燕麦属物种系统发育与分子进化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燕麦属(Arena L.)隶属于禾本科(Poaceae),早熟禾亚科(Pooideae),燕麦族(Aveneae),全世界约29个种,含有6种染色体组组成类型(A、C、AB、AC、CC和AACCDD)。燕麦属不同倍性以及不同基因组构成的物种是栽培燕麦产量、品质和抗性改良的重要基因库。但是,相似的形态和重叠的地理分布使燕麦属部分物种的分类与鉴定存在困难;染色体组构成和倍性差异更增加了分类鉴定的复杂性,这种情况阻碍了对这些燕麦物种优异遗传资源的有效利用。此外,由于缺乏明确的二倍体供体物种,燕麦属异源多倍体的起源一直存在争议。本文通过细胞质基因组的扩增片段限制性片段长度多态性(PCR-RFLP)和叶绿体微卫星标记(ccSSR)分析;叶绿体matK基因、trnL内含子和trnL-F基因间隔区、核糖体5S rRNA基因和nrDNA的内转录间隔区(ITS)以及低拷贝的核基因LEAFY的内含子等序列比较分析的方法,对燕麦属种间和基因组间的系统发育关系,以及异源多倍体的起源和ITS的分子进化等进行了研究,并尝试开发燕麦属基因组和物种鉴定的特异标记。主要研究结果如下:
     1.采用PCR-RFLP技术对燕麦属25个种的95个居群以及1个外类群共96份材料细胞质基因组DNA片段的遗传变异进行了分析。利用12个细胞质通用引物扩增出片段,然后用8种限制性内切酶对扩增产物进行酶切,共获得203条DNA片段,其中仅39条具有多态性,占19.2%,结果表明该标记在燕麦属中多态性很低,不能有效区分不同的基因组、物种或种内居群,因此对于燕麦细胞质基因组的研究需选用多态性更高的标记或直接比较不同物种的叶绿体或线粒体DNA序列。
     2.利用叶绿体微卫星引物对燕麦25个物种80份材料的SSR位点进行了扩增。16个ccSSR位点检测到51个等位基因,多态信息含量最高为0.754。80份供试材料的平均遗传相似系数为0.545。采用鉴别分析法,评价了ccSSRs分子标记在区分燕麦不同基因组方面的价值。遗传相似性分析结果表明,燕麦属中A基因组二倍体物种相对于其它物种具有更大的遗传分化。根据叶绿体标记母性遗传特点,推测A.damascena可能是A.fatua的母本,而A.strigosa和A.lusitanica分别与不同六倍体物种以及AACC基因组四倍体物种的关系较近,表明多倍体燕麦物种的A基因组是从不同AA基因组的二倍体物种起源的。C基因组物种与其它基因组类型的物种能明显区分,但C基因组二倍体A.clauda有分布在不同组群内的个体,可能该物种在燕麦进化过程中具有比较重要的作用。
     3.根据叶绿体基因组母系遗传特点,选择matK和trnL-F两个叶绿体基因片段探讨燕麦属异源多倍体物种的母系亲本。在本研究中,代表A基因组的分支包含了燕麦属中含A基因组的所有倍性的物种,而且在两个不同的片段独立和合并的分析中这些物种都以很高的自展支持率聚为一支,说明A基因组二倍体作为燕麦多倍体物种的母本参与燕麦属多倍体物种的形成,且不同多倍体物种具有的A基因组二倍体祖先也不同。六倍体物种A.sativa、A.sterilis和A.occidentalis,AC基因组四倍体物种A.maroccana和A.murphy,以及AB基因组四倍体物种A.agadiriana一起与二倍体物种A.wiestii组成一支,A_d基因组二倍体物种A.damascena与六倍体物种A.fatua的遗传关系更近;A.hirtula可能是A.abyssinica、A.vaviloviana和A.barbata等三个AABB物种的母本。因此,燕麦属多倍体物种具有多系母本起源,而并非都起源于同一个母本。
     4.鉴于ITS片段进化的特殊性以及该片段一直被作为致同进化的经典范例而广泛应用于系统发育研究,基于169条ITS序列的比较,探讨其在燕麦属多倍体中的致同进化方式及其系统学意义。本研究发现,燕麦属异源多倍体的ITS存在不同进化方式。首先,ITS定向致同进化方式在大部分燕麦异源多倍体中出现。在AABB和AACC四倍体中,所有ITS克隆序列都毫无例外地出现在含A染色体组的二倍体所在的分支中,没有其它类型的拷贝出现。在5个燕麦属六倍体物种中,有4个物种的ITS序列均属于A基因组的ITS类型。这些结果表明燕麦属大多数多倍体的rDNA仅定向保留母本的ITS类型。其次,在六倍体物种A.fatua(AACCDD)中同时保留了两类分别来自亲本AA和CC的ITS拷贝类型。因此,在利用ITS片段进行系统发育分析,特别是涉及异源多倍体时必须考虑到该片段特殊的进化模式,以避免作出错误的系统发育推断。
     5.对从燕麦属26个物种71个居群材料中获得的553条5S rDNA序列进行比较分析,发现可将所有序列划分为代表燕麦各基因组的六种单元类型,分别命名为Long A1、Long B1、Long M1、Short C1、Short D1和Short M1,而Long M1和Short M1仅在燕麦属唯一的多年生物种A.macrostachya中发现。其中,Long M1单元类型与代表C基因组的Short C1单元类型更相似,Short M1单元类型则与Long A1和Long B1关系更近,而Short D1单元类型与其它类型差异较大。与小麦不同,燕麦属每个基因组仅发现一种5S rDNA单元类,且大多数序列都属于Long A1类型。从四倍体A.abyssinica和A.vaviloviana以及二倍A.atlantica和A.longiglumis中发现了代表B基因组的Long B1单元类型。Short C1单元类型在C基因组二倍A.clauda、A.eriantha和A.ventricosa中发现,同时还在二倍体A.longiglumis、四倍体A.insularis和A.maroccana以及所有的ACD基因组六倍体物种中存在。Short D1单元类型也存在于所有的六倍体物种中。同时,在C基因组二倍体物种A.clauda和A.murphyi冲也发现了代表D基因组的拷贝类型。虽然B基因组和D基因组都仅在多倍体中存在,但本研究从二倍体物种中发现了代表B基因组和D基因组的单元类型。这就为今后寻找多倍体中B基因组和D基因组的起源提供了线索。在燕麦A、B、C、D四个基因组中,燕麦属最原始的多年生物种A.macrostachya与C基因组关系更近。
     6.利用具有更多系统进化信息位点的低拷贝核基因片段LEAFY intⅡ对燕麦属内种间进化关系和多倍体起源进行研究,找到了B基因组和D基因组起源的线索。三个AB基因组四倍体物种A.abyssinica、A.barbata和A.vaviloviana的B基因组可能由二倍体物种A.hirtula起源,而另一个AABB物种A.agadiriana的B基因组则可能起源于二倍体物种A.damascena。对于仅在六倍体中存在的D基因组则可能是起源于含有D类拷贝的C基因组二倍体物种A.clauda和A.eriantha,以及四倍体物种A.murphyi。同时,燕麦属多倍体物种中的C基因组显示了与C_p基因组物种A.clauda更近的遗传关系。
     7.根据5S rRNA基因序列在不同基因组间的差异设计基因组特异引物对燕麦属物种进行扩增,探索了全面获取不同物种所有序列拷贝类型和鉴别燕麦属染色体组的方法。已找到能准确鉴定A基因组和D基因组的特异引物,显示出开发燕麦属基因组特异标记的可行性和应用价值。同时,这些特异引物还可用于燕麦种质资源的快速准确鉴定。
The genus Avena L. in the tribe Aveneae, subfamily Pooideae, Poaceae, consists of 29 species, including 6 genome constitutions (A, C, AB, AC, CC, AACCDD). As an important gene pool for improving cultivated oats and related species, this genus occupies a most important status in cereal plants. However, the species in this genus are often overlapping in ditribution and morphologically so similar that it is very difficult to identify them with certainy if only using gross-morphological charecters. Difference in genome constitution and ploidy level add even greater complexity. Such situation has undoubtedly restricted the effective utilization of the the valuable genetic resources in the genus. In additon, the incomplete knowledge on the diploid donors of the polyploid members in the genus has made the situation become more complicated. Indeed, the origin of the allopolyploid members in the genus has long been a controversial matter. In this study, based on PCR-RFLP and ccSSR analysis of plasmon, the plastid matK gene and the trnL-F region, the nuclear ribosomal internal transcribed spacers (ITS) and 5S rRNA gene, and the intron region of low-copy LEAFY gene, the phylogenetic relationships of the species and the origin of the allotetraploid members were discussed. In additon, based on the former results, primers specific for genome were designed and used to identify the different genomes. The main results are summarized as follows:
     1. Plasmon genetic varitions of 96 accessions including 25 Avena taxa and 1 outgroup were investigated by using PCR-RFLP markers. Twelve plasmon universal primers produced 203 bands, only 39 out of which were polymorphic (19.2%), indicating that it is not suitable for identify the different genome, species or accessions of Avena. Thus, the consensus chloroplast simple sequence repeat (ccSSR) makers and plastid matK gene and the trnL-F region were used to study the genetic polymorphisms of the Avena plasmon.
     2. Consensus chloroplast simple sequence repeat (ccSSR) makers were used to assess the genetic variation and genetic relationships of 80 accessions from 25 taxa of the genus Avena. A total of 51 alleles were detected at the 16 ccSSR loci. Among these ccSSR loci, the highest polymorphism information content (PIC) value was 0.754. The mean genetic similarity index among the 80 Avena accessions was 0.545. To assess the usefulness of ccSSRs in separating and distinguishing between haplome (genome) groups, we used ordination by canonical discriminant analysis and classificatory discriminant analysis. The analysis of genetic similarity showed that diploid species with the A haplome were more diverse than other species. Among the species with the C haplome, A. clauda was more diverse than A. eriantha and A. ventricosa. In the cluster analysis, we found that the Avena accessions with the same genomes and/or belonging to the same species had the tendency to cluster together. As for the maternal donors of polyploid species based on this maternally inherited marker, A. strigosa served as the maternal donor of some Avena polyploidy species such as A. sativa, A. sterilis and A. occidentalis from Morocco. A. fatua is genetically distinct from other hexaploid Avena species, and A. damascena might be the A genome donor of A. fatua. A. lusitanica served as the maternal parents during the polyploid formation of the AACC tetraploids and some AACCDD hexaploids. These results suggested that different diploid species were the putative A haplome donors of the tetraploid and hexaploid species. The C genome species A. eriantha and A. ventricosa are largely differentiated from the Avena species containing the A, or B, or D haplomes, whereas A. clauda from different accessions were found to be scattered within different groups, and might play an important role in the phylogeny of Avena.
     3. The maternally inherited matK and trnL-F sequences revealed the separate A genome diploid species as maternal parents of the different polyploid species. One of the A_SA_S donor diploid species, A. wiestii, fell together with most hexaploid species, A. sativa, A. sterilis and A. occidentalis, with the two AACC tetraploids, A. maroccana and A. murphy, and with one of the AABB genome tetraploid, A. agadiriana on the chloroplast gene trees. Another diploid species, A. damascena carrying the A_dA_d genome, always fell together with the hexaploid A. fatua. Three AABB tetraploids, A. abyssinica, A. vaviloviana and A. barbata, were close to the AA genome diploid A. hirtula in a subclade on the tree. Therefore, the maternal donor was an A genome species with several maternal lineages being involved in different polyploid species.
     4. ITS concerted evolution in the genus of Avena was detected based on the comparison of 169 clone sequences, and phylogenetic implication of such evolution was discussed. Different patterns of concerted evolution are revealed in the allopolyploid members if the genus. First, only maternal ITS copies are found to be reversed within the most hexaploids and all of the AABB and AACC tetraploids, indicating the high degree of homogenization in the ITS sequences of Avena. Second, biparental ITS copies are both found within the A. fatua, which had two types in separate clades, one with A genome and the other with C genome species. It need more consideration when utilizing ITS for phylogenetic reconstruction.
     5. The molecular diversity of the rDNA sequences (5S rDNA units) in 71 accessions from 26 taxa of Avena was evaluated. The analyses based on 553 sequenced clones, indicated that there were six sequence unit classes, enumerated according to the haplomes (genomes) they putatively represent, namely the Long A1, Long B1, Long M1, Short C1, Short D1 and Short M1 unit classes. The long and short M1 were found in the tetraploid A. macrostachya the only perennial species. The long M1 unit class was closely related to the short C1 unit class, while the short Ml unit class was closely related to the long A1 and the long B1 unit classes. However, the Short D1 unit class was more divergent with the other unit classes. There was only one unit class per haplome in Avena, which was different from haplomes in the Triticeae which often have two haplomes. Most of the sequences captured belong to the long A1 unit class. Sequences identified as the long B1 unit class were found in the tetraploids A. abyssinica and A. vaviloviana, and in the diploids A. atlantica and A. longiglumis. The short C1 unit class was found in the diploid species carrying the C genome i.e. A. clauda, A. eriantha and A. ventricosa, and also found in the diploid A. longiglumis and in the tetraploid A. insularis, A. maroccana and in all the hexaploid species. The short D1 unit class was found in all the hexaploid species and in two clones of A. clauda and A. murphyi. It is noteworthy that, according to previous studies the B genome was found to be present only in tetraploid species and the D genome only in hexaploid species. Unexpectedly we found that various diploid Avena species contained the B1 and D1 units. Thus there might be a clue where to search for the diploids carrying the B and D genomes. The path inferred is that the C genome is more ancient than the A and B genomes, and it is closer to A. macrostachya, the only existing perennial which is presumed to be the most ancestral species in the genus.
     6. The usefulness of low-copy nuclear sequence markers is becoming increasingly recognised since they frequently outperform ITS and plastid markers, the highly variable second intron region of low-copy gene LEAFY was used to inferring the phylogenetic relationships of Avena species and the origin of the allopolyploids, especially for the orign of the B and D genome which only found in polyploids. The B genome of three AABB tetraploids, A. abyssinica, A. barbata and A. vaviloviana, were from the AA genome diploid A. hirtula, and another B genome copy from A. agadiriana was closed to the AA genome diploid A. damascena. As for the D genome which only present in hexaploids, it maybe originate from CC genome diploids A. clauda and A. eriantha, or from the tetraploid A. murphyi which contained the D genome copy. The C genome of polyploids showed closer relationship with one of the CC genome species A. clauda.
     7. It is an opporunity to design primers specific for genome based on the 5S rDNA class units which different genomes has specific sequence varations. The specific PCR primers had been developed to identify A and D genome of Avena species, indicating the feasibility and value of the genome specific. According to the phylogenetic study of the Avena genus, the amount of sequence variation in the 5S rRNA gene and LEAFY second intron region seems to be sufficient to allow the development of genome specific primers or RFLP markers for the identification of the Avena genomes. It is necessary to explore more genome specific molecular markers in future in order to develop an approach of PCR or RFLP analysis to identify the Avena genomes quickly and reliably. This can be used to affirm whether all copy types of certain species have been obtained and would greatly facilitate the identification of collected oat germplasm.
引文
1. Ahearn KP, Johnson HA, Weigel D, Wagner DR. NFL1, a Nicotiana tabacum LFY-like gene, controls meristem initiation and floral structure. Plant and Cell Physiology, 2001,42:1130-1139.
    
