太白红杉种群特征与群落动态研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太白红杉(Larix chinensis)是我国特有的国家二级保护物种,分布区极其有限,是秦岭地区最上线的唯一乔木树种,是该地生态系统的重要组成部分,在涵养水源、稳固山石和保持水土等方面发挥着重要作用。但是,这些植被带也是生态敏感带,易受外界干扰的影响。不同海拔梯度下,太白红杉的种群特征和群落动态存在着明显的差异。本文在太白山国家级自然保护区太白红杉集中分布的区域分低海拔(2 900~3 000 m)、中海拔(3 100~3200 m)和高海拔(3 300~3 400 m)三个海拔梯度研究了太白红杉的种群特征及群落动态变化规律。通过对不同海拔梯度下太白红杉种群特征及群落动态的研究,分析了太白红杉种群大小和年龄结构的变化规律、生存状况、幼苗的更新动态、叶绿素荧光特性以及斑块动态变化,初步探讨了亚高山针叶林带物种多样性维持机理,并提出太白红杉的保护措施。主要结果归纳如下:
     1.通过对不同海拔梯度下太白红杉种群大小和年龄结构的调查和分析,结果表明:①不同海拔梯度下,太白红杉种群的更新密度、立木密度、死树密度、平均胸径、平均高度和平均郁闭度均存在着显著的差异(p<0.05)。②在不同海拔梯度范围内建立的年龄-胸径(适用于成树)、年龄-高度(适用于幼苗和幼树)回归方程有较高的回归优度。这些方程可较好地拟合年龄-胸径以及年龄-树高之间的相互关系。③在低海拔和中海拔,太白红杉的年龄结构与胸径的散布模式相似,均为钟型;但在高海拔,年龄结构与胸径的散布有一定的差别。④不同海拔梯度下,太白红杉的年龄结构差异显著(p<0.05)。在低海拔和中海拔,年龄结构均为钟型;而在高海拔,太白红杉种群的年龄结构为波形。
     2.通过编制林线附近太白红杉种群特定时间生命表,绘制了存活曲线、死亡率曲线和消失率曲线,分析太白红杉的分布格局及生存状况。结果表明:①在林线附近,太白红杉种群存活曲线介于DeeveyⅡ型和DeeveyⅢ型之间。②太白红杉种群整个生长期中出现了两个死亡高峰期,一个出现在中龄时期,另一个出现在老龄时期。太白红杉幼苗较高的存活率可能与其以萌生为主的更新方式有关。③太白红杉种群各龄级的空间格局基本上为聚集型;但随着植株年龄增加,种群分布由聚集型向随机型过渡,聚集强度降低。
     3.通过对不同海拔梯度下不同大小林窗内太白红杉的更新状况调查,探讨了太白红杉的更新动态。结果表明:①在太白红杉分布的低海拔和中海拔,林窗大小以中小林窗为主,大林窗较少;而在高海拔,以大型林窗为主。太白红杉在中海拔更新相对较好。②与巴山冷杉相比,太白红杉的更新较差;林窗内和林冠下,巴山冷杉有大量的更新库(幼苗和幼树库),更新密度较高。③林窗的形成有利于太白红杉的更新,林窗大小和太白红杉更新关系密切。在太白红杉分布的低海拔和中海拔,中等大小林窗(100~150 m~2)有利于太白红杉的更新;小林窗(<50 m~2)有利于巴山冷杉的更新。而在太白红杉分布的高海拔,太白红杉的更新更倾向于小林窗(<50 m~2)。研究表明,不同大小林窗为不同树种的更新提供了条件,也决定了未来上层优势树种组成的差异。
     4.以移栽的太白红杉幼苗为材料,研究其叶片叶绿素荧光参数的变化规律。结果表明:①自然光下,从早上6:00~下午14:00,太白红杉幼苗叶片的PSⅡ光化学效率(F_v/F_m)、PSⅡ光量子效率(Yield)和光化学猝灭系数(qP)均呈下降趋势;其中在下午14:00最低(接近于0);而非光化学猝灭系数(qN)呈上升趋势,其中在下午14:00最高(接近于1)。②高温(>25℃)或低温(<0℃)胁迫下,太白红杉幼苗的F_v/F_m均随胁迫时间的延长急剧下降,而在5~20℃,F_v/F_m的变化范围相对较小。结果表明,适宜太白红杉幼苗生长的温度在5~20℃,过高的温度或者过低的温度,均影响到太白红杉幼苗正常生长。
     5.根据森林循环理论,森林群落的动态是处于不同发育阶段的镶嵌系统。通过对不同海拔梯度下太白山亚高山针叶林带太白红杉林结构的研究,确定4种斑块阶段(林窗阶段、建立阶段、成熟阶段和衰退阶段),研究森林斑块动态变化和生物多样性变化规律,并测定和分析了不同斑块类型内光照和温度的日变化规律。结果表明:①不同海拔梯度下,优势斑块的比例不同,表明群落处于不同的发育阶段。在低海拔,衰退阶段斑块的比例最高;在中海拔,林窗阶段和建立阶段斑块的比例最高;在高海拔,林窗阶段斑块的比例最高。②在中海拔,斑块大多呈随机分布。在低海拔和高海拔,在中小尺度上,斑块呈随机分布;在大尺度上,斑块为聚集分布。③在太白红杉分布的不同范围内(低海拔、中海拔和高海拔),林窗阶段光照强度和土壤表面温度均要比其他3个阶段变化明显。而在成熟阶段包含了一个相对温和的环境。④在森林循环的不同阶段,不同大小个体的密度变化存在一定的差异。表明不同大小个体的补充速率存在着差异。群落内可被不同大小个体利用的环境因子,也存在着明显的差异。⑤在斑块的不同发育阶段(G-B-M-D),物种丰富度、多样性和密度变化均呈波形。
     总之,在太白红杉分布的不同海拔范围内,太白红杉群落处于不同的发育阶段。在低海拔,太白红杉更新相对较差,群落处于衰退阶段;中海拔更新相对较好,中等径级个体占优势,群落相对稳定;在高海拔,存在较大尺度的干扰,群落处于动态变化之中。因此,可采取相应的保护措施来保护太白红杉:①在低海拔,太白红杉更新与中等大小林窗的出现有一定的相关性。应对中小径级的太白红杉采取抚育措施和合理择伐小林窗内的灌木及林窗边缘较大径级的巴山冷杉,人工制造中等大小林窗(100~150 m~2)来加强对太白红杉的保护。②在中海拔,限制太白红杉更新的主要因子可能是林窗内能否有太白红杉种子萌发和生长的条件。可适当择伐高大植株中较长的枝,为其他较小植株的生长提供必要的光照和空间。另外,还应适度清理林窗内灌木层和扰动草本地被物层,使太白红杉种子能顺利落入土壤。③在高海拔,限制太白红杉更新的主要因子可能是气候因子(如大风和暴风雪)和能否有较小林窗(<50 m~2)的出现。应对林窗内的灌木进行人工去除,制造较小的林窗,为太白红杉种子萌发和幼苗更新提供合适的空间和适宜的光照。④太白红杉幼苗生长适宜温度可能在5~20℃,过高的温度或者过低的温度,均能影响到太白红杉幼苗正常的生长。因此,应对太白红杉幼苗进行人工保护(如添加覆盖物等),防止极端温度对幼苗造成伤害。
Larix chinensis is one of typical endemic species in China,only distributed in alpine and sub-alpine belt in Mt.Qinling,Shaanxi Province of China.It is also one of endangered species in Chinese Plant red Data Book.It is the only tree that forms the pure forest which has special functions to conserve water,firm mountain stone and maintain water and soil at the timberline area.Mountain peaks covered in ice and rocks,steep slopes,wild torrents,and fragile soil and vegetation cover characterize the topography, where the environmental risks are high and natural disasters(e.g.,flood,erosion,rock and land slides,avalanches etc.) are frequent.The sub-alpine vegetation belt is a very important buffer zone limiting potential threats in mountainous areas,and undisturbed sub-alpine forests can efficiently reduce the risks of natural disasters.However,this vegetation belt is also a sensitive area.Assessing and analyzing population characters and community dynamics are therefore prerequisites for understanding ecological processes and restoration of natural forests.The population characters and community dynamics of L. chinensis populations along the altitudinal gradient on the southern slope of Taibai Mountains were studied in this paper.The forest was divided into three transects,i.e., low-altitude(2900~3 000 m),mid-altitude(3100~3200 m) and high-altitude(3300~3400 m).Primary results of this paper were summarized as following:
     1 Age structure studies along an altitudinal gradient would be helpful in understanding the limiting factors on the regeneration of natural forests.L.chinensis individuals were defined as trees,saplings,or seedlings by their heights.Age of each individual was estimated by the age-height relationships of seedlings or saplings and the age-DBH(diameter at breast height) relationships of big trees.The age structures differed across altitude classes.The age structure in low-altitude transect and in mid-altitude was closed to bell-shaped,which was characterized by the dominance of adult trees. Multi-modal age distribution was found in the high altitude transect,and was caused by lack of young seedlings and saplings.This suggested that different limiting factors played important roles in shaping the age structure and forest regeneration at different altitudes. In the low altitude,density dependent interspecific and gap disturbance was probably the most important limiting factor.In the mid-altitudinal transect,density dependent intraspecific competition between trees and gap disturbance likely controlled regeneration of L.chinensis.We propose that limiting climatical factors,e.g.temperature,play an important role in determining the age structure of L.chinensis populations in high-altitude areas.
