基于稀疏表达的人体心脏磁共振扩散张量图像的去噪研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁共振扩散张量成像(Magnetic Resonance Diffusion Tensor Imaging, DT-MRI)能够在分子水平上提供生物组织的功能性信息,是当前研究活体组织纤维结构的唯一非入侵方法。基于DT-MRI的人体心脏功能性分析和心肌纤维束重建是一个全新的课题,将其用于研究心血管疾病的扩散张量特性改变和纤维结构的病理学变异,具有重要的临床意义和社会经济效益。但是,心脏DT-MRI技术极易受噪声的干扰,并且采集到的扩散加权信号强度较弱,使得扩散加权图像的信噪比和对比度都低于普通磁共振图像。如果不能有效的滤除图像中的噪声,则计算得到的扩散张量的准确性就无法保证,这将极大的降低心肌纤维结构信息获取与重构的可行性,制约了心脏DT-MRI技术的发展。本课题将研究基于稀疏表达的人体心脏DT-MRI的去噪,这是心脏DT-MRI应用首先要解决的关键问题。
     基本稀疏表达去噪算法应用于心脏DT-MRI图像去噪时,对正则化程度低的区域容易滤波不足,并且产生去噪伪影。针对这个问题,提出一种参数自适应的变分正则化约束稀疏去噪算法。自适应参数能够依据各点的滤波程度调节保真项和平滑项的权重,从而将去噪过程中残留的噪声和伪影通过正则项滤除,将丢失的结构信息通过保真项进行补偿,提高了稀疏表达的去噪效果。
     为了提高具有多成分特性的心脏DT-MRI图像与字典的匹配度,改善非稳定点对应的图像结构特征的去噪效果,提出一种多成分图像的分区稀疏去噪算法。根据图像的非稳定度,将多成分图像分割为不同的单元,并且为不同成分间的过渡区域构造结构自适应的阶跃原子。采用DCT函数、Haar函数和结构自适应阶跃原子组成混合字典,对各单元分别进行去噪处理。
     利用心脏DT-MRI序列中相邻层图像的空间相关性,提出一种序列图像的三维稀疏去噪算法。该算法把稀疏去噪扩展到三维空间,并且采用K-SVD数据训练算法构造特征自适应的三维字典,使得三维原子具有与三维图像相一致的空间相关性。算法适用于心脏DT-MRI序列的稀疏去噪,能够有效的保留各层独有的特征,恢复图像的细节信息。
     基于心脏DT-MRI图像的自相似性与稀疏性间的隐含关系,提出基于图像自相似性的结构自适应稀疏去噪算法。该算法定义了一种具有阈值约束的相似性测度,在此基础上,将图像中的相似块聚合成三维数据,采用结构自适应窗从相似块集合中提取出结构自适应三维数据,应用主成分分析对三维数据做变换域去噪。算法适用于结构冗余度高的图像,避免了去噪伪影,实现了去噪图像对比度和平滑性的平衡。
     最后,采用离体的人体心脏DT-MRI,对本文提出的稀疏去噪算法进行实验验证。为了评定心肌扩散张量数据的去噪效果,提出一种融合局部拟合能量和梯度敏感能量的水平集分割算法,应用于心肌的三维重建。实验结果表明,对心脏DT-MRI图像去噪后,可以减少非正定张量的个数,提高心肌扩散张量的准确性和主特征向量场的正则化程度,降低部分各向异性指标的均值,增大方向相关系数的均值,提高纤维束重构的可信度。
Since magnetic resonance diffusion tensor imaging (DT-MRI) can provide thefunctional information of biological organization at the molecular level, it is theonly non-invasive way of fiber structure detection for in vivo tissue in the currentresearch. Today DT-MRI has been applied to the research on brain, spinal cord,liver and muscle for diagnosis of their micro-structures, which have achieved goodpreliminary results. However, the analysis of human heart functions and heart fiberreconstruction based on DT-MRI are still new research areas to be developed.There are important clinical significance and potential social economic benefits toapply DT-MRI to study the diffusion tensor characteristics and fiber structure of thepathological changes for various cardiovascular diseases.
     Because of noise interference, the intensity of diffusion weighted data is weakfor DT-MRI techniques. Hence the signal-to-noise ratio and contrast are lower thannormal MRI. If reliable information can not be obtained from the data, the accuracylevel of the calculated diffusion tensor is questionable, thus greatly affecting theinformation acquisition of myocardium fiber structure and reducing fiberreconstruction feasibility. Accordingly, this thesis aims towards the study of a heartDT-MRI denoising technique based on sparse representation, which is one of theprimary and difficult issues to be resolved for the development of heart DT-MRItechniques.
     For classical sparse denoising algorithm, some of the noise are represented asimage features and thus inducing artifacts. This negative effect is particularlysignificant in image regions with low regularization degree. Therefore, a totalvariation regularization is introduced into the sparse denoising model, and aparameter adaptive total variation based sparse representation denoising algorithmis proposed. The adaptive parameter can adjust the weight between denoising termand fidelity term according to the filtering level of each point, which allows forsuppressing the residual noise and artifacts and compensating the lost structureinformation. Thus, the denoising results can be improved compared with classicalsparse denoising algorithm.
