kabelitz D. Selective activation of gamma/delta + T cell clones by single anti-CD2 antibodies. J Exp Med. 1991;173(2):297-304.
    39. Wang P, Malkovsky M. Different roles of the CD2 and LFA-1 T-cell co-receptors for regulating cytotoxic, proliferative, and cytokine responses of human V gamma 9/V delta 2 T cells. Mol Med.2000;6(3):196-207.
    40. Lopez RD, Xu S, Guo B, Negrin RS, Waller EK. CD2-mediated IL-12-dependent signals render human gamma delta-T cells resistant to mitogen-induced apoptosis, permitting the large-scale ex vivo expansion of functionally distinct lymphocytes: implications for the development of adoptive immunotherapy strategies. Blood. 2000;96(12):3827-3837.
    41. Das H, Sugita M, Brenner MB. Mechanisms of Vdeltal gammadelta T cell activation by microbial components. J Immunol.2004; 172(11):6578-6586.
    42. Budd RC, Russell JQ, van Houten N, Cooper SM, Yagita H, Wolfe J. CD2 expression correlates with proliferative capacity of alpha beta + or gamma delta + CD4-CD8-T cells in lpr mice. J Immunol.1992;148(4):1055-1064.
    43. Van Houten N, Mixter PF, Wolfe J, Budd RC. CD2 expression on murine intestinal intraepithelial lymphocytes is bimodal and defines proliferative capacity. Int Immunol.1993;5(6):665-672.
    44. Simpson TR, Quezada SA, Allison JP. Regulation of CD4 T cell activation and effector function by inducible costimulator (ICOS). Curr Opin Immunol. 2010;22(3):326-332.
    45. Coyle AJ, Lehar S, Lloyd C, et al. The CD28-related molecule ICOS is required for effective T cell-dependent immune responses. Immunity.2000;13(1):95-105.
    46. Dong C, Juedes AE, Temann UA, et al. ICOS co-stimulatory receptor is essential for T-cell activation and function. Nature.2001;409(6816):97-101.
    47. Tafuri A, Shahinian A, Bladt F, et al. ICOS is essential for effective T-helper-cell responses. Nature.2001;409(6816):105-109.
    48. Suh WK, Tafuri A, Berg-Brown NN, et al. The inducible costimulator plays the major costimulatory role in humoral immune responses in the absence of CD28. J Immunol.2004; 172(10):5917-5923.
    49. Brandes M, Willimann K, Lang AB, et al. Flexible migration program regulates gamma delta T-cell involvement in humoral immunity. Blood. 2003;102(10):3693-3701.
    50. Caccamo N, Battistini L, Bonneville M, et al. CXCR5 identifies a subset of Vgamma9Vdelta2 T cells which secrete IL-4 and IL-10 and help B cells for antibody production. J Immunol.2006;177(8):5290-5295.
    51. Nishimura H, Okazaki T, Tanaka Y, et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science.2001;291(5502):319-322.
    52. Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. JExp Med.2010;207(10):2187-2194.
    53. Fourcade J, Sun Z, Benallaoua M, et al. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. JExp Med.2010;207(10):2175-2186.
    54. Moog-Lutz C, Cave-Riant F, Guibal FC, et al. JAML, a novel protein with characteristics of a junctional adhesion molecule, is induced during differentiation of myeloid leukemia cells. Blood.2003;102(9):3371-3378.
    55. Verdino P, Witherden DA, Havran WL, Wilson IA. The molecular interaction of CAR and JAML recruits the central cell signal transducer PI3K. Science. 2010;329(5996):1210-1214.
    56. Hendriks J, Gravestein LA, Tesselaar K, van Lier RA, Schumacher TN, Borst J. CD27 is required for generation and long-term maintenance of T cell immunity. Nat Immunol.2000;1(5):433-440.
    57. Denoeud J, Moser M. Role of CD27/CD70 pathway of activation in immunity and tolerance. JLeukoc Biol.2011;89(2):195-203.
    58. Hendriks J, Xiao Y, Borst J. CD27 promotes survival of activated T cells and complements CD28 in generation and establishment of the effector T cell pool. J Exp Med.2003;198(9):1369-1380.
    59. Arens R, Tesselaar K, Baars PA, et al. Constitutive CD27/CD70 interaction induces expansion of effector-type T cells and results in IFNgamma-mediated B cell depletion. Immunity.2001;15(5):801-812.
    60. Arens R, Schepers K, Nolte MA, et al. Tumor rejection induced by CD70-mediated quantitative and qualitative effects on effector CD8+T cell formation. J Exp Med.2004;199(11):1595-1605.
    61. Peperzak V, Xiao Y, Veraar EA, Borst J. CD27 sustains survival of CTLs in virus-infected nonlymphoid tissue in mice by inducing autocrine IL-2 production. J Clin Invest.2010;120(1):168-178.