    2. Ainouche ML, Bayer RJ. On the origins of the tetraploid Bromus species (section Bromus,Poaceae): insights from the internal transcribed spacer sequences of nuclear ribosomal DNA.Genome, 1997,40: 730-743.
    
    3. Alicchio R, Aranci L, Conte L. Restriction fragment length polymorphism based phylogenetic analysis of Avena L. Genome, 1995,38: 1279-1284.
    
    4. Amasino R. Vernalization, competence, and epigenetic memory of winter. The Plant Cell, 2004, 16:2553-2559.
    
    5. Amheim N. Concerted evolution of multigene families. In Nei M, Koeho RK. eds. Evolution of genes and proteins. Sinauer, Sunderlnad, MA. 1983,38-61.
    
    6. Ananiev EV, Vales MI, Phillips RL, Rines HW. Isolation of A/D and C genome specific dispersed and clustered repetitive DNA sequences from Avena sativa. Genome, 2002,45:431-441.
    
    7. Anderson JC, Churchill GA, Autrique JE, Tanksley SD, Sorrells ME. Optimizing parental selection for genetic linkage maps. Genome, 1993,36: 181-186.
    
    8. Anthony RG, James PE, Jordan BR. Cloning and sequence analysis of a FLO/LFY homologue isolated from cauliflower (Brassica oleracea L. var. botrytis). Plant Molecular Biology, 1993, 22:1163-1166.
    
    9. Appels R, Baum BR, Clarke BC. The 5S DNA units of bread wheat (Triticum aestivum L.). Plant Systematics and Evolution, 1992,183:183-194.
    
    10. Archambault A, Bruneau A. Phylogenetic Utility of the LEAFY/FLORICAULA Gene in the Caesalpinioideae (Leguminosae): Gene Duplication and a Novel Insertion. Systematic Botany,2004, 29(3): 609-626.
    
    11. Avis JC. Molecular markers, natural history and evolution. Champman and Hall, New York. 1995.
    
    12. Bailey CD, Doyle JJ. Potential phylogenetic unility of the low-copy nuclear gene pistillata in dicotyledonous plants comparison to nrDNA ITS and trnL intron in Sphaerocardamum and other Brassicaceae. Molecular Phylogenetics and Evolution, 1999,13:20-30
    
    13. Baldwin BG, Sanderson MJ, Porter JM, Wojciechowski MF, Campbell CS, Donoghue MJ. The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Annals of the Missouri Botanical Garden, 1995, 82: 247-277.
    
    14. Baldwin BG. Molecular phylogenetics of Calycadenia (Compomtae) based on ITS sequences of nuclear ribosomal DNA: choromosomal and morphological evolution reexmained. American Journal of Botany, 1993, 80: 220-238.
    
    15. Bao Y, Ge S. Origin and phylogeny of Oryza species with the CD genome based on multiple-gene sequence data. Plant Systematics and Evolution, 2004, 249: 55-66.
    
    16. Barrier M, Baldwin BG, Robichaux RH, Purugganan MD. Interspecific hybrid ancestry of a plant adaptive radiation: allopolyploidy of the Hawaiian silversword alliance (Asteraceae) inferred from floral homeotic gene duplications. Molecular Biology and Evolution, 1999,16: 1105-1113.
    
    17. Baum B R. Oats: Wild and cultivated. A monograph of the genus Avena L. (Poaceae). Minister of Supply and Services Canada, Ottawa, Ontario: Agriculture Canada. 1977,1-463.
    
    18. Baum BR, Bailey LG, Belyayev A, Raskina O, Nevo E. The utility of the nontranscribed spacer of 5S rDNA units grouped into unit classes assigned to haplomes - a test on cultivated wheat and wheat progenitors. Genome, 2004,47:590-599.
    
    19. Baum BR, Bailey LG, Johnson DA, Agafonov AV. Molecular diversity of the 5S rDNA units in the Elymus dahuricus complex (Poaceae: Triticeae) supports the genomic constitution of St, Y and H haplomes. Canadian Journal of Botany, 2003, 81(11): 1091-1103.
    
    20. Baum BR, Bailey LG. The 5S rDNA units in kengyilia (Poaceae: Triticeae): diversity of the nontranscribed spacer and genomic relationships. Canadian Journal of Botany, 2000, 18:1571-1579.
    
    21. Baum BR, Bailey LG. The 5S rRNA gene sequence variation in wheats and some polyploidy wheat progenitors (Poaceae: Triticeae). Genetic Resources and Crop Evolution, 2001,48:35-51.
    
    22. Baum BR, Bailey LG. The molecular diversity of the 5S rRNA gene in Kengyilia alatavica (Drobov) J.L. Yang, Yen & Baum (Poaceae: Triticeae): potential genomic assignment of different rDNA units. Genome, 1997,40:215-228.
    
    23. Baum BR, Fedak G. A new tetraploid species of Avena discovered in Morocco. Canadian Journal of Botany, 1985,63: 1379-1385.
    
    24. Baum BR, Fedak G. Avena atlantica, a new diploid species of the oat genus from Morocco.Canadian Journal of Botany, 1985,63:1057-1060.
    
    25. Baum BR, Johnson DA, Bailey LG. Analysis of 5S rDNA units in the Triticeae: the potential to assign sequence uits to haplomes: In Triticeae. Edited by A.A. Jaradat, Science Publishers Inc.,Enfield,N.H. 1998,85-96.
    
    26. Baum BR, Johnson DA, Bailey LG. Defining orthologous groups among multicopy genes prior to inferring phytogeny, with special emphasis on the Triticeae (Poaceae). Hereditas, 2001, 135:123-138.
    
    27. Baum BR, Johnson DA. A comparison of the 5S rDNA diversity in the Hordeum brachyantherum-californicum complex with those of the eastern Asiatic Hordeum roshevitzii and the South Asiatic Hordeum cordobense (Triticeae: Poaceae). Canadian Journal of Botany, 2002, 80:752-762.
    
    28. Baum BR, Johnson DA. The 5S rRNA gene units in ancestral two-rowed barley (Hordeum spontaneum C. Koch) and bulbous barley (H bulbosum L.): sequence analysis and phylogenetic relationships with the 5S rDNA units in cultivated barley (H vulgare L.). Genome, 1996, 39:140-149.
    
    29. Baum BR, Johnson DA. The 5S rRNA gene units in sea barley (Hordeum marinum Hudson sensulato): sequence variation among repeat units and relationship to the X haplome in barley (Hordeum).Genome, 1998,41:652-661.
    
    30. Baum BR, Johnson DA. The 5S rRNA gene units in the native New World annual Hordeum species (Triticeae: Poaceae). Canadian Journal of Botany, 2000,78: 1590-1602
    
    31. Baum BR, Johnson DA. The 5S rRNA gene units in wall barley (Hordeum murinum L. sensu lato):sequence variation among repeat units and relationship to the Y haplome in the genus Hordeum (Poaceae: Triticeae). Genome, 1999,42: 854-866.
    
    32. Baum BR, Johnson DA. The molecular diversity of the 5S rRNA gene in barley (Hordeum vulgare). Genome, 1994,37: 992-998.
    
    33. Baum BR, Rajhathy T. A Study of Avena macrostachya. Canadian Journal of Botany, 1976, 54:2434-2439.
    
    34. Baum BR. Classification of the Oat Species Avena (Poaceae) Using Various Taximetric Methods and an Information-Theoretic Model. Canadian Journal of Botany, 1974, 52:2241-2262.
    
    35. Baum BR. Delimitation of the genus Avena (Gramineae). Canadian Journal of Botany, 1968,46:121-132.
    
    36. Baumel A, Ainouche ML, Bayer RJ, Ainouche AK, Misset MT. Molecular phylogeny of hybridizing species from the genus Spartina Schreb. (Poaceae). Molecular Phylogenetics and Evolution, 2002,22: 303-314.
    
    37. Bell GDH. The comparative phylogeny of the temperate cereals. In J. Hutchinson (ed.) Essays on crop plant evolution. Cambridge Univ Press, Cambridge, England. 1965, 70-102.
    
    38. Bomblies K, Wang RL, Ambrose BA, Schmidt RJ, Meeley RB, Doebley J. Duplicate FLORICAULA/LEAFY homologs zfl1 and zfl2 control inflorescence architecture and flower patterning in maize. Development, 2003, 130:2385-2395.
    
    39. Bortiri E, Oh S, Jiang J, Baggett S, Granger A, Weeks C, Buckingham M, Potter D, Parfitt DE.Phylogeny and systematics of the genus Prunus L. (Rosaceae) as determined by sequence analysis of ITS and the chloroplast trnL-trnF spacer DNA. Systematic Botany, 2001, 26(4):797-807.
    
    40. Buchannan FC, Adams LJ, Littlejohn RP, Maddox JF, Crawford AM. Determination of evolutionary relationships among sheep breeds using microsatellites. Genomics, 1994,22: 397-403.
    
    41. Buckler ESIV, Ippolito A, Holtsford TP. The evolution of ribosomal DNA: Divergent paralogues and phylogenetic implications. Genetics, 1997,145: 821-832.
    