     According to the multi-component characteristic of human heart DT-MRI, amulti-component image partition sparse denoising algorithm is developed. Theimage will be divided into different partitions based on the non-stationary degree,and a set of structure adaptive step atoms are designed for transition region between different partitions. Then a mixed dictionary composed of DCT basis, Haar basisand structure adaptive step atoms is constructed. Finally, the denoising isimplemented on each partition separately. This algorithm has good performance indenoising image features and non-stationary points by improving the matchingdegree between images and dictionaries.
     Considering the spatial correlation in cardiac DT-MRI sequence images, thisresearch proposes a3D sparse denoising algorithm for sequence images as well as aK-SVD based data training algorithm for the design of a3D structure adaptivedictionary, which enables the3D atoms have coherent spatial correlations with3Dimages. In this way, the sparse representation denoising is extended into3D spacetaking advantage of the structure similarity between neighbor slices. This algorithmshould be applied for DT-MRI sequence images denoising and it can preserve theunique fine structures of each slice effectively.
     Since cardiac DT-MRI images exhibit self-similarity, the study advances todevelop a structure adaptive sparse denoising algorithm on the basis of image self-similarity. A new similarity measurement with a threshold constraint is defined. Onthis basis, similar patches are searched from the image and grouped into3D data.However, this thesis implements structure adaptive3D data extracted from squarepatches with a structure adaptive window. Finally, principal component analysis isused to denoising the3D data in transform domain. This algorithm has goodperformance in denoising images with high structural redundancy. It can achieve atrade-off between image contrast and smoothness while preventing artifacts indenoising.
     Denoising human heart DT-MRI with sparse representation is examined andanalyzed in this research. As the basis for myocardium diffusion tensor analysis andDT-MRI denoising assessment, a level set segmentation method combining localfitting energy and gradient sensitivity energy is proposed. Myocardiums can besegmented successfully from ex vivo heart DT-MRI using this method whichenables the myocardium3D reconstruction. Experimental results show that thedenoising of heart DT-MRI can reduce the number of non-positive definite tensors,improve the accuracy of myocardial diffusion tensors and the regularization ofprincipal eigenvector fields, lower fractional anisotropy mean, increase coherenceindex mean, and finally improve the reliability of myocardium fiber reconstruction.
引文
1http://www.who.int/mediacentre/factsheets/fs317/zh/index.html
    2许玉韵,胡大一.心血管疾病诊疗速览.人民卫生出版社.2008:1~103于维汉.心肌病学.科学出版社.2006:1~30
    4徐家兴.磁共振功能成像的一个新技术——扩散张量成像.放射学实践.2002,17:295~296
    5P. J. Basser, J. Mattiello, and D. L. B ihan. MR Diff usion Tensor Spectroscopyand Imaging. Biophys Journal.1994,66(1):259~267
    6D. L. Bihan, J. F. Mangin, and C. Poupon. Diffusion Tensor Imaging: Conceptsand Applications. Journal of Magnetic Resonance Imaging.2001,13:534~546
    7Q. Dong, R. C. Welsh, and T. L. Chenevert, et al. Clin ical Applications ofDiffusion Tensor Imaging. Journal of Magnetic Resonance Imaging.2004,19(1):6~18
    8许卫国,黄力.磁共振扩散张量成像的概念及应用(临床放射学分册).2003,26(2):119~122
    9黄军英.十大新兴技术值得关注.全球科技经济瞭望.2006,7:55~58
    10S. Lu, D. Ahn, and G. Johnson, et al. Peritumoral Diffusion Tensor Imaging ofHigh-grade Gliomas and Metastatic Brain Tumors. AJNR.2003,24(5):937~941
    11何光武.大脑白质纤维磁共振弥散张量成像研究.复旦大学博士论文.2004:20~50
    12毕国力,包颜明,田伟.扩散张量成像在脑梗死中的运用及进展.中华现代影像学杂志.2006,9(3):813~815
    13M. F. Kraus, T. Susmaras, and B. P. Caughlin, et al. White Matter Integrity andCognition in Chronic Traumatic Brain Injury: a Diffusion Tensor ImagingStudy. Brain.2007,130(10):2508~2519