    62. Ribot JC, deBarros A, Pang DJ, et al. CD27 is a thymic determinant of the balance between interferon-gamma- and interleukin 17-producing gammadelta T cell subsets. Nat Immunol.2009;10(4):427-436.
    63. Do JS, Fink PJ, Li L, et al. Cutting edge:spontaneous development of 1L-17-producing gamma delta T cells in the thymus occurs via a TGF-beta 1-dependent mechanism. J Immunol.2010; 184(4):1675-1679.
    64. Ribot JC, Chaves-Ferreira M, d'Orey F, et al. Cutting edge:adaptive versus innate receptor signals selectively control the pool sizes of murine IFN-gamma-or IL-17-producing gammadelta T cells upon infection. J Immunol. 2010;185(11):6421-6425.
    65. DeBarros A, Chaves-Ferreira M, d'Orey F, Ribot JC, Silva-Santos B. CD70-CD27 interactions provide survival and proliferative signals that regulate T cell receptor-driven activation of human gammadelta peripheral blood lymphocytes. Eur J Immunol.2011;41 (1):195-201.
    66. French RR, Taraban VY, Crowther GR, et al. Eradication of lymphoma by CD8 T cells following anti-CD40 monoclonal antibody therapy is critically dependent on CD27 costimulation. Blood.2007;109(11):4810-4815.
    67. Glouchkova L, Ackermann B, Zibert A, et al. The CD70/CD27 pathway is critical for stimulation of an effective cytotoxic T cell response against B cell precursor acute lymphoblastic leukemia. J Immunol.2009; 182(1):718-725.
    68. Romagnani S, Del Prete G, Maggi E, Chilosi M, Caligaris-Cappio F, Pizzolo G. CD30 and type 2 T helper (Th2) responses. JLeukoc Biol.1995;57(5):726-730.
    69. Tang C, Yamada H, Shibata K, et al. A novel role of CD30L/CD30 signaling by T-T cell interaction in Th1 response against mycobacterial infection. J Immunol. 2008; 181 (9):6316-6327.
    70. Sun X, Yamada H, Shibata K, et al. CD30 ligand/CD30 plays a critical role in Th17 differentiation in mice. J Immunol.2010;185(4):2222-2230.
    71. Ferrarini M, Delfanti F, Gianolini M, et al. NF-kappa B modulates sensitivity to apoptosis, proinflammatory and migratory potential in short- versus long-term cultured human gamma delta lymphocytes. J Immunol.2008;181(9):5857-5864.
    72. Spinozzi F, Agea E, Bistoni O, et al. Local expansion of allergen-specific CD30+Th2-type gamma delta T cells in bronchial asthma. Mol Med. 1995;1(7):821-826.
    73. Biswas P, Rovere P, De Filippi C, et al. Engagement of CD30 shapes the secretion of cytokines by human gamma delta T cells. Eur J Immunol. 2000;30(8):2172-2180.
    74. Dagna L, Iellem A, Biswas P, et al. Skewing of cytotoxic activity and chemokine production, but not of chemokine receptor expression, in human type-1/-2 gamma delta T lymphocytes. Eur J Immunol.2002;32(10):2934-2943.
    75. Sun X, Yamada H, Shibata K, et al. CD30 ligand is a target for a novel biological therapy against colitis associated with Th17 responses. J Immunol. 2010;185(12):7671-7680.
    76. Croft M. Control of immunity by the TNFR-related molecule OX40 (CD 134). Annu Rev Immunol.2010;28:57-78.
    77. Wang C, Lin GH, McPherson AJ, Watts TH. Immune regulation by 4-1BB and 4-1BBL:complexities and challenges. Immunol Rev.2009;229(1):192-215.
    78. Maniar A, Zhang X, Lin W, et al. Human gammadelta T lymphocytes induce robust NK cell-mediated antitumor cytotoxicity through CD137 engagement. Blood. 2010;116(10):1726-1733.
    79. Dalloul A. CD5:a safeguard against auto immunity and a shield for cancer cells. Autoimmun Rev.2009;8(4):349-353.
    80. Mizoguchi A, Mizoguchi E, de Jong YP, et al. Role of the CD5 molecule on TCR gammadelta T cell-mediated immune functions:development of germinal centers and chronic intestinal inflammation. Int Immunol.2003;15(1):97-108.
    81. Liszewski MK, Kemper C, Price JD, Atkinson JP. Emerging roles and new functions of CD46. Springer Semin Immunopathol.2005;27(3):345-358.
    82. Kemper C, Chan AC, Green JM, Brett KA, Murphy KM, Atkinson JP. Activation of human CD4+ cells with CD3 and CD46 induces a T-regulatory cell 1 phenotype. Nature.2003;421(6921):388-392.
    83. Cardone J, Le Friec G, Vantourout P, et al. Complement regulator CD46 temporally regulates cytokine production by conventional and unconventional T cells. Nat Immunol.2010;11(9):862-871.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700