     2 Alpine timberlines are ecotones highly sensitive to disturbances and enviromental changes that have become a major focus of global climate change research.To explore the survival status of L.chinensis populations,one plot(100 m×100 m) were investigated and analyzed.Time-specific life tables or vertical life table curves of survival-mortality based and hazard based age structures were drawn.The results showed that:①The survival curve of the population tended to be the type between DeeveyⅡandⅢ;②There existed two peaks of mortality in the lifespan,one was adult stage(70~80 years) and the other in the old stage(180~190 years);③Most individuals of different age class had a clumped distribution at different scales.With the population age increased,the distribution pattern had a trend from clustering to random,and the clustering intensity decreased somewhat.
     3 In order to explore the functions of gaps on forest dynamics and biodiversity protection in the sub-alpine coniferous forest,the survey of gaps and community had been carried out in Taibai Mountain Nature Reserve.Natural disturbance regimes of gaps,and tree species regeneration responses to gaps were studied.The results showed that:①In low-altitude and in mid-altitude transect,the gap size class distributions were also similar and showed a strong positive skewness with a few large and many small gaps;gaps<100 m~2 were most frequent and gaps>150 m~2 were rare.In high-altitude,most of the gap size class distributions were large.②There were significant differences in the size and number of seedlings among the different sized gaps and understorey.③In low-altitude transect and in mid-altitude,the regeneration of L.chinensis in the different sized gaps were as follows:medium>small>large>understorey;the regeneration of Abies fargesii in the different sized gaps were as follows:small>medium>large>understorey.In the high-altitude,small gap was benefit for the regeneration of L.chinensis.Common tree species in a sub-alpine coniferous forest in Taibai Mountains exhibited different gap regeneration behaviors.Shade-tolerant A.fargesii vigorously regenerates in gaps from advance regenerations.L.chinensis may also regenerate in gaps from new individuals,but regeneration was infrequent or absent.Because L.chinensis usually requires both a canopy opening and exposed mineral soil surfaces for seedling establishment.Therefore,the lower frequency middle gap may explain the absence of the L.chinensis regeneration.
     4 The experiments were made with the seeding of L.chinensis.The results showed that:①It was studied that daily change of chlorophyll fluorescence of L.chinensis by PAM-2100.The results indicated that in sunny day,F_v/F_m、Yield and qP daily change of photosynthesis decreased and there is the lowest photosynthesis at 14:00.The non-photochemical quenching rate(qN) increased significantly.It was proved that the PSⅡwas damaged at the high temperature.②At high temperature(>25℃) and low temperature(<0℃),the maximum quantum yield(F_v/F_m) of photosystemⅡ(PSⅡ) sharp declined with the increasing of time.
     5 According to the forest-growth-cycle theory,forest communities are dynamic, mosaic systems composed of patches in different developmental phases.Based on an investigation in a sample of L.chinensis forest types on Taibai Mountain,China,four distinct growth phases or patch types were recognized and patterns of patch mosaics and changes in species diversity were studied.Diurnal changes in light and temperature regimes in different patch types of the forest growth cycle were measured and analyzed. Our results were as follows:①The percentages of different patch types within the sampled forest community in low-altitude,mid-altitude and high-altitude,were for the gap phase(32.3%、40.3%and 48.5%),building phase(24.5%、34.0%and 32.0%),mature phase(23.5%、17.2%and 12.3%) and degenerate phase(19.7%、8.5%and 7.2%);②The change of densities(number of individuals/ha) of trees in the forest growth cycle was mainly caused by the larger sized trees;③The changes of species diversity with the forest growth cycle showed a wave-like pattern;④The average DBH,average height,average basal area at DBH,and average volume of each individual and stand volume all increased with the forest cycle process;⑤The environmental factors changed significantly,both diurnally and with progress of the forest cycle.Light intensity and soil surface temperature changed more in the gap phase than the other three phases.A framework to explain the mechanism for maintaining biological diversity within the sub-alpine coniferous forest is described.