    14M. E. Bastina, J. D. Claydenb, and A. Pattiec, et al. Diffusion Tensor andMagnetization Transfer MRI Measurements of Periventricular White MatterHyperintensities in Old Age. Neurobiology of Aging.2009,30(1):125~136
    15E. D. Schwartz, J. Duda, and J. S. Shumsky, et al. Spinal Cord DiffusionTensor Imaging and Fiber Tracking can Identify White Matter Tract Disruptionand Glial Scar Orientation Following Lateral Funiculotomy. J. Neurotrauma.2005,22(12):1388~1398
    16胡奕,郭启勇,陈丽英.肝脏磁共振弥散成像.中国临床医学影像杂志.2005,16(2):109~111
    17A. Y. Oner, H. Celika, S. Oktara and T. Talia. Single Breath-hold Diffusion-weighted MRI of the Liver with Parallel Imaging: Initial Experience. ClinicalRadiology.2006,61(11):959~965
    18M. Ries, R. A. Jones, and F. Basseau. Diffusion Tensor MRI of the HumanKidney. Journal of Magnetic Resonance Imaging.2001,14(1):42~49
    19C. J. Galban, S. Maderwald, K. Uffmann and M.E. Ladd. A Diffusion TensorImaging Analysis of Gender Differences in Water Diffusivity within HumanSkeletal Muscle. NMR. Biomed.2005,18(8):489~498
    20H. Mamata, Y. Mamata, and C. F. Westin, et al. High-resolution Line ScanDiffusion Tensor MR Imaging of White Matter Fiber Tract Anatomy. AJNR2002,23:67~75
    21J. Dudink, D. J. Larkman, and O. Kapellou, et al. High b-value DiffusionTensor Imaging of the Neonatal Brain at3T. AJNR.2008,29(10):1966~1972
    22饶晶晶,漆剑频,王承缘.扩散张量成像扩散梯度方向与DTI图像质量的相关性研究.放射学实践.2008,23(3):320~323
    23J. A. Farrell, B. A. Landman, and C. K. Jones, et a1. Effects of Signal-to-noiseRatio on the Accuracy and Reproducibility of Diffusion Tensor Imaging-derived Fractional Anisotropy, Mean Diffusivity, and Principal EigenvectorMeasurementsat1.5T. Journal of Magnetic Resonance Imaging.2007,26(3):756~767
    24张帆,卢光明,李坤成.影响扩散张量图像质量和相关参数测量准确性的因素.中国医学影像技术.2009,25(5):908~910
    25J. M. Peyrat, M. Sermesant, and X. Pennec, et al. A Computational Frameworkfor the Statistical Analysis of Cardiac Diffusion Tensors: Application to aSmall Database of Canine Hearts. IEEE Transactions on Medical Imaging.2007,26(11):1500~1514
    26C. Frindel, M. Robini, P. Croisille, and Y. M. Zhu. Comparison ofRegularization Methods for Human Cardiac Diffusion Tensor MRI. MedicalImage Analysis.2009,13(3):405~418
    27P. J. Basser, S. Pajevic. Statistical Artifacts in Diffusion Tensor MRI Causedby Background Noise. Magnetic Resonance in Medicine.2000,44:41~50
    28C. G. Koay, L. C. Chang, and C. Pierpaoli. Error Propagation Framework forDiffusion Tensor Imaging via Diffusion Tensor Representations. IEEETransactions on Medical Imaging.2007,26:1017~1034
    29哈舍米著,尹建忠译. MRI基础(第二版).天津科技翻译出版公司.2004:30~35
    30黄继英,染星原.磁共振成像原理.陕西科学技术出版社.1998:1~19
    31李悟.磁共振弥散张量图像处理与分析.中科院博士论文.2004:20~21
    32A. O. Rodriguez. Principles of Magnetic Resonance Imaging. RevistaMexicana de Fisica.2004,50(3):272~286
    33R. V. Damadian. Tumor Detection by Nuclearm Agnetic Resonance. Science.1971,171:1151~1153
    34P. C. Lauterbur. Image Formation by Induced Local Interaction: ExamplesEmploying Nuclear Magnetic Resonance. Nature.1973,242:190~191
    35W. P. Aue, E. Bartholdi, R. R. Ernst. Two-dimensionals PectroscopyApplication toNuclear Magnetic Resonance. J. Chem. Phys.1976,64:2229~2246
    36P. Mansfield. Multi-planar Image Formation using NMR Spin Echoes. J. Phys.1977,10:55~59
    37D. J. Atkinson, D. Burstein and R. R. Edelman. First-pass Cardiac Perfusion:Evaluation with Ultrafast MR Imaging. Radiology.1990,174(3):757~762
    38曾洪武,王培军.磁共振扩散加权与弥散张量成像原理分析及比较.中国医学影像技术.2005,21(12):1945~1947
    39李德军,包尚联,马林等.弥散张量成像(DTI)在中枢神经系统(CNS)中的应用.国外医学生物医学工程分册.2003,26(5):1~7
    40P. B. Kingsley. Introduction to Diffusion Tensor Imaging Mathematics: Part II.Anisotropy, Diffusion-Weighting Factors, and Gradient Encoding Schemes.Concepts in Magnetic Resonance Part A.2006,28A(2):123~154
    41李德军,包尚联,马林.不同b值和扩散张量成像DTI导出量的定量关系研究.中华放射学杂志.2004,38(12):118~123