    42. Chen Q, Armstrong K. C genomic in situ hybridization in Avena sativa. Genome, 1994, 37:607-612.
    
    43. Cheng DW, Armstrong KC, Drouin G, McElroy A, Fedak G, Molnar SD. Isolation and identification of Triticeae chromosome 1 receptor-like kinase genes (Lrk10) from diploid, tetraploid, and hexaploid species of the genus Avena. Genome, 2003, 46: 119-127.
    
    44. Cheng YP, Hwang SY, Lin TP. Potential refugia in Taiwan revealed by the phylogeographical study of Castanopsis carlesii Hayata (Fagaceae). Molecular Ecology, 2005, 14: 2075-2085.
    
    45. Chen X, Cho YG, McCouch SR. Microsatellites in Oryza and other plant species. Molecular Genetics and Genomics, 2002,268:331-343.
    
    46. Chung SM, Staub JE. The development and evaluation of consensus chloroplast SSRs for chloroplast genetic analysis. Theoretical and Applied Genetics, 2003,107: 757-767.
    
    47. Clegg MT, Brown AHD, Whitfeld PR. Chloroplast DNA diversity in wild and cultivated barley:implications for genetic conservation. Genetical Research, 1984,43: 339-343
    
    48. Clegg MT, Gaut BS, Learn GH, Morton RR. Rates and pattern of chloroplast DNA evolution.Proceedings of the National Academy of Sciences of USA, 1994,91: 6795-6801.
    
    49. Clegg MT, Learn GH, Golenberg EM. Molecular evolution of chloroplast DNA. In: Selander et al.(eds), Molecular systematics of plants. Chapman and Hall. New York. 1991,1-13
    
    50. Coen ES, Romero JM, Doyle S, Elliot R, Murphy G, Carpenter R. Floricaula: a homeotic gene required for flower development in Antirrhinum majus. Cell, 1990,63:1311-1322.
    
    51. Cosson ME, Durie de Maisonneuve MC. Expl. sci. Alger. II. 1855,104-114.
    
    52. Cronn R C, Zhao X P, Paterson A H, Wendel J F. Polymorphism and concerted evolution in a tandemly repeated gene family: 5S ribosomal DNA in diploid and allopolyploid cottons. Journal of Molecular Evolution, 1996,42:685-705.
    
    53. Demesure B, Comps B, Petit RJ. Chloroplast DNA phylogeography of the common beech (Fagus sylvatica L.) in Europr. Evolution, 1996, 50: 2515-2520.
    
    54. Demesure B, Sodzi N, Petit RJ. A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. Molecular Ecology, 1995, 4:129-131.
    
    55. Dover GA. Cnocerted evolution, molecular drive and natural selection. Current Biology, 1994, 4:1165.
    
    56. Dover GA. Molecular drive: a cohesive mode of species evolution. Nature, 1982,299:111-117.
    
    57. Doyle JJ, Doyle JL, Brown ADH, Pfeil BE. Confirmation of shared and dibergent genomes in the Glycine tabacina polyploid complex (Leguminosae) using histone H3-D sequences. Systematic Botany, 2000,25:437-448.
    
    58. Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissue.Phytochemical Bulletin, 1987,19:11-15.
    
    59. Drossou A, Katsiokis A, Leggett JM, Loukas M, Tsakas S. Genome and species relationships in genus Avena based of RAPD and AFLP molecular markers. Theoretical and Applied Genetics, 2004,109: 48-54.
    
    60. Dumolin S, Demesure B, Fineschi S. Phylogeographic structure of white oaks throughout the European continent. Genetics, 1997,146:1475-1487.
    
    61. Dumolin S, Demesure B, Petit RJ. Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method. Theoretical and Applied Genetics,1995,91: 1253-1256.
    
    62. Elder JF, Turner BJ. Concerted evolution of repetitive DNA sequences in eukaryotes. The Quarterly Review of Biology, 1995,70 (3): 297-320.
    
    63. Ennos RA, Sinclair WT, Hu XS, Langdon A. Using organelle markers to elucidate the history,ecology and evolution of plant populations. In: Hollingsworth PM, Bateman RM, Gornall RJ (Eds.),Molecular Systematics and Plant Evolution of Plant Populations Taylor & Francis Ltd. London,1999, 1-19.
    
    64. Fabijanski S, Fedak G, Armstrong K, Altosaar I. A repeated sequence probe for the C genome in Avena (Oats). Theoretical and Applied Genetics, 1990,79:1-7.
    
    65. Fahima T, R6der MS, Grama A, Nevo E. Microsatellite DNA polymorphism divergence in Triticum dicoccoides accessions highly resistant to yellow rust. Theoretical and Applied Genetics, 1998, 96:187-195.
    
    66. Fahima T, RSder MS, Wendehake K, Kirzhner VM, Nevo E. Microsatellite polymorphism in natural populations of wild emmer wheat, Triticum dicoccoides, in Israel. Theoretical and Applied Genetics,2002, 104:17-29.
    
    67. Feliner GN, Larena BG, Aguilar JF. Fine-scale geographical structure, intra-individual polymorphism and recombination in nuclear ribosomal internal transcribed spacers in Armefia (Plumbaginaceae). Annals of Botany, 2004,93:189-200.
    
    68. Felsenstaein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 1985,39:783-791.
    
    69. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution, 1981,17: 368-376.
    
    70. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology.Systematic zoology, 1971, 20: 406-416.
    
    71. Flannery ML, Mitchell FJG, Coyne S, Kavanagh TA, Broke JI, Salamin N. Dowding P, Hodkinson TR. Plastid genome characterization in Brassica and Brassicaceae using a new set of nine SSRs.Theoretical and Applied Genetics, 2006,113:1221-1231.
    
    72. Flavell RB, Rimpau J, Smith DB. Repeated sequence DNA: Relationships in four cereal genomes.Chromosoma, 1977,63:205-222.
    
    73. Fofana B, Baudoin JP, Vekemans X. Molecular evidence for an Andean origin and a secondary gene pool for the Lima bean (Phaseolus lunatus L.) using chloroplast DNA. Theoretical and Applied Genetics, 1999,98:202-212.
    
    74. Fominaya A, Hueros G, Loarce Y, Ferrer E. Chromosomal distribution of a repeated DNA sequence from C-genome heterochromatin and the identification of a new ribosomal DNA locus in the Avena genus. Genome, 1995, 38, 548-557.
    
    75. Fominaya A, Vega C, Ferrer E. C-banding and nucleolar activity of tetraploid Avena species.Genome, 1988b, 30:633-638.
    
    76. Fominaya A, Vega C, Ferrer E. Giemsa C-banded karyotypes of Avena species. Genome, 1988a, 30:627-632.
    
    77. Franzke A, Hurka H. Molecular systematics and biogeography of the Cardamine pratensis complex (Brassicaceae). Plant Systematics and Evolution, 2000, 224 (3): 213-234.
    
    78. Frolich MW, Parker DS. The mostly male theory of flowers evolutionary origins: from genes to fossils. Systematic Botany, 2000,25:155-170.
    
    79. Frolich MW, Meyerowitz EM. The search for flower homeotic gene homologues in basal angiosperns and getales: a potential new source of data on the evolutionary origin of flowers. Plant Science, 1997, 158: 131-142.
    
    80. Fuertes AJ, Rosell6 JA, Nieto FG. Nuclear ribosomal DNA (nrDNA) concerted evolution in natural and artiWcial hybrids of Armeria (Plumbaginaceae). Molecular Ecology, 1999, 8 (8):1341-1346.
    
    81. Fulnecek J., Lim K.Y., Leitch A.R., Kovarik A. and Matyasek R. Characterization of two families of 5S rDNA in allotetraploid Nicotiana tabacum show a lack of genetic interaction between parental loci. Heredity, 2002, 88: 19-25.
    
    82. Gana M, Hemleben V. Comarison of ribosomal RNA genes in four closely related Cucurbitaceae.Plant Systematics and Evolution, 1986,154:63-77.
    
    83. Gao LF, Tang JF, Li HW, Jia JZ. Analysis of microsatellites in major crops assessed by computational and experimental approaches. Molecular Breeding, 2003,12:245-261.
    
    84. Gaut BS. Evolutionary dynamics of grass genomes. New Phytologist, 2002, 154: 15-28.
    
    85. Gauthier FM and McGinnis RC. The association of 'kinky' neck with chromosome 20 of Avena sativa L. Canadian Journal of Genetics and Cytology, 1965,10:186-189.
    
    86. Ge S, Sang T, Lu BR, Hong DY. Phylogeny of rice genomes with emphasis on origins of allotetraploid species. Proceedings of the National Academy of Sciences of USA, 1999, 96:14400-14405.
    
    87. Ge S, Sang T, Lu BR, Hong DY. Rapid and reliable identification of rice genomes by RFLP analysis of PCR-amplification Adh genes. Genome, 2001,44:1136-1142.
    
    88. Gerbi SA. Evolution of ribosomal DNA. In: Macintyre RJ ed. Molecular Evolution Genetics. New York: Plenum. 1985,419-517.
    
    89. Gerlach WL, Dyer TA. Sequence organization of the repeating units in the nucleus of wheat which contain 5S rRNA genes. Nucleic Acids Research, 1980, 8:4851-4865.
    
    90. Goldman N. Statistical tests of models of DNA substitution. Journal of Molecular Evolution, 1993,36: 182-198.
    
    91. Goldsbrough PB, Ellis THN, Lomonossoff GP. Sequence variation and methylation of the Flax 5S rRNA genes. Nucleic Acids Research, 1982,10:4501-4514.
    
    92. Gorman SW, Teasdale RD, Cullis CA. Structure and organization of the 5S rRNA genes (5S DNA) in Pinus radiata (Pinaceae). Plant Systematics and Evolution, 1992, 183:223-234.
    
    93. Grebenstein B, R5ser M, Sauer W, Hemleben V. Molecular phylogenetic relationships in Aveneae (Poaceae) species and other grasses as inferred from ITS1 and ITS2 rDNA sequences. Plant Systematics and Evolution, 1998,213:233-250.
    
    94. Grisebach. Spicil flora Rumel. II, 1844,1-452.
    
    95. Grob GBJ, Gravendeel B, Eurlings MCM. Potential phylogenetic utility of the nuclear FLORICAULA/LEAFY second intron: comparison with three chloroplast DNA regions in Amorphophallus (Araceae). Molecular Phylogenetics and Evolution, 2004,30: 13-24.
    
    96. Guarino L, Chadja H, Mokkadem A. Collection of Avena macrostachya Bal. ex Coss. et Dur.(Poaceae) Germplasm in Algeria. Economic Botany, 1991,45: 460-466.
    
    97. Guo YL, Ge S. Molecular phylogeny of Oryzeae (Poaceae) based on DNA sequences from chloroplast, mitochondrial, and nuclear genomes. American Journal of Botany, 2005, 92(9):1548-1558.
    
    98. Gupta PK, Balyan HS, Edwarda KJ, Isaac P, Korzun V, R(?)der MS, Gautier MF, Joudrier P, Schlatter AR, Dubcovsky J, De la Pena, RC, Khairallah M, Penner G, Hayden MJ, Sharp P, Keller B, Wang RCC, Hardouin JP, Jack P, Leroy P. Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theoretical and Applied Genetics, 2002,105: 413-422.
    
    99. Gupta PK, Giband M, Altosaar I. Two molecular probes characterizing the A and C genomes in the genus Avena (oats). Genome, 1992, 35:916-920.
    
    100. Hamby RK, Zimmer EA. Ribosomal RNA as a phylogenetic tool in plant systematics. In: Soltis PS,Soltis DE, Doyle JJ. eds. Molecular Systematics Plants. New York: Chapman and Hall. 1992,50-101.
    
    101. Hao G, Yuan YM, Hu CM, Ge XJ, Zhao NX. Molecular phylogeny of Lysimachia (Myrsinaceae) based on chloroplast trnL-F and nuclear ribosomal ITS sequences. Molecular Phylogenetics and Evolution, 2004, 31: 323-339.
    
    102. Haussknecht C. Uber die Abstammung des Saathabers. Mitteil. d. geogr. Gesellsch. (Thur.) Jena III.1885,231-242.
    103. Hendy MD, Penny D. Branch and bound algorithms to determine minimal evolutionary trees. Mathematical Biosciences, 1982, 59:277-290.
    