     From our study,we hypothesize the following as a framework to explain the mechanism for maintaining biological diversity within the Taibai subalpine coniferous forest:Disturbance factors(e.g.,wind,snow and pest) acting on the forest canopy and trees causing tree deaths.Gaps of different sizes forming after the death of canopy trees. Restoration and regeneration process of trees in gaps,initiating the process of the forest growth cycle.Variation in ecological factors in patches of different developmental phases, having selective effects for different species groups and different sized trees.Varying regeneration and recruitment densities of different species groups and different sizes in different patch types.Variations in growth response for each species group in different patch types within a forest community,and all species satisfying their life history requirements in the patch mosaics within the community.
     In a word,some measures should be taken to protect L.chinensis.In all,there were lack of young seedling and sapling in the forest.According to the heliophytic and xerophytic characteristics of L.chinensis,different management activities should be taken according to the population characters and community dynamics in different altitude,so as to promote optimal environmental conditions for seedling recruitment in the rare L. chinensis.We should foster the sapling and cut down the higher trees reasonably to reduce the competition intensity.We can offer space and abundant light to the sapling by producing gap,cutting non-target species,clearing herbs,or felling the longer boughs of higher trees.Of course,there are many problems needing our research.For the growth of seedlings,the temperature should be 5~20℃.The temperature is too high or too low, temperatures can affect the seedling of L.chinensis growth.As a result,seedlings should be protection(such as adding a cover,etc.) to prevent extreme temperatures caused by damage to the seedlings.
引文
[1] Agren J, Zackrisson O. Age and size structure of Pinus sylvestris populations on mires in central and northern Sweden [J]. Journal of Ecology, 1990, 78: 1049-1062.
    
    [2] Akkemik U. Dendroclimatology of umbrella pine {Pinus pine L.) in Istanbul Turkey [J]. Tree-Ring Bull, 2000, 56:17-20.
    [3] Armand A D. Sharp and gradual mountain timberlines as a result of species interaction. In: Hanson A J and Castri F D (eds). Landscape boundaries: consequences for biotic diversity and ecological flows[M]. Springer Verlag Berlin Heidelberg. 1992, 360-378.
    [4] Arseneault D, Payette S. Reconstruction of millennial forest dynamics from tree remains in a subarctic tree line peatland [J]. Ecology, 997, 78: 1873-1883.
    [5] Ball M C, Egerton J J G, Leuning R C, et al. Microclimate above grass adversely affects spring growth of seeding snow gum (Eucalyptus pauciflora.) [J]. Plant Cell and Environment, 1997, 20: 155-166.
    
    [6] Barry R G. Mountain Weather and Climate [M], 2nd ed. Routledge, London. 1992.
    [7] Bella I E. A new competition model for individual tree [J]. Forest Science, 1971,17:362-367.
    [8] Beniston M, Diaz H F, Bradley R S. Climatic change at high elevation sites: an overview[J]. Climatic Change, 1997, 36:233-251.
    [9] Biging G S, Dobbertin M A. Comparison of distance-dependent competition measures for height and basal area growth of individual conifer trees [J]. Forest Science, 1992, 38: 695-720.
    [10] Bjokman O, Demming B. Photo yield of 02 evolution and chlorophy II fluorescence characteristics at 77K among vascular plants of diverse origins [J]. Planta, 1987,170(4):489-504.
    
    [11] Bliss L C. Alpine. In: Chabot B F and Mooney H A (eds). Physiological ecology in North America plant communities[M]. Chapman & Hall New York. 1985, 41-65.
    
    [12] Block J, Treter U. The limiting factors at the upper and lower forest limits in the mountain-woodland steppe of Northwest Mongolia Joachim Block and Uwe Treter[M]. In: Kaennel Dobbertin, M., Braker O.U. (Eds.), Proceedings of the International Conference on Tree Rings and People. Davos, 2001, 22-26.
    
    [13] Bolhr H R, Long S P, Baker N R, et al. Chlorophy II fluorescence as a probe of the photosynthetic competence of leaves in the field: a review of current instrumentation[J]. Function Ecology, 1989, 3(4): 497-514.
    
    [14] Bongers F, Popma J, Meavedel C, et al. Structure and floristic composition of the lowland rain forest of Los Tuxtlas, Mexico. In: Werger, M.J.A. & van der Maarel, E. (eds), Trees and gaps in a Mexican rain forest [M]. 1988:15-40.
    
    [15] Borman F H, Likens G E. Pattern and process in a forest ecosystem [M]. Springer-Verlag, New York. 1979.
    [16] Braeuning A. Dendrochronology for the last 1400 years in eastern Tibet [J]. Geojournal, 1994, 34(1):75-95.
    [17] Brokaw N V L. Gap-phase regeneration in a tropical forest [J]. Ecology 1985, 66: 682-687.
    [18] Brubaker L B. Responses of tree populations to climatic change [J]. Vegetatio, 1986, 67: 119-130.
    
    [19] Budyko M I. Climate and Hall [M]. New York, 1974, 41-65.
    [20] Butler W L, Kitajima M. Fluorescence quenching in Photosystem II of chloroplaststs[J]. Biochinica et Biophysica Acta,1975,376(1):116-168.
    [21] Camarero J J, Gutierrez E. Pace and pattern of recent tree line dynamics: response of ecotone to climatic variability in the Spanish Pyrenees [J]. Climatic change, 2004, 63(1): 181-200.
    [22] Camarero J J, Gutierrez E. Structure and recent recruitment at alpine forest-pasture ecotones in the Spanish central Pyrenees [J]. Ecoscience, 1999, 6(3): 451-464.
    [23] Canham C D, Denslow J S, Platt W J, et al. Light regimes beneath closed canopies and treefall gaps in temperate and tropical forests [J]. Can. J. For. Res, 1990, 20,620-631.
    [24] Canham C D. An index for understory light levels in and around canopy gaps [J]. Ecology, 1988, 69:1634-1638.
    [25] Chen Z S, Hsieh C F, Jiang F Y, et al. Relations of soil properties to topography and vegetation in a subtropical rain forest in southern Taiwan [J]. Plant Ecol,1997,132:229-241.
    [26] Condit R, Ashton P S, Baker P, et al. Spatial patterns in the distribution of tropical tree species [J]. Science, 2000, 288:1414-1418.
    [27] Connell J H. Diversity in tropical rainforests and coral reefs [J]. Science, 1978, 199: 1302-1310.