    42钟镜联,谭湘萍,梁碧玲等.不同b值在正常人脑组织磁共振扩散张量成像中的应用探讨.影像诊断与介入放射学.2004,13(3):148~152
    43P. J. Basser, C. Pierpaoli. A Simplified Method to Measure the DiffusionTensor from Seven MR Images. Magn. Reson. Med.1998,39:928~934
    44P. B. Kingsley. Introduction to Diffusion Tensor Imaging Mathematics: Part III.Tensor Calculation, Noise, Simulations, and Optimization. Concepts inMagnetic Resonance Part A.2006,28A(3):155~179
    45N. G. Papadakis, C. D. Murrills, and L. D. Hall, et al. Minimal Gradient Encodingfor Robust Estimation of Diffusion Anisotropy. Magnetic Resonance Imaging.2000,18:671~679
    46D. K. Jones. The Effect of Gradient Sampling Schemes on Measures Derivedfrom Diffusion Tensor MRI: a Monte Carlo Study. Magnetic Resonance inMedicine.2004,51:807~815
    47P. J. Basser, S. Pajevic, and C. Pierpaoli,et al. In Vivo Fiber Tractographyusing DT-MRI Data. Magnetic Resonance in Medicine.2000,44:625~632
    48赵欣,汪燕,高伟等.使用扩散张量成像数据重建脑白质纤维的新算法.天津大学学报.2006,39(8):1001~1006
    49C. Pierpaoli, P. J. Basser. Toward a Quantitative Assessment of DiffusionAnisotropy. Magnetic Resonance in Medicine.1996,36:893~906
    50祁吉,张龙江. MR弥散张量成像在中枢神经系统中的应用与前景.诊断学理论与实践.2005,4(4):263~265
    51E. Stejskal, J. Tanner. Spin Diffusion Measurements: Spin Echos in thePresence of Time-dependent Field Gradient. J. Chem. Phys.1965,42:288~292
    52M. E. Moseley, Y. Cohen, and J. Kucharczyk, et al. Diffusion-weighted MRImaging of Anisotropic Water Diffusion in Cat Central Nervous System.Radiology.1990,176(2):439~445
    53P. Douek, R. Turner, and J. Pekar, et al.MR Color Mapping of Myelin FiberOrientation. J. Comput. Assist. Tomogr.1991,15(6):923~929
    54P. J. Basser, J. Mattiello, D. L. Bihan. Estimation of the Effective Self-diffusion Tensor from the NMR Spin Echo. J. Magn. Reson. Ser. B.1994,103:247~254
    55J. Mattiello, P. J. Basser and D. Le Bihan. The b Matrix in Diffusion TensorEcho-planar Imaging. Magnetic Resonance in Medicine.1997,37(2):292~300
    56O. Ciccarelli, A. T. Toosy, and G. Parker, et al. Diffusion Tractography BasedGroup Mapping of Major White-matter Pathways in the Human Brain.Neuroimage.2003,19:1545~1555
    57K. O. Lim, M. J. Hedehus, and M. L. Moseley, et al. Compromised WhiteMatter Tract Integrity in Schizophrenia Inferred from Diffusion TensorImaging. Arch. Gen. Psychiatry.1999,56:367~374
    58C. H. Sotak. The Role of Diffusion Tensor Imaging in the Evaluation ofIschemic Brain Injury. NMR Biomed.2002,15(7-8):561~569
    59S. Wakana, H. Jiang, and L. M. Poetscher, et al. Fiber Tract-based Atlas ofHuman White Matter Anatomy. Radiology.2004,230:77~87
    60D. S. Tuch, T. G. Reese, and M. R. Wiegell, et al. High Angular ResolutionDiffusion Imaging Reveals Intravoxel White Matter Fiber Heterogeneity.Magn. Reson. Med.2002,48:577~582
    61D. S. Tuch. Q-ball Imaging. Magn. Reson. Med.2004,52:1358~1372
    62唐昕,俎栋林,李德军等.扩散张量MR成像研究.中国医学物理学杂志.2003,20(4):250~256
    63何光武,沈天真,陈星荣.大脑白质纤维磁共振弥散张量纤维束成像初步研究.中华医学杂志.2005,85(39):2775~2779
    64白玫,罗述谦.扩散张量成像去噪和纤维跟踪方法.计算机辅助设计与图形学学报.2006,18(2):180~185
    65张新娟,武乐斌,王光彬等.弥散加权成像在儿童病毒性脑炎中的诊断价值.医学影像杂志.2008,18(5):457~460
    66A. A. Holmes, D. F. Scollan,and R. L. Winslow. Direct HistologicalValidation of Diffusion Tensor MRI in Formaldehyde-Fixed Myocardium.Magn. Reson. Med.2000,44:157~161
    67D. F. Scollan, A. A. Holmes. Reconstruction of Cardiac Ventricular Geometryand Fiber Orientation using Magnetic Resonance Imaging. Annals ofBiomedical Engineering.2000,28:934~944
    68D. G. Buckberg, A. Mahajan. MRI Myocardial Motion and Fiber Tracking: aConfirmation of Knowledge from Different Imaging Modalities. EuropeanJournal of Cardio-thoracic Surgery.2006,29:165~177
    69W. Y. Tseng, T. G. Reese, and R. M. Weisskoff. Myocardial Fiber Shortening inHumans: Initial Results of MR Imaging. Radiology.2000,216:128~139
    70W. Y. Tseng, V. J. Wedeen, and T. G. Reese. Diffusion Tensor MRI ofMyocardial Fibers and Sheets: Correspondence with Visible Cut–face Texture.Magn. Res. on Imaging.2003,17:31~42