    104. Hershkovitz MA, Zimmer EA, Hahn WJ. Ribosomal DNA sequences and angiosperm systematics.In: Hollingsworth PM, Bateman RM, Gornall RJ, eds. Molecular systematics and plant evolution.London, UK: Taylor & Francis, 1999,268-326.
    
    105. Hilu KW, Alice LA. Evolutionary implications of matK indels in Poaceae. American Journal of Botany, 1999, 86(12): 1735-1741.
    
    106. Hilu KW, Liang H. The matK gene: Sequence variation and application in plant systematics.American Journal of Botany, 1997,84: 830-839
    
    107. Holwerda BC, Jana S, Crosby W. Chloroplast and mitochondrial DNA variation in Hordeum vulgar and Hordeum spontaneum. Genetics, 1986,114:1270-1291.
    
    108. Hoot SB, Taylor WC, Napier NS. Parental species of Isoetes allotetraploids, including "dead-beat"parents. Botany, 2001, Albuquerque, NM. http://www.botany2001.org/section11/abstracts/14.shtml
    
    109. Hoot SB, Taylor WC. The utility of nuclear ITS, & LEAFY homolog intron, and chloroplast atpB-rbcL spacer region data in phylogenetic analyses and species delimitation in Isoetes. American Fern Journal, 2001,91:166-177.
    
    110. Hoppe HD, Pohler W. Successful Hybridization between Avena prostrata and Avena macrostachya.Cereal Research Communications, 1988,16:231-235.
    
    111. Howarth DG, Baum DA. Comparing three variable nuclear intron regions and nrDNA ITS to determine the phylogenetic history and a possible hybrid origin in a closely related Hawaiian clade in Scaevola (Goodeniaceae). Botany 2002, Madison, WI.http://www.botany2002.org/sectionl2/abstracts/164.shtml
    
    112. Howarth DG, Baum DA. Gencalogical wbidence of homoploid hybrid speciation in an adaptive radiation of Scaevola (Goodenraceae) in the Hawarran islands. Evolution, 2005, 59: 948-961.
    
    113. Hsiao C, Chatterton NJ, Asay KH, Jensen KB. Molecular phylogeny of the Pooideae (Poaceae) based on nuclear rDNA (ITS) sequences. Theoretical and Applied Genetics, 1995a, 90:389-398.
    
    114. Hsiao C, Chatterton NJ, Asay KH, Jensen KB. Phylogenetic relationships of the monogenomic species of the wheat tribe, Triticeae (Poaceae), inferred from nuclear rDNA (internal transcribed spacer) sequences. Genome, 1995b, 38: 221-223.
    
    115. Huang XQ, B6rner AB, R6der MS, Ganal MW. Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers. Theoretical and Applied Genetics, 2002, 105:699-707.
    
    116. Hutchinson J, Postoyko J. C-Banding of Avena Species, Genetic Manipulation in Plant Breeding: Proc. Int. Symp., EUCARPIA, Berlin, 1986, 157-160.
    
    117. Irigoyen ML, Ferrer E, Loarce Y. Cloning and characterization of resistance gene analogs from Avena species. Genome, 2006,49: 54-63.
    
    118. Irigoyen ML, Linares C, Ferrer E, Fominaya A Fluorescence in situ hybridization mapping of Avena sativa L. cv. SunII and its monosomic lines using cloned repetitive DNA sequences. Genome, 2002,45:1230-1237.
    
    119. Irigoyen ML, Loarce Y, Linares C, Ferrer E, Leggett M, Fominaya A. Discrimination of the closely related A and B genomes in AABB tetraploid species of Avena. Theoretical and Applied Genetics,2001,103:1160-1166.
    120. Jellen EN, C-Banding of Avena macrostachya, http://pas.byu.edu/Faculty/enj/oatsite/aventaxa.htm.
    
    121. Jellen EN, Gill BS, Cox TS. Genomic in situ hybridization differentiates between A/D- and C-genome chromatin and detects intergenomic translocations in polyploid oat species (genus Avena). Genome, 1994a, 37:613-618.
    
    122. Jellen EN, Ladizinsky G Giemsa C-banding in Avena insularis Ladizinsky. Genetic Resources and Crop Evolution, 2000,47: 227-230.
    
    123. Jellen EN, Philips RL, Rines HW. Chromosomal localization and polymorphisms of ribosomal DNA in oat (Avena spp.). Genome, 1994b, 37: 23-32.
    
    124. Jellen EN, Phillips RL, Rines HW. C-banded karyotypes and polymorphisms in hexaploid oat accessions (Avena. spp.) using Wright's stain. Genome, 1993,36:1129-1137.
    
    125. Jessen CFW. Deutschland Graser und Getreidearten. Leipzig. 1863,214-218.
    
    126. Johnson LA, Solties DE. matK DNA sequences and phylogenetic reconstruction in Saxifragaceae s.str. Systematic Botany, 1994,19: 143-156.
    
    127. Johnson LA, Solties DE. Phylogenetic inference in Saxifragaceae sensu stricto and Gilia (Polemoniaceae) using matK sequences. Annals of the Missouri Botanical Garden, 1995, 82:149-175.
    
    128. Jukes T. Kantor CR. Evolution of protein molecules. In Mammalian protein metabolism, edited by Munro, H.N., New York, Academic Press. 1969, 21-132.
    
    129. Katsiokis A, Schmidt T, Heslop-Harrison JS. Chromosomal and genomic organization of Tyl-copia-like retrotransposon sequences in the genus Avena. Genome, 1996,39:410-417.
    
    130. Katsiotis A, Hanneman RE Jr, Forsberg RA. Endosperm balance number and the polar-nuclei activation hypothesis for endosperm development in interspecific crosses of Solanaceae and Gramineae, respectively. Theoretical and Applied Genetics, 1995,91:848—855.
    
    131. Katsiotis A, Loukas M, Heslop-Harrison JS. Repetitive DNA, genome and species relationships in Avena and Arrhenatherum (Poaceae). Annals of Botany, 2000, 86: 1135-1142.
    
    132. Katsiotis A, Loukas M, Heslop-Harrison JS. The close relationship between the A and B genomes in Avena L. (Poaceae) determined by molecular cytogenetic analysis of total genomic, tandemly and dispersed repetitive DNA sequences. Annals of Botany, 1997,79:103-109.
    
    133. Kelchner SA. The evolution of non-coding chloroplast DNA and its application in plant systematics.Annals of the Missouri Botanical Garden, 2000,87:482-498.
    
    134. Keller I, Chintauan-Marquier IC, Veltsos P, Nichols RA. Ribosomal DNA in the Grasshopper Podisma pedestris: Escape From Concerted Evolution. Genetics, 2006,174: 863-874.
    
    135. Kellogg EA , Appels R. Intraspecific and interspecific variation in 5S RNA gene are decoupled in diploid wheat relatives. Genetics, 1995, 140: 325-343.
    
    136. Kenneth MC, Mark WC, Willima RA. Molecular systematics of Malpighiaceae: evidence from plastid rbcL and matK sequences. American Journal of Botany, 2001, 88: 1847-1862.
    
    137. Khidir WH, Lawrence AA. Evolutionary implications of matK indels in Poaceae. American Journal of Botany, 1999, 86:1735-1741.
    
    138. Khidir WH, Thomas B, Kai Mr. Phylogeny based on matK sequence information. American Journal of Botany, 2003, 90:1758-1776.
    
    139. Kihara H. Zytologische und genetische Studien bei wichiti-gen Getreidearten mit besonderer Rucksicht auf das Verhalten der Chromosomen und die Sterilitat in den Bastarden. Mem. Coll. Sci.Kyoto Imp. Univ. B, 1924, 1-200.
    
    140. Kim KJ, Jansen RK. Comparisons of phylogenetic hypotheses among different data set in dwarf dandelions (Krigia, Asteraceae): Additional information from internal transcribed spacer sequences ofnuclearribosomal DNA. Plant Systematics and Evolution, 1994,190:157-185.
    
    141.Kimura M. A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 1980,16:111-120.
    
    142. Koch C. Beitrage zu einer Flora des Orientes. Linneaea. XXI, 1848,289-443.
    
    143. Koch MA, Dobes C, Mitchell-Olds T. Multiple hybrid formation in natural populations: Concerted evolution of the internal transcribed spacer of nuclear ribosomal DNA (ITS) in North American Arabis divaricarpa (Brassicaceae). Molecular Biology and Evolution, 2003,20: 338-350.
    
    144. Kovarik A, Matyasek R, Lim KY, Skalicka K, Koukalova B. Concerted evolution of 18-5.8-26S rDNA repeats in Nicotiana allotetraploids. Biological Journal of the Linnean Society, 2004, 82:615-625.
    
    145. Kron KA. Phylogenetic relationshios of Rhododendroideae (Ericaceae). American Journal of Botany, 1997,84:973-980.
    
    146. Kshirsagar AM. Multivariate analysis. Marcel Dekker, New York. 1972.
    
    147. Kumar S, Tamura K, Nei M. MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Briefings in Bioinformatics, 2004, 5:150-163.
    
    148. Kummer M, Miksh G. Successful hybridisation between species Avena pilosa M. Bied. and Avena magna Murphy et Terrell. Cereal Research Communications, 1977, 5 (3): 249-254.
    
    149. Kyozuka J, Konishi S, Nemoto K, Izawa T, Shimamoto K. Down-regulation of RFL, the FLO/LFY homolog of rice, accompanied with panicle branch initiation. Proceedings of the National Academy of Sciences of USA, 1998,95:1979-1982.
    
    150. Lachenbruch PA, Mickey MA. Estimation of error rates in discriminant analysis. Technometrics,1968, 10: 1-10.
    
    151. Ladizinsky G, Fainstein R. Intergression between the cultivated hexaploid oat A. sativa and the tetraploid wild A. magna and A. murphyi. Canadian Journal of Genetics and Cytology, 1977, 19:59-60.
    
    152. Ladizinsky G, Zohary D. Notes on species delimitation, species relationships and polyploidy in Avena. Euphytica, 1971,20: 380-395.
    
    153. Ladizinsky G A new species of Avena from Sicily, possibly the tetraploid progenitor of hexaploid oats. Genetic Resources and Crop Evolution, 1998,45:263-269.
    
    154. Ladizinsky G. Cytogenetic relationships between Avena insularis (2n=28) and both A. strigosa (2n=14) and A. murphyi (2n=28). Genetic Resources and Crop Evolution, 1999,46: 501-504.
    
    155. Ladizinsky G. Domestication via hybridization of the wild tetraploid oats Avena magna and A.murphyi. Theoretical and Applied Genetics, 1995,91: 639-646.
    
    156. Ladizinsky G. Genetic control of bivalent pairing in the Avena strigosa polyploid complex,Chromosoma, 1973,42:105-110
    
    157. Ladizinsky G. New evidence on the origin of the hexaploid oats. Evolution, 1969,23:676-684.
    
    158. Leggett JM, Markhand GS. In Aberystwyth Cell Genetics Group 7th Annual Conference (Institute of Grassland and Environmental Research, Aberystwyth, U.K.), 1997,45.
    
    159. Leggett JM, Markhand GS. The genomic structure of Avena revealed by GISH. In: Brandham PE, Bennett MD, eds. Kew Chromosome Conference IV, UK: HMSO, 1995,133-139.
    
    160. Leggett JM, Thomas H. Oat evolution and cytogenetics. In The oat crop: production and utilization.Edited by R.W. Welch. Chapman and Hall, London, UK. 1995.
    
    161. Leggett JM. A new triploid hybrid between Avena eriantha and A. macrostachya Cereal Research Communications, 1990,18:97-101.
    
    162. Leggett JM. Chromosome relationships and morphological comparisons between the diploid oats A.prostrata, A. canarienseis, and the tetraploid A. maroccana. Canadian Journal of Genetics and Cytology, 1980, 22: 287-294.
    
    163. Leggett JM. Classification and speciation in Avena. In Oat science and technology. Edited by H.G.Marshall and M.E. Sorrells. American Society of Agronomy, Inc., and Agronomy and Crop Science Society of America, Inc., Madison, Wis. 1992,29-52.
    
    164. Leggett JM. Cytoplasmic substitutions involving six Avena species. Canadian Journal of Genetics and Cytology, 1984, 26: 698-700.
    