    [28] Covington W W, Fule P Z, Moore M M, et al. Restoration of ecosystem health in southwestern ponderosa pine forests [J]. Journal of Forestry, 1997, 95: 23-29.
    [29] Cui H T, Dai J H, Tang Z Y, et al. Stability of alpine timberline ecotone on Taibai Mountain, China [J]. Journal of Environmental Sciences, 1999, 11:207-210.
    [30] Dai X B. Influence of light conditions in canopy gaps on forest regeneration: a new gap light index and its application in a boreal forest in east-central Sweden [J]. Forest Ecology and Management, 1996, 84:187-197.
    [31] Dale, R.T. Spatial pattern analysis in plant ecology [M]. Cambridge University Press, NewYork, 1999.
    [32] Dang H S, Ming X J, Quan F Z. Growth responses of subalpine fir (Abies fargesii) to climate variability in the Qinling Mountain, China [J]. Forest Ecology and Management, 2007, 240: 143-150.
    [33] Davis M B, Woods K D, Webb S L, Futyma R P. Dispersal versus climate: expansion of fagus and tsuga into the upper great lakes region [J]. Vegetatio, 1986, 67:93-103.
    [34] Demmig B, Bjorkman O. Comparision of the effects of excessive light on the chlorophy II fluorescence and Photo yield of 02 evolution in leaves of higher plant [J]. Planta, 1987, 171(2): 171-184.
    [35] Denslow J S. Disturbance and diversity in tropical rain forests: the density effect [J]. Ecol Appl, 1995, 5 (4), 962-968.
    [36] Dirzo R, Sarukhan J. et al. Perspectives on Plant Population Ecology [M]. Sunderlond: Sinauer Associates Incorporated Publish, 1984, 48-65.
    [37] Dumep. Fundamentals of Ecology [M]. Philadelphia: Saunders Co. 1971.
    [38] Farage P K, Long S P. The occurrence of photoinhibtion in an over-wintering crop of oil-seed rape {Brassica napus L.) and its correlation with changes in crop growth[J]. Planta, 1991,185(2): 279-286.
    [39] Franklin J F, Moir W H, Douglas G W, et al. Invasion of subalpine meadows by trees in the Cascade Range, Washington and Oregon [J]. Arctic and Alpine Research, 1971,3:215-224.
    [40] Friedland A J, Boyce R L, Vostral C B, et al. Winter and early spring microclimate within a mid-elevation conifer forest canopy[J]. Agric. Forest Meteorol, 2003, 115:195-200.
    [41] Fule P Z, Covington W W, Moore M M. Determining reference conditions for ecosystem management of southwestern ponderosa pine forests [J]. Ecological Applications, 1997, 7: 895-908.
    [42] Geiger D R, Servaites J C. Diurnal regulation of photosynthetic carbon metabolism in C_3 plant [J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1994, 45(3): 235-256.
    [43] Grabherr G. The high mountain ecosystems of the Alps [M]. In: Wielgolaski F E (ed.) Ecosystems of the world vol.3: Polar and alpine tundra. Elsevier Amsterdam. 1997: 97-121.
    [44] Hasenauer H, Merganicova K, Petritsch R, et al. 2003. Validating daily climate interpolations over complex terrain in Austria[J]. Agric. Forest Meteorol, 2003, 119:87-107.
    [45] Hett J L, Loucks O L. Age structure models of balsam fir and eastern hemlock [J]. Journal of Ecology, 1976, 64:1029-1044.
    [46] Holmes R L. Computer-assisted quality control in tree-ring dating and mearesurement [J]. Water Resources Bulletin, 1983, 43:69-78.
    [47] Holtmeier F K. Mountain timberline: ecology, patchiness and dynamics[M]. Kluwer Academic publishers Dordrecht Boston London.2003.
    [48] Hornberg G, Ohlson M, Zackrisson O. Stand dynamics, regeneration patterns and long-term continuity in boreal old growth Picea abies swamp forest [J]. Journal of Vegetation Science, 1995, 6:291-298.
    [49] Hubbell S P, Foster R B, Brien S T, et al. Light-gap disturbances, recruitment limitation, and tree diversity in a Neotropical forest [J].Science, 1999, 283:554-557.
    [50] Hubbell S P, Foster R B. Canopy gaps and the dynamics of a neotropical forest. In: Crawly MJ ed. Plant Ecology [M]. New York: Blackwell Scientific Publication. 1986,77-97.
    [51] Igor. Regeneration of Norway spruce in canopy gaps in sphagnum-Myrtillus old-growth forests [J]. Forest Ecology and Management, 1999, 115:71-83.
    [52] Kitao M, Lei T T, Koike T, et al. Susceptibility to photoinhibition of three deciduous broadleaf tree species with different successional traits raised under various light regimes[J]. Plant Cell Environ,2000, 23: 81-89.
    [53] Korner C. Alpine plant life: functional plant ecology of high mountain ecosystem [M]. Springer Verlag Berlin Heidelberg. 1999.
    [54] Krause G H, Koroleva O Y, Dalling J w, et al. Acclimation of tropical tree seedling to excessive light in simulated tree-fall gaps[J]. Plant, Cell and Environment, 2001,24:1345-1352.
    [55] Krause G H, Virgo A, Winter K. High susceptibility to photoinhibition of young leaves of tropical forest trees [J]. Planta, 1995, 197: 583-591.
    [56] Kubota Y, Murata H, Kikuzawa K. Effects of topographic heterogeneity on tree species richness and stand dynamics in a subtropical forest in Okinawa Island, southern Japan [J]. Journal of Ecology, 2004, 92: 230-240.
    [57] Kullman L. 20th century climate warming and tree-limit rise in the southern Scandes of Sweden [J]. Ambio, 2001, 30:72-80.
    [58] Kullman L. Long-term dynamics of high-altitude populations of Pinus sylvestris in the Swedish Scandes [J]. Journal of Biogeography, 1987, 14:1-8.
    [59] Kullman L. Pine tree-limit surveillance during recent decades [J]. Central Sweden. Arctic and Alpine Research, 1993, 25(1): 24-31.
    [60] Kullman L. Recent reversal of Neoglacial climate cooling trend in the Swedish Scandes as evidenced by mountain birch tree-limit rise [J]. Global Planetary Change, 2003, 36:77-88.
    [61] Kullman L. Tree-limits and montane forests in the Swedish Scandes: sensitive biomonitors of climate change and variability [J]. Ambio, 1998, 27: 312-321.
    [62] Lertzman K P, Sutherland G D, Inselberg A, Saunders S C. Canopy gaps and the landscape mosaic in a coastal temperate rain forest [J]. Ecology, 1996, 77 (4): 1254-1270.