    71P. A. Helm, H. J. Tseng, and L. Younes. Ex-vivo3D Diffusion Tens or Imagingand Quantification of Cardiac Laminar Structure. Magn. Res. Med.2005,54(9):850~859
    72Y. Wu, H. F. Tse, and X. Wu. Diffusion Tensor MRI Study of MyocardiumStructural Remodeling after Infarction in Porcine Model. Proceedings of the28thIEEE EMBS Annual International Conference, New York, USA.2006:1069~1072
    73L. Zhukov, A. Barr. Heart-Muscle Fiber Reconstruction from Diffusion TensorMRI. IEEE Visualization2003, Proceedings of Vis2003.2003:597~602
    74M. Sermesant, H. Delingette, and N. Ayache. An Electromechanical Model ofthe Heart for Image Analysis and Simulation. IEEE Transactions on MedicalImaging.2006,25(5):612~625
    75D. Rohmer, A. Sitek, and G. T. Gullberg. Reconstruction and Visualization ofFiber and Sheet Structure with Regularized Tensor Diffusion MRI in theHuman Heart. Investigative Radiology.2007,42(11):777~789
    76J. M. Peyrat, M. Sermesant, and X. Pennec, et al. A Computational Frameworkfor the Statistical Analysis of Cardiac Diffusion Tensors: Application to aSmall Database of Canine Hearts. IEEE Transactions on Medical Imaging.2007,26(11):1500~1514
    77程流泉,王新疆,赵锡海等.心肌纤维束DTI的实验研究.中国医学影像技术.2007,23(5):649~651
    78赵江民,李铭,倪炯.兔心肌梗死过程MRI上心室壁变薄的病理基础研究.同济大学学报(医学版).2005,26(3):8~11
    79M. T. Wu, W. Y. Tseng. Diffusion Tensor Magnetic Resonance ImagingMapping the Fibre Architecture Remodelling in Human Myocardium afterInfarction. Circulation.2006,114:1036~1045
    80L. G.. Ossevoort, P. Bovendeerd, F. Prinzen, and T. Nicolay. Myofiber Orientationin the Normal and Infarcted Heart, Assessed with MR-Diffusion Tensor Imaging.Computers in Cardiology.2001,28:621~624
    81Y. Wu, E. X. Wu, and K. K. Wong, et al. MyocardialFiber Length Mappingwith MR Diffusion Tensor Imaging. Proceedings of the2005IEEEEngineering in Medicine and Biology27thAnnual Conference, Shanghai,China.2005:7004~7007
    82R. D. Nowak. Wavelet Based Rician Noise Removal for Magnetic ResonanceImaging. IEEE Trans. Image Process.1999,8:1408~1419
    83M. E. Alexander, R. Baumgartner, and A. R. Summers1, et al. A Wavelet-Based Method for Improving Signal-to-noise Ratio and Contrast in MR Images.Magnetic Resonance Imaging.2000,18:169~180
    84A. Pizurica, W. Philips, I. Lemahieu and M. Acheroy. A Versatile WaveletDomain Noise Filtration Technique for Medical imaging. IEEE Trans. Med.Imaging.2004,22:323~231
    85R. Wirestam and A. Bibic. A Denoising of Complex MRI Data by Wavelet-domain Filtering: Application to High-b-value Diffusion-weighted Imaging. Magn.Reson. Med.2006,56:1114~1120
    86A. Pi urica, A. M. Wink, and E. Vansteenkiste, et al. A Review of WaveletDenoising in MRI and Ultrasound Brain Imaging. Current Medical ImagingReviews.2006,2(2):247~260
    87P. Bao and L. Zhang. Noise Reduction for Magnetic Resonance Images viaAdaptive Multiscale Products Thresholding. IEEE Transactions on MedicalImaging.2003,22(9):1089~1096
    88P. Perona and J. Malik. Scale-space and Edge-detection. IEEE Trans. PatternAnal Mach Intel.1990,12:629~639
    89L. Rudin, S. Osher, E. Fatemi. Nonlinear Total Variation Based Noise RemovalAlgorithms. Physica D.1992,60:259~268
    90J. Weickert and H. Hagen. Visualization and Processing of Tensor Fields.Springer.2006:1021~1028
    91G. Gilboa, N. Sochen and Y. Y. Zeevi. Image Enhancement and Denoising byComplex Diffusion Processes. IEEE Trans. onPattern Analysis and MachineIntelligence.2004,26:1020~1036
    92P. Blomgren, T. F. Chan. Color TV: Total Variation Methods for Restoration ofVector-valued Images. IEEE Trans. Image Proc.1998,7:304~309
    93G. Sapiro. Geometrical Partial Differential Equations and Image Analysis. Cam.Bridge University Press.2001:101~115
    94D. Tschumperlé, R. Deriche. Vector-Valued Image Regularization with PDEs: aCommon Framework for Different Applications. IEEE Transactions on PatternAnalysis and Machine Intelligence.2005,27(4):506~517