    165. Leggett JM. Interspecific diploid hybrids in Avena. Genome, 1989, 32(2): 346-348.
    
    166. Leggett JM. Studies on species relationships in the genus Avena L.Ph.D. thesis. Univ. of Wales(Aberystwyth). 1987.
    
    167. Leggett JM. Using and conserving Avena genetic resources. In G.J. Scoles and B.G. Rossnagel (ed.)Barley Chromosome Coordinators' Workshop at the V International Oat Conference & VII International Barley Genetics Symposium, Saskatoon, Saskatchewan, Canada, 31 July 1996.University of Saskatchewan. 1996,128-132.
    
    168. Lewis H. Speciation in flowering plants. Science, 1966, 152:167-172.
    
    169. Li CD, Rossnagel BG, Scoles GJ. The development of oat microsatellite markers and their use in identifying relationships among Avena species and oat cultivars. Theoretical and Applied Genetics,2000a, 101: 1259-1268.
    
    170. Li CD, Rossnagel BG, Scoles GJ. Tracing the phylogeny of the hexaploid oat Avena sativa with satellite DNAs. Crop Science, 2000b, 40:1755-1763.
    
    171. Li WT, Peng YY, Wei YM, Baum BR, Zheng YL. Relationship among Avena species as revealed by consensus chloroplast simple sequence repeat (ccSSR) markers. Genetic Resources and Crop Evolution, 2008. DOI 10.1007/sl0722-008-9379-x
    
    172. Liang H, Hilu KW. Application of the matK gene sequences to grass systematics. Canadian Journal of Botany, 1996,74:125-134.
    
    173. Linares C, Ferrer E, Fominaya A. Discrimination of the closely related A and D genomes of the hexaploid oat Avena sativa L. Proc. Natl. Acad. Sci. USA. Genetics, 1998,95: 12450-12455.
    
    174. Linares C, G6nzalez J, Ferrer E, Fominaya A. The use of double FISH to plysically map the positions of 5S rDNA genes in relation to the chromosomal location of 18S-5.8S-26S rDNA and a C genome specific DNA sequence in the genus Avena. Genome, 1996, 39: 535-542.
    
    175. Linares C, Vega C, Ferrer E, Fominaya A. Identification of C-banded chromosomes in meiosis and the analysis of nucleolar activity in Avena byzantina C. Koch cv 'Kanota'. Theoretical and Applied Genetics, 1992,83: 650-654.
    176. Linneaus C. Species Plantarum. Ed.2. London. 1762,118.
    
    177. Linneaus C. Species Plantarum. v.1. A facsimile of the first edition. 1753.
    
    178. Liu Q, Ge S, Tang H, Zhang X, Zhu G, Lu BR. Phylogenetic relationships in Elymus (Poaceae: Triticeae) based on the nuclear ribosomal internal transcribed spacer and chloroplast trnL-F sequences. New Phytologist, 2006,170:411-420.
    
    179. Liu XM, Smith CM, Gill BS. Identification of microsatellite markers linked to Russian wheat aphid resistance genes Dn4 and Dn6. Theoretical and Applied Genetics, 2002,104: 1042-1048.
    
    180. Livshultz T. Comparative morphology and developmentof stamina; coronas in Dischidia (Asclepiadoideae, Apocynaceae). Botany 2002, Madison, WI.http://www.botany2002.Org/section2/abstracts/31.shtml
    
    181. Long EO, Daw IDIB. Repeated genes in enkaryotes. Annual Review of Biochemistry, 1980,43:727-764.
    
    182. Loskutov IG. Interspecific Crosses in the Genus Avena L. Russian Journal of Genetics, 2001,37 (5):467-475.
    
    183. Loskutov IG. On evolutionary pathways of Avena species. Genetic Resources and Crop Evolution,2008,55:211-220.
    
    184. Loskutov IG. On the taxonomy of genus Avena L. Proc. XVI International Botanical Congress,USA. 1999,422.
    
    185. Loskutov IG. Species Diversity and Breeding Potential of the Genus Avena L., Extended Abstract of Doctoral (Biol.) Dissertation, St. Petersburg, 2003.
    
    186. Loudet O, Chaillou S, Camilleri C, Bouchez D, DanielVedele F. Bay-0× Shahdara recombinant inbred line population: a powerful tool for the genetic dissection of complex traits in Arabidopsis. Theoretical and Applied Genetics, 2002,104:1173-1184.
    
    187. Maddison WP, Maddison DR. Mesquite: a modular system for evolutionary analysis. Version 1.12 http://mesquiteproject.org, 2006.
    
    188. Maizels N. Dictyostelium 17S , 25S , and 5S rDNAs lie within a 38000 base pair repeated unit. Cell,1976,9:431-438.
    
    189. Malzew AI, Ovsyugiiovsy (Wild and Cultivated Oats), Leningrad, 1930.
    
    190. Mansion G, Struwe L. Generic delimitation and phylogenetic relationships within the subtribe Chironiinae (Chironieae: Gentianaceae), with special reference to Centaurium: evidence from nrDNA and cpDNA sequences. Molecular Phylogenetics and Evolution, 2004,32:951-977.
    
    191.Margush T, McMorris FR. Consensus n-trees. Bulletin of Mathematical Biology, 1981, 43:239-244.
    
    192. Marshall DR, Bieberstein VD. Flora Taur.- Cauc. III. Suppl. 1819,84.
    
    193. Mason-Gamer RJ, Orme NL, Anderson CM. Phylogenetic analysis of North American Elymus and the monogenomic Triticeae (Poaceae) using three chloroplast DNA data sets. Genome, 2002, 45:991-1002.
    
    194. Mason-Gamer RJ. Origin of North American Elymus (Poaceae: Triticeae) allotetraploids based on granule-bound starch synthase gene sequences. Systmatic Botany, 2001,26: 757-768.
    
    195. Mason-Gamer RJ. Reticulate evolution, introgression, and intertribal gene capture in an allohexaploid grass. Systematic Biology, 2004, 53: 25-37.
    196. Mast A, Feller DS, Schoenenberger J, Kelso S, Lang D, Conti E. Implication of a seven-region cpDNA phylogeny and a micro-morphological survey to our understanding of floral evolution shooting stars (Dodecatheon)and their closest relatives among the primroses (Primula:Primulaceae). Botany, 2002, Madison, WI. http://www.botany2002.org/section12/abstracts/46.shtml
    
    197. Ma XF, Wanous MK, Houchins K, Rodriguezmila MA, Goicoechea PG, Wang Z, Xie M, Gustafson JP. Molecular linkage mapping in rye (Secale cereale L). Theoretical and Applied Genetics, 2001,102:517-523.
    
    198. Matsuoka Y, Mitchell SE, Kresovich S, Goodman M, Doebley J. Microsatellite in Zea-variability,patterns of mutations, and use for evolutionary studies. Theoretical and Applied Genetics, 2002,104:436-450.
    
    199. McCauley DE. Contrasting the distribution of chloroplast DNA and allozyme polymorphism among local populations of Silene alba: implications for studies of gene flow in plants. Proceedings of the National Academy of Sciences of USA, 1994,91: 8127-8131.
    
    200. Mogensen HL. The hows and whys of cytoplasmic inheritance in seed plants. American Journal of Botany, 1996, 83: 383-404.
    
    201. Mohany A, Martin JP, Aguinagalde I. Chloroplast DNA diversity within and among potulations of the allotetraploide Prunus spinosa L. Theoretical and Applied Genetics, 2000,100:1304-1310.
    
    202. Moran GF, Smith D, Bell JC, Appels R. The 5S rRNA genes in Pinus radiata and the spacer region as a probe for relationships between Pinus species. Plant Systematics and Evolution, 1992,183:209-221.
    
    203. Murai K, Tsunewaki K. Phylogenetic relationship between Avena species revealed by the restriction endonuclease analysis of chloroplast and mitochondrial DNAs. In proceedings of the 2nd international oats conference. Edited by DA Lawes and H. Thomas. Martinus Nijhoff Dordrecht,1986, 34-38.
    
    204. Murai K, Tsunewaki K. Chloroplast genome evolution in the genus Avena. Genetics, 1987, 116:613-621.
    
    205. Napier NS, Hoot SB, Taylor WC. Unraveling a tangled web: hybrids and allopolyplid origins in Isoetes. Botany, 2002, Madison, WI. http://www.botany2002.org/sectionl2/abstracts/134.shtml
    
    206. Nei M. Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences of USA, 1973,70: 3321-3323.
    
    207. Nei M, Li WH. Mathematical model for studying genetic variation in terms of restriction endonucleas. Proceedings of the National Academy of Sciences of USA, 1979,76: 5269-5273.
    
    208. Neuhaus H, Link G The chloroplast tRNA~(lys) (UUU) gene from mustard (Sinapis alba) contains a class II intron potentially coding for a maturase-related polypeptide. Current Genetics, 1987,11(4):251-257.
    
    209. Nikoloudakis N, Katsiotis A. The origin of the C-genome and cytoplasm of Avena polyploids.Theoretical and Applied Genetics, 2008,117(2): 273-281.
    
    210. Nikoloudakis N, Skaracis G, Katsiotis A. Evolutionary insights inferred by molecular analysis of the ITS1-5.8S-ITS2 and IGS Avena sp. sequences. Molecular Phylogenetics and Evolution, 2008, 46:102-115.
    
    211. Nishiyama I, Yabuno T. Meiotic chromosome pairing in two interspecific hybrids and a criticism of the evolutionary relationship of diploid Avena. Japanese Journal of Genetics, 1975, 50: 443-451.
    212. Nishiyama I. Climate influence on pollen formation and fertilization. In: Tsunoda S, Takahashi N,editors. Biology of rice. Amsterdam (Netherlands): Elsevier, 1984,153-171.
    
    213. Nishiyama I. Interspecific cross-incompatibility system in the genus Avena. Curtis's Botanical Magazine, 1984,97:219-231.
    
    214. Niu W, Zhang DM. Evolution of 5S rRNA Genes in Ophiopogon xylorrhizus Wang et Dai and O.sylvicola Wang et Tang (Convallariaceae). Acta Botanica Sinica, 2002,44 (3): 329-336
    
    215. Nocelli E, Giovannini T, Bioni M, Alicchio R. RFLP- and RAPD-based genetic relationships of seven diploid species of Avena with the A genome. Genome, 1999,42:950-959.
    
    216.O'Donoughue LS, Kianian SF, Rayapati PJ, Penner GA, Sorrells M E, Tanskley SD, Phillips R L, Rines HW, Lee M, Fedak G. A molecular linkage map of cultivated oat. Genome, 1995, 38:368-380
    
    217.O'Kane SL Jr, Schaal BA, Al-Shehbaz I. The origin of Arabidopsis suecica (Brassicaceae) as indicated by nuclear rDNA sequences. Systematic Botany, 1996,21: 559-566.
    
    218. Oh S-H, Potter D. Molecular phylogenetic systematics and biogeography of tribe Neillieae (Rosaceae) using DNA sequences of cpDNA, rDNA and LEAFY. American Journal of Botany, 2005,92: 179-192
    
    219. OH S-H, Potter D. Phylogenetic relationships in the tribe Neillieae (Rosaceae) inferred from DNAsequences.Botany, 2001, Albuquerque, NM.http://www.botany2001.org/section12/abstracts/113.shtml
    
    220. Oh S-H, Potter D. Phylogenetic utility of the second intron of LEAFY in Neillia Stephanandra (Rosaceae) and implications for the origin of Stephanandra. Molecular Phylogenetics and Evolution, 2003,29 (2): 203-215
    
    221. OH S-H, Potter D. Phylogeny and biogeography of the genus Physocarpus (Rosaceae: Neillieae) inferred from DNA sequences. Botany, 2002, Madison, WI.http://www.botany2002.Org/sympos13/abstracts/4.shtml
    
    222. Oinuma T.Karyomorphology of cereals. Biological Journal of Okayama University, 1952,1:12-71.
    
    223. Olmstead RG, Palmer JD. Chloroplast DNA systematics: a review of methods and data analysis.American Journal of Botany, 1994, 81: 1205-1224.
    
    224. Palmer JD. Evolution of chloroplast and mitochondrial DNA in plants and algae. In "Monographs in Evolutionary Biology: Molecular Evolutionary Genetics", MacIntryre, R. J. (ed.), Plenum Publishing Corp., New York, NY, 1985,131-240.
    