    [63] Lertzman K P. Pattern of gap-phase replacement in a subalpine, old-growth forest[J]. Ecology, 1992, 73: 657-669.
    [64] Li M H, Yang J, Krauchi N. Growth responses of Picea abies and Larix decidua to elevation in subalpine areas of Tyrol, Austria [J]. Can J For Res, 2003, 33: 53-662.
    [65] Li X Q, Dodson J, Zhou J, et ah Vegetation and climate variations at Taibai, Qinling Mountains in central China for the last 3500 cal BP [J]. Journal of Integrative Plant Biology, 2005, 47:905-916.
    [66] Lichtenthaler H K. Application of chlorophyll fluorescence in photosynthesis research, stress physiology, hydrobiology and remote sensing [M]. Netherlands: Kluwer Academic Publishers, 1988,63-69.
    [67] Martinez-Ramos M, Sarukhan J, Pinero D. The demography of tropical trees in the context of forest gap dynamics: The case of Astrocaryum mexicanum at Los Tuxtlas tropical rain forest. In: Davy, A.J., Huchings, M.J., Watkinson, A.R. (Eds.), Plant Population Ecology. Blackwell Scientific Publications, London, 1988: 293-313.
    [68] Mast J N, Fule P Z, Moore M M, et al. Restoration of presettlement age structure of an Arizona ponderosa pine forest [J]. Ecological Applications, 1999, 9: 228-239.
    [69] Messerli B, Ives J D. Mountains of the world: a global priority [M]. The Parthenon Publishing Carnforth, 1997:2-3.
    [70] Moiseev P A. Effect of climatic changes on radial increment and age structure formation in high-mountain larch forests of the Kuznetsk Ala Tau [J]. Russian Journal of Ecology, 2002, 33(1): 7-13.
    [71] Molino J, Sabatier D. Tree diversity in tropical rain forests: a validation of the intermediate disturbance hypothesis [J]. Science, 2001, 294:1702-1704.
    [72] Moloney K, Levin S A. The effects of disturbance architecture on landscape-level population dynamics [J]. Ecology, 1996, 77 (2): 375-394.
    [73] Oberhuber W, Bauer H. Photo-inhibition of photosynthesis under natural conditions in ivy (Hedera helix L.) growing in an understory of deciduous trees [J]. Planta, 1991,195:545-553.
    [74] Olaf K, Jan F H. The use of chlorophyll fluorescence nomenclature in plant stress physiology [J]. Photosynthesis Research, 1990, 25(4): 147-150.
    [75] Oliveira G, Penuelas J. Allocation of absorbed light energy into photochemistry and dissipation in a semi-deciduous and an evergreen Mediterranean woody species during winter [J]. Australian Journal of plant physiology, 2001, 28(6): 1-10.
    [76] Ott R A, Juday G P. Canopy gap characteristics and their implications for management in the temperate rainforests of southeast Alaska [J]. For Ecol Manage. 2002,159:271-291.
    [77] Payette S, Filion L. White spruce expansion at the treeline and recent climatic change [J]. Canadian Journal of Forest Research, 1985, 15:241-251.
    [78] Peet R K, Christensen N L. Competition and tree death [J]. BioScience, 1987, 37: 586-594.
    [79] Peet R K, Christensen N L. Competition and tree death [J]. Bioseienee, 1987, 37:586-594.
    [80] Peet R K. Forest vegetation of the Colorado, FrontRange: Pattern of species diversity [J]. Vegetatio, 1978, 37:65-78.
    [81] Phillips D L, Shure D J. Patch size effects on early succession in southern Appalachian forests [J]. Ecology, 1990, 71: 204-212.
    [82] Pickett S T A. Space-for-time substitutions as an alternative to longterm studies [M]. In: Likens, G.E. (Ed.), Long-term studies in ecology. Springer, Berlin, 1989, 110-135.
    [83] Poulson T L, Platt W J. Gap light regimes influence canopy tree diversity[J]. Ecology, 1989, 70(3): 553-555.
    [84] Rees M, Condit R, Crawley M, et al. Long-term studies of vegetation dynamics [J]. Science, 2001, 293: 650-655.
    [85] Richardson A D, Lee X, Friedland A J. Microclimatology of treeline spruce-fir forests in mountains of the northeastern United States[J]. Agric. Forest Meteorol,2004,125:53-66.
    [86] Runkle J R. Gap dynamics in an Ohio Acer-Fagus forest and speculations on the geography of disturbance [J]. Forest Research, 1990, 20:632-641.
    [87] Runkle J R. Gap regeneration in some old-growth forests of the eastern United states [J]. Ecology, 1981, 62:1041-1051.
    [88] Runkle J R. Patterns of disturbance in some old-growthmesic forests of eastern North America [J]. Ecology, 1982, 63: 1533-1546.
    [89] Scholes J D, Press M C, Zipperlen SW. Differences in light energy utilization and dissipation between dipterocarp rain forest tree seedlings[J]. Oecologia, 1997,109:41-48.
    [90] Scuderi L A. Late-Holocene timberline variation in the southern Sierra Nevada [J]. Nature,1987,325(6101): 242-243.
    [91] Shankman D. Tree regeneration following fire as evidence of timberline stability in the Colorado Front Range [J]. Arc Alp Res, 1984, 16:413-417.
    
    [92] Shugart H H. A theory of forest dynamics [M]. Springer-Verlag. New York. 1984.
    [93] Spies T A, Franklin J F. Gap characteristics and vegetation response in coniferous forest of the Pacific Northwest [J]. Ecology, 1989, 70:543-545.
    [94] Stephan H, Smith W K. Seedling occurrence in alpine treeline conifers: A case study from the central Rocky Mountains, USA [J]. Acta Oecologica, 1999, 20(3):219-227.
    [95] Stewart G H. Population dynamics of a montane conifer forest, western Casade Range, Oregon, USA [J]. Ecology, 1986, 67:534-544.
    [96] Tang Z Y, Fang J Y. Temperature variation along the northern and southern slopes of Mt. Taibai, China [J]. Agricultural and Forest Meteorology, 2006, 139:200-207.
    [97] Tessier L, Guibal F, Schweingruber F H. Research strategies in dendroecology and dendroclimatology in mountain environments[J]. Climatic Change, 1997, 36(3-4):499-517.
    [98] Tranquillini W. Physilogical ecology of alpine timberline, Springverlag [M]. New York, 1979, 118-148.
    [99] Valverde T, Silvertown J. Canopy closure rate and forest structure [J]. Ecology, 1997, 78(5): 1555-1562.