    95T. F. Chan and H. M. Zhou. Total Variation Wavelet Thresholding. J. ScientificComputing.2007,32(2):315~341
    96M. Lysaker, A. Lundervold, and X. Tai. Noise Removal using Fourth-orderPartial Differential Equation with Applications to Medical MagneticResonance Images in Space and Time. IEEE Transactions on Image Processing.2003,12(12):1579~1590
    97G. Gerig, O. Kübler, and R. Kikinis, et al. Nonlinear Anisotropic Filtering ofMRI Data. IEEE trans. on Medical imaging.1992,11(2):221~232
    98B. Chen, W. Edward. Noise Removal in Magnetic Resonance Diffusion TensorImaging. Magnetic Resonance in Medicine.2005,54:393~407
    99J. M. Parker, J. A. Schnabel,and M. R. Symms, et al. Nonlinear Smoothing forReduction of Systematic and Random Errors in Diffusion Tensor Imaging.Journal of Magnetic Resonace Imaging.2000,11(6):702~710
    100S. Basu, T. Fletcher, and R. Whitaker. Rician Noise Removal in DiffusionTensor MRI. Med. Image Comput Assist Interv.2006,9(1):117~125
    101Z. Wang, B. C. Vemuri, Y. Chen, and T. H. Mareci. A Constrained Variationalfor Direct Estimation and Smoothing of the Diffusion Tensor Field fromComplex DWI. IEEE Transactions on Medical Imaging.2004,23:930~939
    102X. Pennec, P. Fillard, N. Ayache. A Riemannian Framework for Tensor Computing.International Journal of Computer Vision.2006,66(1):41~66
    103P. Fillard, V. Arsigny, X. Pennec, and N. Ayache. Clinical DT-MRI Estimation,Smoothing and Fiber Tracking with Log-euclidean Metrics. IEEE Transactionson Medical Imaging.2007,26(11):1472~1482
    104E. Ordentlich, G. Seroussi, and S. Verdu, et al. A Discrete Universal Denoiserand its Application to Binary Images. Proceedings of the IEEE InternationalConference on Image Processing, Barcelona, Spain.2003:117~120
    105P. S. Awate, R. T. Whitaker. Unsupervised Information-Theoretic, AdaptiveImage Filtering for Image Restoration. IEEE Transactions on Pattern Analysisand Machine Intelligence.2006,28(3):1028~1036
    106P. S. Awate, R. T. Whitaker. Feature-preserving MRI Denoising: a NonparametricEmpirical Bayes Approach. IEEE Transactions on Medical Imaging.2007,26(9):1~14
    107M. Malfait, D. Roose. Wavelet-basedImage Denoising using a MarkovRandom Field a Priori Model. IEEE Transactions on Image Processing.1997,6(4):549~565
    108A. Pi urica, W. Philips, I. Lemahieu, and M. Acheroy. A Joint Inter andIntrascale Statistical Model for Bayesian Wavelet Based Image Denoising.IEEE Transactions on Image Processing.2002,11(5):545~557
    109C. Poupon, J. F. Mangin, and C.A. Clark, et al. Regularization of Diffusion-basedDirection Maps for the Tracking of Brain White Matter Fascicles. Neuroimage.2000,12:184~195
    110M. Fernandez, C. F. Westin. Regularization of Diffusion Tensor Maps using aNon-gaussian Markov Random Field Approach. Lecture Notes in ComputerScience.2003,2879:92~100
    111M. Fernandez, C. F. Westin. Novel Gauss-markov Random Field Approach forRegularization of Diffusion Tensor Maps. Lecture Notes in Computer Science.2003,2809:506~517
    112M. Fernandez, C. F. Westin.3D Bayesian Regularization of Diffusion TensorMRI using Multivariate Gaussian Markov Random Fields.Medical ImageComputing and Computer-Assisted Intervention.2004:121~134
    113P. J. Basser, S. Pajevic. A Normal Distribution for Tensor-valued RandomVariables: Application to Diffusion Tensor MRI. IEEE Trans. on MedicalImaging.2003,22:785~794
    114Y. G. Lu, A. Aldroubi, and J. C. Gore, et al. Improved Fiber Tractography withBayesian Tensor Regularization NeuroImage.2006,31:1061~1074
    115S. M. Smith and J. M. Brady. A New Approach to Low Level Image Processing.J. Comput. Vis.1997,23(1):45~78
    116C. Tomasi and R. Manduchi. Bilateral Filtering for Gray and Color Images.Proc.6thInt. Conf. Computer Vision. Washington D.C., USA.1998:839~846
    117D. Barash and D. Comaniciu. A Common Framework for Nonlinear Diffusion,Adaptive Smoothing, Bilateral Filtering and Mean Shift. Image Vis. Comput.2004,22(1):73~81