    225. Panda S, Martin JP, Aguinagalde I. Chloroplast and nuclear DNA studies in a few members of the Brassica oleracea L. group using PCR-RFLP and ISSR-PCR markers: a population genetic analysis.Theoretical and Applied Genetics, 2003,106:1122-1128.
    
    226. Parani M, Lakshmi M, Ziegenhagen B, Fladung M, Senthilkumar P, Parida A. Molecular phylogeny of mangrove VH. PCR-RFLP of trnS-psbC and rbcL gene regions in 24 mangrove and mangrove-associate species. Theoretical and Applied Genetics, 2000,100:454-460.
    
    227. Parani M, Rajesh K, Lakshmi M. Species identification in seven small millet species using polymerase chain reaction-restriction fragment length polymorphism of trnS-psbC gene region.Genome, 2001, 44: 495-499.
    
    228. Parducci L, Szmidt AE. PCR-RFLP analysis of cpDNA in the genus Abies. Theoretical and Applied Genetics, 1999,98: 802-808.
    229. Peng YY, Wei YM, Baum BR, Zheng YL. Molecular diversity of 5S rDNA gene and genomic relationships in genus Avena (Poaceae: Aveneae). Genome, 2008,51,137-154.
    
    230. Perchuk IN, Loskutov IG, Okuno K. Study of the species diversity in oat by means of RAPD analysis. Agrarn Ross, 2002.3:4144.
    
    231. Petit RJ, Demesure B, Dumolin-Lapegue S. CpDNA and plant mtDNA primers. In: Karp A., P.G.Isaac & D. Ingram (eds), Molecular tools for screening biodiversity: Plants and Animals. Chapman& Hall. 1996.
    
    232. Pohler W, Hoppe HD. Homoeology between the chromosomes of Avena macrostachya and the Avena C genome. Plant Breeding, 1991,106:250-253.
    
    233. Popp M, Oxelman B. Inferring the history of the polyploid Silene aegaea (Caryophyllaceae) using plastid and homoeologous nuclear DNA sequences. Molecular Phylogenetics and Evolution, 2001,20:474-481.
    
    234. Posada D, Crandall KA. Modeltest: testing the model of DNA substitution. Bioinformatics, 1998,14:817-818.
    
    235. Potter D, Luby JJ, Harrison RE. Phylogenetic relationships among species of Fragaria (Rosaceae) inferred from non-coding nuclear and chloroplast DNA sequences. Systematic Botany, 2000,25(2): 337-348.
    
    236. Powell W, Machray GC, Provan J. Polymorphism revealed by simple sequence repeats. Trends in Plant Science, 1996, 7:215-222.
    
    237. Provan J, Powell W, Hollingsworth PM. Chloroplast microsatellites: new tools for studies in plant ecology and evolution. Trends in Ecology and Evolution, 2001,16:142-147.
    
    238. Qiu YL, Lee J, Bemasconi-Quadroni DE, Soltis PS, Soltis M, Zanis EA, Zimmer Z, Chen Z,Savolainen V , Chase MW. The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes. Nature, 1999,402:404-407.
    
    239. Rajhathy T, Morrison JW. Chromosome morphology in the genus Avena. Canadian Journal of Botany, 1959,37:331-337.
    
    240. Rajhathy T, Thomas H. Chromosomal Differentiation and Speciation in Diploid Avena: III.Mediterranean Wild Populations. Canadian Journal of Genetics and Cytology, 1967,9: 52-68.
    
    241. Rajhathy T, Thomas H. Cytogenetics of oats {Avena L.). Misc Publ Genet Soc Can (Miscellaneous Publication of the Genetics Society of Canada, Ottawa), 1974,2:1-90.
    
    242. Rajhathy T, Thomas H. Genetic control of chromosome pairing in hexaploid oats. Nature New Biology, 1972,239: 217-219.
    
    243. Rajhathy T, Zillinsky FJ, Hayes JD. A collection of wild oat species in the Mediterranean region.Ottawa Res. Sta. Pub. 1966,1-25.
    
    244. Rajhathy T. Evidence and hypothesis for the origin of the C genome of hexaploid Avena. Canadian Journal of Genetics and Cytology, 1966,8(4): 774-779.
    
    245. Rajhathy T. The chromosomes of Avena. In P.K. Gupta and T. tsuchiya (ed.) Chromosome engineering in plants: genetics, breeding, evolution. Elsevier Sci. Publishers, the Netherlands. 1991,447-465.
    
    246. Rajora OP, Dancik BP. Chloroplast DNA inheritance in Populus. Theoretical and Applied Genetics,1992, 84: 280-285.
    247.Rauscher JT,Doyle JJ,Brown AH.Multiple origins and nrDNA internal transcribed spacer homoeologue evolution in the Glycine tomentella(Leguminosae) allopolyploid complex.Genetics,2004,166:987-998.
    248.Reddy,P.R.and Appels,R.A second locus for the 5S multigene family in Secale L.:sequence divergence in two lineages of the family.Genome,1989,32:456-467.
    249.Rendell S,Ennos RAChloroplast DNA diversity of the dioecious European tree Ilex aquifolium L.(English holly).Molecular Ecology,2003,12:2681-2688.
    250.Rines HW,Gengenbach BG,Boylan KL,Storey KK Mitochondrial DNA diversity in oat cultivars and species.Crop Science,1988,28:171-176.
    251.Roalson EH,Columbus JT,Friar EA.Phylogenetic relationships in Cariceae(Cyperaceae) based on ITS(nrDNA) and trnT-L(cpDNA) region sequences:assessment of subgeneric and sectional relationships in Carex with emphasis on section Acrocystis.Systematic Botany,2001,26(2),318-341.
    252.R(o|¨)der MS,Korzun V,Wendehake K,Plaschke J,Tixier MH.Leroy P,Ganal MW.A microsatellite map of wheat.Genetics,1998,149:2007-2023.
    253.Rodionov AV,Tyupa NB,Kim ES,Machs EM,Loskutov IG.Genomic configuration of the autotetraploid oat species Avena macrostachya inferred from comparative analysis of ITS1 and ITS2 Sequences:on the oat karyotype evolution during the early events of the Avena species divergence.Russian Journal of Genetics,2005,41(5):518-528.
    254.Rodionova NA,Soldatov VN,Merezhko VE.in Kul'turnaya flora.Oves(Cultivated Flora:Oat),Moscow:Kolos,1994,2:part 3.
    255.Rogers SO,Bendich AJ.Ribosomal genes in plants,variability in copy number and in the intergenic spacer.Plant Molecular Biology,1987,9:509-520.
    256.Rohlf FJ.NTSYS-pc version 1.80.Distribution by Exeter Software,Setauket,New York.1993.
    257.Rohlf FJ.NTSYS-pc.Numerical taxonomy and multivariate analysis system,Version 2.1.Exeter Software,New York.2002.
    258.Roselyne L,Mathieu TD,Henri M,Aurelie S,Emilie I,Celine B,Celine M Phylogeographical variation of chloroplast DNA in Cork Oak(Quercus suber).Annals of Botany,2005,96:853-861.
    259.R(o|¨)ser M,Winterfeld G,Grebenstein B,Hemleben V.Molecular diversity and physical mapping of 5S rDNA in wild and cultivated oat grasses(Poaceae:Aveneae).Molecular Phylogenetics and Evolution,2001,21(2):198-217.
    260.R(o|¨)ser M.Patterns of Diversification in Mediterranean Oat Grasses(Poaceae:Aveneae),Lagascalia,1997,19:101-120.
    261.Rozas J,Sanchez-DelBarrio JC,Messeguer X,Rozas R.DnaSP,DNA polymorphism analyses by the coalescent and other methods-Bioinformatics,2003,19:2496-2497.
    262.Rubin GM,Suston JE.Physical linkage of the 5S cistrons to the 18S and 28S ribosomal RNA cistrons in Saccharomyces serevisiae.Journal of Molecular Biology,1973,76:521-530.
    263.Sadasivaiah RS,Rajhathy T.Genome relationships in tetraploid Avena.Canadian Journal of Genetics and Cytology,1968,10:655-669.
    264.Saitou N,Nei M.The neighbor-joining method:a new method for reconstructing phylogenetic trees.Molecular Biology and Evolution,1987,4:406-425.
    265. Sambrook J, Fritsch EF, Maniatis T . Molecular cloning: A laboratory manual. New York: Cold Spring Harbor Laboratory Press. 1989.
    
    266. Sanchez de la Hoz P, Fominaya A. Studies of isozymes in oat species. Theoretical and Applied Genetics, 1989,77:735-741.
    
    267. Sang T, Crawford DJ, Stuessy T. Chloroplast DNA phytogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). American Journal of Botany, 1997, 84: 1120-1136.
    
    268. Sang T, Crawford DJ, Sutessy TF. Documentation of reticulate evolution in Paeonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: implications for biogeography and concerted evolution. Proceedings of the National Academy of Sciences of USA,1995b, 92: 6813-6817.
    
    269. Sang T, Crawofrd D J, Sutessy T F. Chloroplast DNA phytogeny, reticulate evolution, and biogeography of Paeonies (Paeonia). American Journal of Botany, 1995a, 84:1120-1136.
    
    270. Sang T, Zhang DM. Reconstruction hybrid speciation using sequences of low copy nuclear genes:Hybrid origins of five Paeonia species based on Adh gene phytogenies. Systematic Botany, 1999,24: 148-163.
    
    271. Sang T. Utility of low-copy nuclear gene sequences in plant phylogenetics. Critical Reviews in Biochemistry and Molecular Biology, 2002, 37(3): 121-147.
    
    272. Sanguinelti CJ, Neto ED, Simpson AJG. Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. BioTechniques, 1994,17:915-919.
    
    273. SAS Institute Inc. SAS/STAT User's Guide, Version 6, Fourth edition. Vol. 2. Cary, NC. 1989.
    
    274. Sastri DC, Hilu K, Appels R, Lagudah ES, Playford J, Baum BR. An overview of evolution in plant 5S DNA. Plant Systematics and Evolution, 1992,183: 169-181.
    
    275. Schl(?)ter PM., Gudrun K, Stuessy TF, Paulus HF. A screen of low-copy nuclear genes rebeals the LFY gene as phylogenetically informative in closely related species of orchids (Ophrys). Taxon,2007, 56(2): 493-504.
    
    276. Schneeberger RG, Creissen GP, Cullis CA. Chromosomal and molecular analysis of 5S RNA gene organization in the flax, Linum usitatissiumum. Gene, 1989, 83: 75-84.
    
    277. Schneeberger RG, Cullis CA. Intraspecific 5S rRNA gene variation in flax, Linum usitatissiumum (Linaceae). Plant Systematics and Evolution, 1992,183:265-280.
    
    278. Scholz H. Die Systematik der Avena sterilis und A. fatua {Gramineae). Eine kritische Studie [The systematics of Avena sterilis and A. fatua (Gramineae). A critical study]. Willdenovia, 1991,20,103-112.
    
    279. Schultheis LM. Systematics of Downingia (Campanulaceae) based on molecular sequence data:implications for floral and chromosome evolution. Systematic Botany, 2001,26 (3): 603-621.
    
    280. Schultz EA, Haughn GW. LEAFY, a homeotic gene that regulates inflorescence development in Arabidopsis. The Plant Cell, 1991,3: 771-781.
    
    281. Seberg O, Petersen G. A critical review of concepts and methods used in classical genome analysis.The Botanical Review, 1998,64: 372-471.
    
    282. Sebesta J, Roderick HW, Stojanovic S, Zwatz B, Harder DE, Corazza L. Genetic basis of oat resistance to fungal diseases. Plant Protection Science, 2000,36:23-38.
    
    283. Shang HY, Baum BR, Wei YM, Zheng YL. The 5S rRNA gene diversity in the genus Secale and determination of its closest haplomes. Genetic Resources and Crop Evolution, 2007, 54(4):793-806.
    
    284. Shelukhina OIu, Badaeva ED, Loskutov IG, Pukhal'sky VA. A comparative cytogenetic study of the tetraploid oat species with the A and C genomes: A. insularis, A. maroccana and A. murphyi.Russian Journal of Genetics, 2007,43:613-626.
    
    285. Simmons MP, Ochoterena H. Gaps as characters in sequence-based phylogenetic analyses.Systematic Biology, 2000,49: 369-381.
    