    [100] Vandermeer J, Cerda I G D L, Boucher D, et al. Hurricane disturbance and tropical tree species diversity [J]. Science, 2000, 290: 788-791.
    [101] Veblen T T. Regeneration dynamics in Glenn-Lewin. D.C. et al, (eds). Plant succession: Theory and prediction [M]. Chapman & Hall. London. 1992, 152-177.
    [102] Veblen T T. Tree regeneration responses to gaps along a transandean gradient [J]. Ecology, 1989, 70:541-543.
    [103] Walter H. Vegetation of the earth and ecological systems of the geo-biosphere (2~(nd) edition). Springer Verlag New York, 1979.
    [104] Wang T, Liang Y, Ren H B, et al. Age structure of Picea schrenkiana forest along an altitudinal gradient in the central Tianshan Mountains, northwestern China [J]. Forest Ecology and Management, 2004, 196, 267-274.
    
    [105] Watt A S. Pattern and process in the plant community [J]. Ecology, 1947, 35:1-22.
    [106] White P S. Natural disturbance and gap phase dynamics in southern Appalachian spruce-fir forests [J]. Can. J. For. Res., 1985, 15:233-240.
    [107] Whitmore T C. Canopy gaps and the two major groups of forest trees [J]. Ecology, 1989b, 70(3): 536-538.
    [108] Whitmore T C. Changes over twenty-one years in the Kolombangara rain forests [J]. Journal of Ecology, 1989a. 77: 469-483.
    [109] Whittaker R H, Levin S A. The role of mosaic phenomena in natural communities [J]. Theor Popul Biol, 1977, 12: 117-139.
    [110] Whittaker R H. Vegetation of the Siskiyou Mountains, Oregon and California [J]. Ecol. Monogr, 1960, 30: 279-338.
    [111] Wilson J B, Sydes M T. Some tests for niche limitation by examination of species diversity in the Dunedin area [J]. New Zealand.N.Z.J.Bot, 1988, 26: 237-244.
    [112] Wilson J B. The intermediate disturbance hypothesis of species coexistence is based on patch dynamics [J].N. Z. J. Ecol, 1994,18(2): 176-181.
    [113] Wright S J. Plant diversity in tropical forests: a review of mechanisms of species coexistence [J]. Oecologia, 2002:130: 1-14.
    [114] Wu J, Loucks O L. From balance of nature to hierarchical patch dynamics, a paradigm shift in ecology [J]. Q Rev Biol, 1995, 70 (4): 439-466.
    [115] Xia Y, Fabian P, Stohl A, et al. Forest climatology, estimation of missing values for Bavaria, Germany[J]. Agric. Forest Meteorol, 1999, 96:131-144.
    [116] Xu Z Z, Zhou G S. Effect of water stress and high nocturnal temperature on photosynthesis and nitrogen level of a perennial grass Leymus chinensis[J].Plant and Soil,2005,269(1):131-139.
    [117]Yoda K A.Preliminary survey of the forest vegetation of eastern Nepal[J].J.Coll.Arts Sci.Chiba Univ,Nat Sci Ser,1967,5:99-140.
    [118]Zang R G,Wang B S.Study on canopy disturbance regime and mechanism of tree species diversity maintenance in the lower subtropical evergreen broad-leaved forest,South China[J].Plant Biosystem,2002,136(2),241-250.
    [119]Zhang Y J,Dai L M.The trend of tree line on the northern slope of Changbai Mountain[J].Journal of Forestry Research,2001,12(2):97-100.
    [120]安树青,张兴海,谈健康.森林植被动态研究述评[J].生态学杂志,1998,17(5):50-58.
    [121]毕润成,闫桂琴.山西霍山森林植被垂直带的定量划分[J].植物生态学报,2000,24(4):436-441.
    [122]蔡飞,宋永昌.武夷山木荷种群结构和动态的研究[J].植物生态学报,1997,21(2):138-148.
    [123]蔡永萍,李玲,李合生,等.霍山石斛叶片光合速率和叶绿素荧光参数的日变化[J].棉花学报,2005,17(3):189-190.
    [124]蔡志全,曹坤芳,冯玉龙,等.热带雨林三种树苗叶片光合机构对光强的适应[J].应用生态学报,2003,14(4):493-496.
    [125]陈存根,彭鸿.秦岭太白红杉林的群落学特征及类型划分[J].林业科学,1994,30(6):487-496.
    [126]程瑞梅,肖文发,李建文等.三峡库区森林植物多样性分析[J].应用生态学报,2002,13(1):35-40.
    [127]程伟,吴宁,罗鹏.岷江上游林线附近岷江冷杉种群的生存分析[J].植物生态学报,2005,29(3):349-353.
    [128]崔海亭,刘鸿燕,戴君虎,等.山地生态学与高山林线研究[M].北京:科学出版社,2005.
    [129]崔海亭.关于华北山地高山带和亚高山带的划分问题[J].科学通报,1983,8:494-497.
    [130]戴君虎,崔海亭,唐志尧,等.太白山高山带环境特征[J].山地学报,2001,19(4):299-305.
    [131]戴君虎,崔海亭.国内外高山林线研究综述[J].地理科学,1999,19(3):243-249.
    [132]戴君虎,邵雪梅,崔海亭,等.太白山树木年轮宽度资料对过去生态气候要素的重建[J].第四纪研究,2003,23(4):428-434.
    [133]丁锡祉,郑远昌.初论山地学[J].山地研究,1986,4(3):179-186.
    [134]丁锡祉,郑远昌.初论山地学[J].山地研究,1996,14(3):179-186.
    [135]段仁燕,王孝安,黄敏毅,等.秦岭太白山巴山冷杉种内和种间竞争特性的研究[J].武汉植物学研究,2007a,25(6):581-585.
    [136]段仁燕,王孝安,黄敏毅,等.太白红杉混交林径级结构与竞争的关系[J].生态学报,2007b,27(11):4919-4924.
    [137]段仁燕,王孝安,吴甘霖.林窗干扰和森林群落演替[J].广西植物,2005a,25(5):419-423.
    [138]段仁燕,王孝安.太白红杉种内种间竞争的研究[J].植物生态学报,2005b,29(2):242-250.
    [139]段仁燕,王孝安.太白红杉种群邻体范围与邻体竞争强度的研究[J].西北植物学报,2004a,24(12):2335-2340.
    [140]段仁燕,王孝安.植物邻体干扰的研究范畴、热点及意义[J].西北植物学报,2004b,24(6):1138-1144.
    [141]方精云,沈泽吴,崔海亭.初论山地的生态特征及山地生态学的研究内容[J].生物多样性,2004,12(10):10-19.