    118A. Buades, B. Coll, and J.M Morel. A Review of Image Denoising Algorithmswith a New One. Multiscale Modeling and Simulation.2005,4(2):490~530
    119C. Kervrann, J. Boulanger. Optimal Spatial Adaptation for Patch-based ImageDenoising. IEEE Transacitons on Image Processing.2006,15(10):2866~2878
    120Y. L. Liu, J. Wang, and X. Chen, et al. A Robust and Fast Non-local MeansAlgorithm for Image Denoising. Journal of Computer Science and Technology.2008,23(2):270~279
    121G. Hamarneh, J. Hradsky. Bilateral Filtering of Diffusion Tensor MagneticResonance Images. IEEE Transactions on Image Processing.2007,16(10):24~63
    122J. V. Manjón, C. J. Caballero, and J. Lull, et al. MRI Denoising using Non-local Means. Medical Image Analysis.2008,12(4):514~523
    123X. Li. Patch-based Nonlocal Denoising for MRI and Ultrasoud Images.4thIEEE International Symposium on Biomedical Imaging: Macro to Nano.Arlington, VA.2007:324~332
    124P. Coupé, P. Yger, and S. Prima, et al. An Optimized Blockwise NonlocalMeans Denoising Filter for3D Magnetic Resonance Images. IEEETransactions on Medical Imaging.2008,27(4):425~436
    125S. Mallat, Z. Zhang. Matching Pursuits with Time-frequency Dictionaries.IEEE Transactions Signal Processing.1993,41(12):3397~3415
    126H. Krim, D. Tucker, S. Mallatt, and D. Donohot. On Denoising and Best SignalRepresentation. IEEE Transactions on Information Theory.1997:1~32
    127S. S. Chen, D. L. Donoho, and M.A. Saunders. Atomic Decomposition byBasis Pursuit. SIAM Rev.2001,43(1):129~159
    128I. F. Gorodnitsky, B. D. Rao. Sparse Signal Reconstruction from Limited Datausing Focuss: a Re-weighted Minimum Norm Algorithm. IEEE Transactionson Signal Processing.1997,45:600~616
    129M. Aharon, M. Elad, and A. Bruckstein. K-SVD: an Algorithm for DesigningOvercomplete Dictionaries for Sparse Representation. IEEE Transactions onSignal Processing.2006,54(1):4311~4322
    130O. Villegas, H. Dominguez, and V.G. Sanchez. A Comparison of the Bandelet,Wavelet and Contourlet Transforms for Image Denoising.7thArtificialIntelligence Mexican International Conference.2008:207~212
    131J. L. Starck, M. Elad, D. L. Donoho. Image Decomposition via theCombination of Sparse Representations and a Variational Approach. IEEETransactions on Image Processing.2005,14(10):1570~1582
    132Kush R. Varshney, Müjdat etin, and J.W. Fisher. Sparse Representation inStructured Dictionaries with Application to Synthetic Aperture Radar. IEEETransactions on Signal Processing.2008,56(8):3548~3561
    133M. Protter, M. Elad. Image Sequence Denoising via Sparse and RedundantRepresentations. IEEE Transaciton Image Processing.2007,18(1):27~35
    134J. Mairal, M. Elad, and G. Sapiro. Sparse Representation for Color ImageRestoration. IEEE Transactions on Image Processing.2008,17(1):53~69
    135M. Elad, M. Aharon. Denoising via Sparse and Redundant Representationsover Learned Dictionaries. IEEE Transactions on Image Processing.2006,15(12):3736~3745
    136L. D. Donoho, M. Elad, and V. N. Temlyakov. Stable Recovery of SparseOvercomplete Representations in the Presence of Noise. IEEE Transactions onInformation Theory.2006,52(1):6~18
    137T. V. Pham, W. M. Smeulders. Sparse Representation for Coarse and FineObject Recognition. IEEE Transactions on Pattern Analysis and MachineIntelligence.2006,28(4):555~567
    138S. Jaggi. W. C. Karl, and S. Mallat. High Resolution Pursuit for FeatureExtraction. Applied and Computational Harmonic Analysis.1998,5:428~449
    139张跃飞,姜玉亭,王建英,尹忠科.基于稀疏分解的图像压缩.系统工程与电子技术.2006,28(4):513~515
    140傅霆,尧德中.稀疏分解的加权迭代方法及其初步应用.电子学报.2004,32(4):567~570
    141徐鹏.信号的稀疏分解及其在脑电信号处理中的应用研究.电子科技大学博士论文.2006:12~28
    142汪雄良,冉承其,王正明.基于紧致字典的基追踪方法在SAR图像超分辨中的应用.电子学报.2006,34(6):996~1001
    143王春光,刘金江,孙即祥.基于稀疏分解的心电数据压缩算法.中国生物医学工程学报.2008,27(1):13~17
    144蔡泽民,赖剑煌.一种基于超完备字典学习的图像去噪方法.电子学报.2009,37(2):347~350
    145李映,张艳宁,许星.基于信号稀疏表示的形态成分分析:进展和展望.电子学报.2009,37(1):146~152