    286. Simons MD, Sadanaga K, Murphy HC. Inheritance of resistance of strains of diploid and tetraploid species of oats to races of the crown rust fungus. Phytopathology, 1959,49:257-259.
    
    287. Small RL, Ryburn JA, Cronn RC, Seelanan T, Wendel JF. The tortoise and the hare: choosing between noncoding plastome and nuclear Adh sequences for phylogeny reconstruction in a recently diverged plant group. American Journal of Botany, 1998, 85(9): 1301-1315.
    
    288. Solano R, Hueros G, Fominaya A, Ferrer E. Organization of repeated sequences in species of the genus Avena. Theoretical and Applied Genetics, 1992,83:602-607.
    
    289. Soltis DE, Kuzoff RK, Conti E, Gornall R, Ferguson K. MATK and RBCL gene sequence data indicate that Saxifraga (Saxifragaceae) is polyphyletic. American Journal of Botany, 1996,83:371-382
    
    290. Soltis DE, Soltis PS, Nickrent DL, Johnson LA, Hahn WJ, Hoot SB, Sweere JA, Kuzoff RK, Kron KA, Chase MW, Swensen SM, Zimmer EA, Chaw S-M, Gillespie LJ, Kress WJ, Sytsma KJ.Angiosperm phylogeny inferred from 18S ribosomal DNA sequence. Annals of the Missouri Botanical Garden, 1997, 84:1-49.
    
    291. Soltis DE, Soltis PS, Tate JA. Advances in the study of polyploidy since Plant speciation. New Phytologist, 2003,161:173-191.
    
    292. Soltis DE, Soltis PS. Choosing an approach and an appropriate gene for phylogenetic analysis. In:Soltis DE, Soltis PS, and Doyle JJ. eds. Molesular Systematics Plants. II. DNA Sequencing. Boston:Kluwer Academy Publications. 1998,1-42.
    
    293. Soltis DE, Soltis PS, Milligan BG Intraspecific cpDNA variation: systematic and phylogenetic implications. In: Soltis PS, Soltis DE, Doyle JJ (Eds.), Molecular Systematics of Plants. Chapman & Hall, New York, 1992,117-150.
    
    294. Soltis PS, Soltis DE, Chase MW. Angiosperm phylogeny inferred from multiple genes as a tool for omparative biology. Nature, 1999,402: 402-404.
    
    295. Soltis PS, Soltis DE. Molecular data and the dynamic nature of polyploidy. Critical Reviews in Plant Sciences, 1993,12:243-273.
    
    296. Soltis PS, Soltis DE. The role of genetics and genomic attributes in the success of polyploids.Proceedings of the National Academy of Sciences of USA, 2000,97: 7051-7057.
    
    297. Song K, Lu P, Tang K, Osborn TC. Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proceedings of the National Academy of Sciences of USA,1995,92:7719-7723.
    
    298. Song KM, Osborn TC, Williams PH. Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs) I. Genome evolution of diploid and amphidiploid species.Theoretical and Applied Genetics, 1988,75:784-794.
    
    299. Southerton SG, Strauss SH, Olive MR, Harcourt RL, Decroocq V, Zhu X, Llewellyn DJ, Peacock WJ, Dennis ES. Eucalyptus has a functional equivalent of the Arabidopsis floral meristem identity gene LFY. Plant Molecular Biology, 1998,37: 897-910.
    
    300. Stebbens GL. Chromosomal evolution in higher plants. Edward Arnold, London. 1971.
    
    301. Steer MW, and Thomas H. Evolution of Avena sativa: Origin of the cytoplasmic genome. Canadian Journal of Genetics and Cytology, 1976,18:769-771.
    
    302. Steer MW. Evolution in the genus Avena: Inheritance of different forms of ribulose diphosphate carboxylase. Canadian Journal of Genetics and Cytology, 1975,17:337-344.
    
    303. Stephenson P, Bryan G, Kirby J, Collins A, Devos K, Busso C, Gale M. Fifty new microsatellite loci for the wheat genetic map. Theoretical and Applied Genetics, 1998,97:946-949.
    
    304. Sugita M, Shinozaki K, and Sugiura M. Tobacco chloroplast tRNA~(lys) (UUU) gene contains a 2.5-kilobase-pair intron: An open reading frame and a conserved boundary sequence in the intron.Proceedings of the National Academy of Sciences of USA, 1985,82: 3557-3561.
    
    305. Sun G. Interspecific polymorphism at non-coding regions of chloroplast, mitochondrial DNA and rRNA IGS region in Elymus species. Hereditas, 2002,137(2): 119-124.
    
    306. Swofford DL. PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4.0b10. Sinauer Associates, Sunderland, Mass. 1998.
    
    307. Taberlet P, Gielly L, Pautou G, Bouvet J. Universal primers for amplification of three noncoding regions of chloroplast DNA. Plant Molecular Biology, 1991,17:1105-1109.
    
    308. Thellung A. Die Ubergangsformen von Wildhafertypus (Avena agrestes) zum Saathafertypus (Avena sativae). Extrait du recueil des travaux botaniques Neerlandais. V.XXVa. 1928,416-444.
    
    309. Thellung A. Neuere Wege und Ziele der botanischen Systematik, erlautert am Beispiele unserer Getreidearten. Naturwiss. Wochenschr. B.17,1919,32-33.
    
    310. Thellung A. Uber die Abstammung, den systematischen Wert und die Kulturgeschichte der Saathafer-Arten {Avena sativa Cosson), Beitrag zu einer naturlichen Systematic von Avena sect. Euavena. Veirteljahrsschr. d. Naturf. Gesellsch. Zurich. LVI, 1911,311-345.
    
    311. Thomas H. Cytogenetics of Avena. In: Marshall, H. G & Sorrells M. E., eds. Oat Science and Technology, Monograph 33, Agronomy Series. Madison, Wisconsin: ASA and CSSA, 1992,473-508.
    
    312. Thompson JD, Higgins DG, Gibson TJ. CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 1994,22:4673-4680.
    
    313. Trabut L. Contribution a l'Etude de l'Origine des Avoines cultivees. Compt. - Frend. Acad. Sci.Paris CXLIX, 1909, 3,227-229.
    
    314. Trabut L. Origin of cultivated oats. Journal of Heredity, 1914,5(2): 74-85.
    
    315. Tsumura Y, Kuwahara T, Wickneswari R, Yoshmura K. Molecular phylogeny of Dipterocarpaceae in Southeast Asia using RFLP of PCR-amplified chloroplast genes. Theoretical and Applied Genetics, 1996,93: 22-29.
    
    316. Tsumura Y, Yoshmura K, Tomaru N, Ohba K. Molecular phylogeny of conifers using RFLP analysis of PCR-amplified specific chloroplast genes. Theoretical and Applied Genetics, 1995, 91:1222-1236.
    
    317. Tsunewaki K, Plasmon analysis as the counterpart of genome analysis. In: Jauhar P.P. (ed), Methods of genome analysis in plants. CRC Press, New York. 1996,271-299.
    
    318. Tsvelev NN. Zlaki SSSR (Cereals of the Soviet Union), Leningrad: Nauka. 1976.
    
    319. USDA, ARS, National Genetic Resources Program.Germplasm Resources Information Network -(GRIN) [Online Database]. National Germplasm Resources Laboratory, Beltsville, Maryland.URL:http://www.ars-grin.gov/cgi-bin/npgs/html/exsplist.pl (31 December 2008)
    
    320. Vera H, Dagmar W. Sequence organization and putative regulatory elements in the 5S rRNA genes of two h igher plants (Vignaradiata and Mathiolaincand). Genome, 1988,62: 165-169.
    
    321. Vogel J, Borner T, Hess WR. Comparative analysis of splicing of the complete set of chloroplast group II introns in three higher plant mutants. Nucleic Acids Research, 1999,27 (19): 3866-3874.
    
    322. Volkov RA, Borisjuk NV, Panchuk II. Elimination and rearrangement of parental rDNA in the alloterpaloid nicotiana tabacum. Molecular Biology and Evolution, 1999,16: 311-320.
    
    323. Walter R, Epperson BK. Geographic pattern of genetic variation in Pinus resinosa: area of greatest diversity is not the origin of postglacial populations. Molecular Ecology, 2001,10:103-111.
    
    324. Wang GZ, Matsuoka Y, Tsunewaki K. Evolutionary features of chondriome divergence in Triticum (wheat) and Aegilops shown by RFLP analysis of mitochondrial DNAs. Theoretical and Applied Genetics, 2000,100:221-231.
    
    325. Wang GZ, Miyashita Y, Tsunewaki K. Plasmon analyses of Triticum (wheat) and Aegilops:PCR-single-strand conformational polymorphism (PCR-SSCP) analyses of organellar DNAs.Proceedings of the National Academy of Sciences of USA, 1997,94:14570-14577.
    
    326. Watrous LE, Wheeler QD. The outgroup comparison method of character analysis. Systematic Zoology, 1981,30:1-11.
    
    327. Weigel D, Nilsson N. A development switch sufficent for flower initiation in diverse plants. Nature,1995, 377: 495-500.
    
    328. Wendel JF, Schnabel A, Seelanan T. Bidirectional interiocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proceedings of the National Academy of Sciences of USA, 1995, 88: 2540-2544.
    
    329. Wendel JF, Schnabel A, Seelanan T. Bi-directional interiocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proceedings of the National Academy of Sciences of USA, 1995,92(1): 280-284.
    
    330. Wendel JF. Genome evolution in polyploids. Plant Molecular Biology, 2000, 42: 225-249.
    
    331. White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gelfand D, Sninsky J, White T. eds. PCR protocols: A guide to methods and applications. San Diego: Academic Press. 1990, 315-322.
    
    332. Winterfeld G, R6ser M. Disposition of ribosomal DNAs in the chromosomes of perennial oats (Poaceae: Aveneae). Botanical Journal of the Linnean Society, 2007,155(2): 193-210.
    
    333. Wolfe AD, Liston A. Contributions of PCR based methods to plant systematics and evolutionary biology. In: Soltis DE, Soltis PS, Doyle JJ (eds) Molecular systematics of plants II: DNA sequencing. Kluwer, Dordrecht, 1998,43-86.
    