    [142]方精云.地理要素对我国温度分布影响的数量评价[J].生态学报,1992,12(2):97-104.
    [143]冯玉龙,曹坤芳,冯志立.生长光强对4种热带雨林树苗光合机构的影响[J].植物生理与分子生物学学报,2002,28(2):153-160.
    [144]傅抱璞.山地气候[M].北京:科学出版社,1983.
    [145]傅志军.秦岭太白山太白红杉种群结构研究[J].汉中师范学院学报(自然科学版),1998,16(1):53-56.
    [146]勾晓华,陈发虎,杨梅学,等.祁连山中海拔地区树轮宽度年表特征随海拔高度变化的初步分析[J].生态学报,2004,24(1):172-176.
    [147]关文彬,陈铁,董亚杰,等.东北地区植被多样性的研究Ⅰ-寒温带针叶林区域垂直植被多样性分析[J].应用生态学报,1997,8(5):465-470.
    [148]郭华,王孝安,肖娅萍.秦岭太白红杉种群空间分布格局动态及分形特征研究[J].应用生态学报,2005,16(2):227-232.
    [149]郭晓荣,曹坤芳,许再富.热带雨林不同生态习性树种幼苗光合作用和抗氧化酶对生长光环境的反应[J].应用生态学报,2004,15(3):377-381.
    [150]郭正刚,吴秉礼,王锁民.白龙江上游地区森林植被恢复能力的分析[J].西北植物学报,2003,23(4):537-543.
    [151]韩有志,王政权.森林更新与空间异质性[J].应用生态学报,2002,13(5): 615-619.
    [152]郝占庆,于德永,杨晓明,等.长白山北坡植物群落α多样性及其随海拔梯度的变化[J].应用生态学报,2002,13(7):785-789.
    [153]何永涛,李贵才,曹敏,等.哀牢山中山湿性常绿阔叶林林窗更新研究[J].应用生态学报,2003,14(9):1399-1404.
    [154]贺金生,陈伟烈.陆生植物群落物种多样性的梯度变化[J].生态学报,1997,17(1):91-99.
    [155]建忠心,李智军,等.太白山综合考察论文集[M].陕西师大出版社,1987.
    [156]江洪.云杉种群生态学[M].科学出版社,北京:1983,11-13.
    [157]康永祥,雷瑞德,梁宗锁.太白山太白红杉林群落种子植物区系研究[J].西北农林科技大学学报(自然科学版),2007,35(3):93-98.
    [158]匡廷云,卢从明,李良璧.作物光能利用效率与调控[M].第一版.济南:山东科学出版社,2004:9-115.
    [159]李博,杨持,林鹏,等.生态学[M].北京:高等教育出版社,2000,46-47.
    [160]李海宁.太白山北坡植物物种多样性及其垂直分布格局研究[D].2005,陕西师范大学硕士论文.
    [161]李文华,冷永法,胡涌.云南横断山区森林植被分布与水热因子相关的定量研究[M].昆明:云南人民出版社,1983:185-204.
    [162]李旭光.四川峨嵋山森林植被垂直分布的初步研究[J].植物生态学与地植物学丛刊,1984,8(1):52-66.
    [163]刘鸿雁,王红亚,崔海亭.太白山高山带2000多年以来气候变化与林线的响应[J].第四纪研究,2003,23(3):299-308.
    [164]刘庆,吴彦,吴宁.玉龙雪山自然保护区丽江云杉林林窗特征研究[J].应用生态学报,2003,14(6):845-848.
    [165]刘兴良,刘世荣,宿以明,等.巴郎山川滇高山栎灌丛地上生物量及其对海拔梯度的响应[J].林业科学,2006,42(2):1-7.
    [166]卢从明,张其德,匡延云.水分胁迫对小麦叶绿素a荧光诱导动力学的影响[J].生物物理学报,1993,9(3):453-457.
    [167]罗大庆,郭泉水,薛会英.藏东南亚高山冷杉林林隙特征与干扰状况研究[J].应用生态学报,2002,13(7):777-780.
    [168]马克平.生物多样性的测定.见:钱迎倩主编,马克平等.生物多样性的原理与方法[M].北京:中国科学技术出版社,1994,141-165.
    [169]苗莉云,王孝安,王志高.太白红杉群落交错带物种多样性的研究[J].广西植物,2005,25(2):112-116.
    [170]潘家华.京西百花山地区环境梯度与植物群落[J].植物生态学与地植物学学报,1988,12(1):23-30.
    [171]彭剑峰,勾晓华,陈发虎,等.阿尼玛卿山地不同海拔青海云杉(Picea crassifolia)树轮生长特性及其对气候的响应[J].2007,27(8):3268-3276.
    [172]任毅,刘明时,田联会,等.太白山自然保护区生物多样性研究与管理[M].中国林业出版社,2007,244-260.
    [173]邵雪梅,方修琦,刘洪滨,等.柴达木东缘山地千年祁连圆柏年轮定年分析[J].地理学报,2003,58(1):90-100.
    [174]沈泽昊,方精云,刘增力,等.贡嘎山海螺沟林线附近峨眉冷杉种群的结构与动态[J].植物学报,2001,43(12):1288-1293.
    [175]沈泽昊,胡志伟,赵俊,等.安徽牯牛降的植物多样性垂直分布特征—兼论山顶效应的影响[J].山地学报,2007,25(2):160-168.
    [176]沈泽昊,刘增力,伍杰.贡嘎山东坡植物区系的垂直分布格局[J].生物多样性,2004,12(1):89-98.
    [177]沈泽昊.山地森林样带植被—环境关系的多尺度分析[J].生态学报,2002,22(4):461-470.
    [178]宋萍,洪伟,吴承祯,等.珍稀濒危植物桫椤种群结构与动态研究[J].应用生态学报,2005,16(3):413-418.
    [179]唐志尧,戴君虎,黄永梅.太白山高山林线植被的数量分析[J].山地学报,1999,17(4):294-299.
    [180]唐志尧,柯金虎.秦岭牛背梁植物物种多样性垂直分布格局[J].生物多样性,2004,12(1):108-114.
    [181]陶建平,臧润国.海南霸王岭热带山地雨林林隙幼苗库动态规律研究[J].林业科学,2004,40(3):33-38.
    [182]王刚,徐阿生,蔡星星,等.太白红杉和西藏红杉的核型分析[J].复旦学报(自然科学版),1998,37(4):481-484.
    [183]王槐.河北雾灵山植被概况[J].植物生态学与地植物学丛刊,1982,6(1):81-83.
    [184]王晓春,周晓峰,李淑娟,等.气候变暖对老秃顶子林线结构特征的影响[J].生态学报,2004,24(11):2412-2421.