    146D L. Donoho, X. M. Huo. Uncertainty Principles and Ideal AtomicDecomposition. Thesis.1999:36~54
    147M. Elad, A.M. Bruckstein. A Generalized Uncertainty Principle and SparseRepresentation in Pairs of Bases. IEEE Transactions on Information Theory.2002,48(9):2558~2567
    148J.A. Tropp. Greed is Good: Algorithmic Results for Sparse Approximation.IEEE Transactions Information Theory.2004,50:2231~2242
    149王建英,尹忠科,张春梅.信号与图像的系数分解及初步应用.西南交通大学出版社2006:94~96
    150S. Fischer, G. Cristóbal, and R. Redondo. Sparse Overcomplete Gabor WaveletRepresentation Based on Local Competitions. IEEE Transactions on ImageProcessing.2006,15(2):265~272
    151孙玉宝,肖亮,韦志辉,邵文泽.基于Gabor感知多成份字典的图像稀疏表示算法研究.自动化学报.2008,34(11):1379~1387
    152Z. Wang, A. C. Bovik, and H. R. Sheikh, et al. Image Quality Assessment:from Error Visibility to Structural Similarity. IEEE Transactions on ImageProcessing.2004,13(4):1~14
    153L. Granai, P. Vandergheynst. Sparse Decomposition over Multi-componentRedundant Dictionaries. IEEE Proc. of Workshop on Multimedia SignalProcessing Siena IT.2004:494~497
    154W. Y. Liu, I. E. Magnin and G. Gimenez. Un Nouvel Opérateur Pour laDét ection de Rupture dans des Signaux Bruités. Traitement du Signal.1995,12:226~36
    155A. S. Abutaleb. Automatic Thresholding of Gray-level Pictures using TwoDimensional Entropy. Computer Vision Graphics image Processing.1987,47:22~32
    156F. Catte, P. L. Lions, J. M. Morel and T. Coll. Image Selective Smoothing andEdge Detection by Nonlinear Diffusion. SIAM J. Num. Anal.1992,29:182~193
    157K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image Denoising bySparse3D Transform Domain Collaborative Filtering. IEEE Transactions onImage Processing.2007,16(8):2080~2095
    158A. Foi, K. Dabov, V.Katkovnik, and K. Egiazarian. Shape-Adaptive DCT forDenoising and Image Reconstruction. Image Processing, Algorithms andSystems V. San Jose,2006. Proc. of SPIE Electronic Imaging, SPIE,6064A:1~12
    159O. Bergmann, O. Christiansen, J. Lie and A. Lundervold. Shape-Adaptive DCTfor Denoising of3D Scalar and Tensor Valued Images. Journal of DigitalImaging.2006,22(3):297~308
    160J. Portilla, V. Strela, M.J. Wainwright, and E. P. Simoncelli. Image Denoisingusing Scale Mixtures of Gaussians in the Wavelet Domain. IEEE Transactionson Image Processing.2003,12(11):1338~1350
    161S. Roth and M. J. Black. Fields of Experts: a Framework for Learning ImagePriors. IEEE Conference on Computer Vision and Pattern Recognition.2005:860~867
    162Y. Chenoune, E. Deléchelle, and E. Petit, et al. Segmentation of Cardiac CineMR Images and Myocardial Deformation Assessment using Level Set Methods.Com puterized Medical Imaging and Graphics.2005,29(8):607~616.
    163C. S. Dr apaca, V. Cardenas, and C. Studholme. Segmentation of Tissue BoundaryEvolution from Brain MR Image Sequences using Multi-phase Level Sets.Computer Vision and Image Understanding.2005,100(3):312~329.
    164尤建洁.基于心脏核磁共振图像左心室分割及动力学模型研究.南京理工大学博士论文.2007:10~16
    165C. Li, C. Xu, C. Gui, and M. D. Fox. Level Set Evolution without Re-initialization: a New Variational Formulation. IEEE Conf. Computer Vision andPattern Recognition.2005:430~436.
    166C. Li, C. Kao, J. Gore, and Z. Ding. Minimization of Region-scalable FittingEnergy for Image Segmentation. IEEE Trans. on Image Processing.2008,17(10):1940~1949
    167T. Chan, L. Vese. Active Contours without Edges. IEEE Trans. on ImageProcessing.2001,10(2):266~277
    168X. Papademetris, M. Jackowski, and N. Rajeevan, et al. BioImage Suite: anIntegrated Medical Image Analysis Suite Section of Bioimaging Sciences.Dept. of Diagnostic Radiology Yale School of Medicine. http://www.bioimagesuite.org
    169P. J. Basser, C. Pierpaoli. Microstructural and Physiological Features ofTissues Elucidated by Quantitative-Diffusion-Tensor MRI. Journal ofMagnetic Resonance Series B.1996,111:209~219

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700