    [185]王孝安,段仁燕.太白红杉单木生长模型的研究[J].武汉植物学研究,2005a,23(2):157-162.
    [186]王孝安,郭华,肖娅萍.秦岭太白红杉群落种间关系的数量分析[J].西北植物学报,2003b,23(6):906-910.
    [187]王孝安,王志高,段仁燕,等.秦岭山地太白红杉种群种实性状的生态可塑性研究[J].应用生态学报,2005b,16(1):29-32.
    [188]王孝安,王志高,肖娅萍.太白红杉生殖年龄及其影响因素分析[J].西北植物学报,2004b,24(5):855-858.
    [189]王孝安,王志高,肖娅萍.太白红杉种群生殖对策研究Ⅱ生育力和种子重量[J].兰州大学学报(自然科学版),2004a,40(4):72-75.
    [190]王孝安,肖娅萍,胡雅琴.太白红杉3种不同材料总DNA的提取[J].西北植物学报,2003a,23(4):641-644.
    [191]王孝安,赵相健.太白红杉顶芽与分枝格局的适应性分析[J].生态学报,2004c,24(11):2616-2620.
    [192]王志高,王孝安,肖娅萍.太白红杉群落优势种的生态位研究[J].西北植物学报,2003a,23(10):1780-1883.
    [193]王志高,王孝安,肖娅萍.太白红杉种群的生殖对策研究Ⅰ.生殖力和生殖值[J].西北植物学报,2003b,23(12):2089-2093.
    [194]邬建国.景观生态学—格局,过程,尺度与等级[M].北京:高等教育出版社,2000,74-94.
    [195]吴承祯,洪伟,谢金寿,等.珍稀濒危植物长苞铁杉种群生命表分析[J].应用生态学报,2000,11(3):333-336.
    [196]夏纬瑛.《管子·地员篇》校释[M].北京:中华书局,1958.
    [197]徐德聪,吕芳德,刘小阳.不同品种美国山核桃叶绿素荧光参数日变化的研究[J].激光生物学报,2007,16(3):259-264.
    [198]徐德聪,吕芳德,潘晓杰.叶绿素荧光分析技术在果树研究中的应用[J].经济林研究,2003,21(3):88-91.
    [199]徐文铎.中国东北主要植被类型的分布与气候的关系[J].植物生态与地植物学学报,1986,10(4):254-263.
    [200]徐兆奎.徐霞客名山游记选注[M].北京:中国旅游出版社,1985,15-29,161-172.
    [201]许林军,彭鸿,陈存根,等.秦岭太白红杉林分布及太白山高山林线特征的定量分析[J].西北植物学报,2005,25(5):968-972.
    [202]许再富,朱华,王应祥,等.澜沧江下游湄公河上游片断热带雨林物种多样性动态[J].植物生态学报,2004,28(5):585-593.
    [203]闫桂琴,赵桂仿,胡正海,等.秦岭太白红杉种群结构与动态的研究[J].应用生态学报,2001a,12(6):824-828.
    [204]闫桂琴,赵桂仿,胡正海.秦岭太白红杉群落特征及其物种多样性的研究[J].西北植物学报,2001b,21(3):497-506.
    [205]于大炮,周莉,董百丽,等.长白山北坡岳桦种群结构及动态分析[J].生态学杂志,2004,23(5):30-34.
    [206]余大富.发展山地学之我见[J].山地研究,1996,14(4):285-289.
    [207]俞晓敏,赵桂仿.太白红杉雌配子体的形成、受精、胚胎发育及其系统学意义[J].西北植物学报,2004,24(6):1024-1034.
    [208]俞晓敏,赵桂仿.太白红杉小孢子的发生和雄配子体的发育[J].植物学通报,2003,20(5):576-584.
    [209]岳明,党高弟,辜天琪.佛坪国家级自然保护区植被垂直带谱及其与邻近地区的比较[J].武汉植物学研究,2000,18(5):375-382.
    [210]臧润国,徐化成.林窗干扰研究进展[J].林业科学,1998,34(1):1-22.
    [211]臧润国,杨彦承.海南岛热带山地雨林林隙及其自然干扰特征[J].林业科学,1999a,35(1):2-8.
    [212]臧润国,余世孝,刘静艳,等.海南霸王岭热带山地雨林林隙更新规律的研究[J].生态学报,1999b,19(2):151-158.
    [213]张峰,上官铁梁.有序样方聚类在植被垂直带划分中的应用[J].植物生态学报,1997,21(3):267-273.
    [214]张金屯,张峰,上官铁梁.中条山植被垂直带谱再分析[J].山西大学学报(自然科学版),1997,20(1):76-79.
    [215]张玲,方精云.太白山南坡土壤种子库的物种组成与优势成分的垂直分布格局[J].生物多样性,2004,12(1):123-130.
    [216]张玲.林线树种太白红杉种子萌发的生理生态特性[J].植物生态学报,2004,28(4):579-583.
    [217]张桥英,张运春,罗鹏,等.白马雪山阳坡林线方枝柏种群的生态特征[J].植物生态学报,2007,31(5):857-864.
    [218]张文辉,王延平,康永祥,等.濒危植物太白红杉种群年龄结构及其时间序列预测分析[J].生物多样性,2004a,12(3):361-369.
    [219]张文辉,王延平,康永祥,等.太白红杉种群结构与环境的关系[J].生态学报,2004b,24(1):41-47.
    [220]张文辉,许晓波,周建云,等.濒危植物秦岭冷杉种群空间分布格局及动态[J].西北植物学报,2005,25(9):1840-1847.
    [221]张亚杰,冯玉龙,冯志立,等.绒毛番龙眼对生长光强的形态和生理适应[J].植物生理与分子生物学学报,2003,29(3):206-214.
    [222]张芸,孔昭宸,闫顺,等.天山北坡晚全新世云杉林线变化和古环境特征[J].科学通报,2006,51(12):1450-1458.
    [223]赵相健,王孝安.太白红杉顶芽动态及其对分枝格局的影响[J].应用生态学报2005,16(1):25-28.
    [224]周灿芳.植物群落动态研究进展[J].生态科学,2000,19(2):53-59.
    [225]朱华.北京百花山大阴坡植被垂直分带方法的探讨[J].北京林业大学学报,1997,10(4):59-63.
    [226]朱源,江源,刘全儒,等.基于等面积高度带划分的贺兰山维管植物物种丰富度的海拔分布格局[J].生物多样性,2007,15(4):408-418.
    [227]左大康.现代地理学辞典[M].北京:商务印书馆,1990,186-187.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700