    334. Wolfe KH, Li WH, Sharp PM. 1987. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proceedings of the National Academy of Sciences of USA, 84: 9054-9058.
    335.Won H,Renner SS.Towards a phylogenyofGnetum:first results from rbcL,LEAFY,and ITS sequences.Botany,2001,Albuquerque,NM.http://www.botany2001.org/section12/abstracts/200.shtml
    336.Xu DH,Ban T.Phylogenetic and evolutionary relationships between Elymus humidus and other Elymus species based on sequencing of noncoding regions of cpDNA and AFLP of nuclear DNA.Theoretical and Applied Genetics,2004,108:1443-1448.
    337.Yang Q,Hanson L,Bennett MD,Leitch IJ.Genome structure and evolution in the allohexaploid weed Avena fatua L.(Poaceae).Genome,1999,42:512-518.
    338.Yeh FC,Yang RC,Boyle T.PopGene Version 1.31.Microsoft Window-based freeware for population genetic analysis.Quick user guide.1999.Accessed at http://www.ualberta.ca/-fyeh/
    339.Yonemori K,Honsho C,Kanzakis Eiaadthong W,Sugiura A.Phylogenetic relationships of Mangifera species revealed by ITS sequences of nuclear ribosomal DNA and a possibility of their hybrid origin.Plant Systematics and Evolution,2002,231:59-75.
    340.Zade A.Der Hafer.Eine Monographie auf Wissenschaftlicher und Ppraktischer Grundlage.Jena.1918,B.2-1,355.
    341.Zhang D,Sang T.Physical mapping of ribosomal RNA genes in Peonies(Paeonia,Paeoniaceae) by fluorescent in stiu hybridization:implications for phylogeny and concerted evolution.American Journal of Botany,1999,86:735-735.
    342.Zhang W,Qu LJ,Gu H,Gao W,Liu M,Chen J,Chen Z.Studies on the origin and evolution of tetraploid wheats based on the internal transcribed spacer(ITS) sequences of nuclear ribosomal DNA.Theoretical and Applied Genetics,2002,104:1099-1106.
    343.Zurawski G,Clegg MT.Evolution of higher plant chloroplase DNA-encoded genes:implications for structure-function and phylogenetic studies.Annual Review of Plant Physiology,1987,38:391-418.
    344.包颖.药用野生稻复合体(稻属)的分子系统发育与进化研究.博士学位论文.北京:中国科学院植物研究所.2003.
    345.陈之端,冯昊.植物系统学进展.北京:科学出版社,1998.
    346.何兴金,葛颂,许介眉.中国葱属系统发育的PCR-RFLP分析.中国科学(C辑),2000,30(2):183-191.
    347.杨海鹏,孙泽民.中国燕麦.北京:中国农业出版社.1989.
    348.邹喻苹,葛颂,王晓东.系统与进化植物学中的分子标记.北京:科学出版社.2001.
    1.Ahearn KP,Johnson HA,Weigel D,Wagner DR.NFL1,a Nicotiana tabacum LFY-like gene,controls meristem initiation and floral structure.Plant and Cell Physiology,2001,42:1130-1139.
    2.Anthony RG,James PE,Jordan BR.Cloning and sequence analysis of a FLO/LFY homologue isolated from cauliflower(Brassica oleracea L.var.botrytis).Plant Molecular Biology,1993,22:1163-1166.
    3.Archambault A,Bruneau A.Phylogenetic Utility of the LEAFY/FLORICAULA Gene in the Caesalpinioideae(Leguminosae):Gene Duplication and a Novel Insertion.Systematic Botany,2004,29(3):609-626.
    4.Blazquez MA,Soowal LN,Lee I,Weigel D.LFY expression and flower initiation in Arabidopsis.Development,1997,124:3835-3844.
    5.Bomblies K,Wang RL,Ambrose BA,Schmidt RJ,Meeley RB,Doebley J.Duplicate FLORICAULA/LEAFY homologs zfll and zfl2 control inflorescence architecture and flower patterning in maize.Development,2003,130:2385-2395.
    6.Bortiri E,Oh S,Jiang J,Baggett S,Granger A,Weeks C,Buckingham M,Potter D,Parfitt DE.Phylogeny and systematics of the genus Prunus L.(Rosaceae) as determined by sequence analysis of ITS and the chloroplast trnL-trnF spacer DNA.Systematic Botany,2001,26(4):797-807.
    7.Busch A,Gleissberg S.EcFLO,a FLORICAULA-like gene from Eschscholzia californica is expressed during organogenesis at the vegetative shoot apex.Planta,2003,217:841-848.
    8. Carmona MJ, Cubas PM, Artinez-Zapater JM. VFL, the Grapevine FLORICA ULA/LEAFY ortholog,is expressed in meristematic regions independently of their fate (Vitis vinifera). Plant Physiology,2002,130: 68-77.
    
    9. Coen ES, Romero JM, Doyle S, Elliot R, Murphy G, Carpenter R. Floricaula: a homeotic gene required for flower development in Antirrhinum majus. Cell, 1990,63: 1311-1322.
    
    10. Felsenstaein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 1985,39:783-791.
    
    11. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology.Systematic zoology, 1971, 20: 406-416.
    
    12. Franzke A, Hurka H. Molecular systematics and biogeography of the Cardamine pratensis complex (Brassicaceae). Plant Systematics and Evolution, 2000,224 (3): 213-234.
    
    13. Frolich MW, Parker DS. The mostly male theory of flowers evolutionary origins: from genes to fossils. Systematic Botany, 2000,25:155-170.
    
    14. Fuertes AJ, Rosell(?) JA, Nieto FG. Nuclear ribosomal DNA (nrDNA) concerted evolution in natural and artiWcial hybrids of Armeria (Plumbaginaceae). Molecular Ecology, 1999, 8 (8):1341-1346.
    
    15. Grob GBJ, Gravendeel B, Eurlings MCM. Potential phylogenetic utility of the nuclear FLORICAULA/LEAFY second intron: comparison with three chloroplast DNA regions in Amorphophallus (Araceae). Molecular Phylogenetics and Evolution, 2004,30: 13-24.
    
    16. He Z, Zhu Q, Dabi T, Li D, Weigel D, Lamb CJ. Transformation of rice with the Arabidopsis floral regulator LFY causes early heading. Transgenic Research, 2001,9: 223-227.
    
    17. Hofer J, Turner L, Hellens R, Ambrose M, Matthews P, Michael A, Ellis N. UNIFOLIATA regulates leaf and flower orphogenesis in pea. Current Biology, 1997, 7: 581-587.
    
    18. Hoot SB, Taylor WC, Napier NS. Parental species of Isoetes allotetraploids, including "dead-beat"parents. Botany, 2001, Albuquerque, NM. http://www.botany2001.org/section11/abstracts/14.shtml
    
    19. Hoot SB, Taylor WC. The utility of nuclear ITS, a LEAFY homolog intron, and chloroplast atpB-rbcL spacer region data in phylogenetic analyses and species delimitation in Isoetes. American Fern Journal, 2001,91: 166-177.
    
    20. Howarth DG, Baum DA. Comparing three variable nuclear intron regions and nrDNA ITS to determine the phylogenetic history and a possible hybrid origin in a closely related Hawaiian clade in Scaevola (Goodeniaceae). Botany 2002, Madison, WI.http://www.botany2002.org/section12/abstracts/164.shtml
    
    21. Howarth DG, Baum DA. Genealogical wbidence of homoploid hybrid speciation in an adaptive radiation of Scaevola (Goodenraceae) in the Hawarran islands. Evolution, 2005, 59: 948-961.
    
    22. Kelly AJ, Bonnlander MB, Meeks-Wagner DR. NFL, the tobacco homolog of FLORICAULA and LEAFY, is transcriptionally expressed in both vegetative and floral meristems. The Plant Cell, 1995,7:225-234.
    
    23. Kimura M. A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 1980,16:111-120.
    
    24. Kumar S, Tamura K, Nei M. MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Briefings in Bioinformatics, 2004, 5:150-163.
    
    25. Kyozuka J, Konishi S, Nemoto K, Izawa T, Shimamoto K. Down-regulation of RFL, the FLO/LFY homolog of rice,accompanied with panicle branch initiation.Proceedings of the National Academy of Sciences of USA,1998,95:1979-1982.
    26.Li WH,Graur D.Fundamentals of molecular evolution.Massachusetts:IAC Publishers,1991.
    27.Livshultz T.Comparative morphology and developmentof stamina;coronas in Dischidia (Asclepiadoideae,Apocynaceae).Botany 2002,Madison,WI.http://www.botany2002.org/section2/abstracts/31.shtml
    28.Mast A,Feller DS,Schoenenberger J,Kelso S,Lang D,Conti E.Implication of a seven-region cpDNA phylogeny and a micro-morphological survey to our understanding of floral evolution shooting stars(Dodecatheon)and their closest relatives among the primroses(Primula:Primulaceae).Botany,2002,Madison,WI.http://www.botany2002.org/sectionl 2/abstracts/46.shtml
    29.Molinero-Rosales N,Jamilena M,Zurita S,Gomez P,Capel J,Lozano R.FALSIFLORA,the tomato orthologue of FLORICAULA and LEAFY,controls flowering time and floral meristem identity.The Plant Journal,1999,20:685-693.
    30.Mouradov A,Glassick T,Hamdorf B,Murphy L,Fowler B,Maria S.NEEDLY,a Pinus radiata ortholog of FLORICAULA/LEAFY genes,expressed in both reproductive and vegetative meristems.Proceedings of the National Academy of Sciences of USA,1998,95:6537-6542.
    31.Moyle RL,Walter C.Nucleotide sequence of a Pinus radiata FLORICAULA/LEAFY-like gene (PRFLL).Plant Physiology,1999,119:364-369.
    32.Napier NS,Hoot SB,Taylor WC.Unraveling a tangled web:hybrids and allopolyplid origins in Isoetes.Botany,2002,Madison,WI.http://www.botany2002.org/section12/abstracts/134.shtml
    33.Oh S-H,Potter D.Molecular phylogenetic systematics and biogeography of tribe Neillieae (Rosaceae) using DNA sequences of cpDNA,rDNA and LEAFY.American Journal of Botany,2005,92:179-192
    34.OH S-H,Potter D.Phylogenetic relationships in the tribe Neillieae(Rosaceae) inferred from DNAsequences.Botany,2001,Albuquerque,NM.http://www.botany2001.org/section 12/abstracts/113.shtml
    35.Oh S-H,Potter D.Phylogenetic utility of the second intron of LEAFY in Neillia Stephanandra (Rosaceae) and implications for the origin of Stephanandra.Molecular Phylogenetics and Evolution,2003,29(2):203-215.
    36.OH S-H,Potter D.Phylogeny and biogeography of the genus Physocarpus(Rosaceae:Neillieae)inferred from DNA sequences.Botany,2002,Madison,WI.http://www.botany2002.org/sympos13/abstracts/4.shtml
    37.Pena L,Martin-Trillo M,Juarez J,Pina JA,Navarro L,Martinez-Zapater JM.Constitutive expression of Arabidopsis LFY or APETALA1 genes in citrus reduces their genetation time.Nature Biotechnology,2001,19:263-267.
    38.Posada D,Crandall KA.Modeltest:testing the model of DNA substitution.Bioinformatics,1998,14:817-818.
    39.Potter D,Luby J J,Harrison RE.Phylogenetic relationships among species of Fragaria (Rosaceae) inferred from non-coding nuclear and chloroplast DNA sequences.Systematic Botany,2000,25(2):337-348.
    40.Roalson EH,Columbus JT,Friar EA.Phylogenetic relationships in Cariceae(Cyperaceae) based on ITS(nrDNA) and trnT-L(cpDNA) region sequences:assessment of subgeneric and sectional relationships in Carex with emphasis on section Acrocystis. Systematic Botany, 2001, 26(2),318-341.
    
    41. Rottmann WH, M eilan R, Sheppard LA, Brunner AM, Skonner JS, Jouanin L, Pillate G, Strauss SH. Diverse effects of overexpression of LFY md PTLF, a Poplar (Populus) homolog of LEAFY/FLORICAULA, in transgenic poplar and Arabidopsis. The Plant Journal, 2000,22: 235-245.
    
    42. Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics, 2003,19:2496-2497.
    
    43. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees.Molecular Biology and Evolution, 1987,4:406-425.
    
    44. Sang T, Crawford DJ, Sutessy TF. Documentation of reticulate evolution in Paeonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: implications for biogeography and concerted evolution. Proceedings of the National Academy of Sciences of USA,1995,92:6813-6817.
    
    45. Sang T, Zhang DM. Reconstruction hybrid speciation using sequences of low copy nuclear genes:Hybrid origins of five Paeonia species based on Adh gene phylogenies. Systematic Botany, 1999,24: 148-163.
    
    46. Sang T. Utility of low-copy nuclear gene sequences in plant phylogenetics. Critical Reviews in Biochemistry and Molecular Biology, 2002, 37(3): 121-147.
    
    47. Schliiter PM., Gudrun K, Stuessy TF, Paulus HF. A screen of low-copy nuclear genes rebeals the LFY gens as phylogenetically informative in closely related species of orchids (Ophrys). Taxon,2007, 56(2): 493-504.
    
    48. Schultheis LM. Systematics of Downingia (Campanulaceae) based on molecular sequence data: implications for floral and chromosome evolution. Systematic Botany, 2001,26 (3): 603-621.
    
    49. Schultz EA, Haughn GW. LEAFY, a homeotic gene that regulates inflorescence development in Arabidopsis. The Plant Cell, 1991, 3: 771-781.
    
    50. Small RL, Ryburn JA, Cronn RC, Seelanan T, Wendel JF. The tortoise and the hare: choosing between noncoding plastome and nuclear Adh sequences for phylogeny reconstruction in a recently diverged plant group. American Journal of Botany, 1998, 85(9): 1301-1315.
    
    51. Souer E, Krol VD, Kloos D, Spelt C, Bliek M. Genetic control of branching pattern and floral identity during Petunia inflorescence development. Development, 1998, 125: 733-742.
    
    52. Southerton SG, Strauss SH, Olive MR, Harcourt RL, Decroocq V, Zhu X, Llewellyn DJ, Peacock WJ, Dennis ES. Eucalyptus has a functional equivalent of the Arabidopsis floral meristem identity gene LFY. Plant Molecular Biology, 1998,37: 897-910.
    
    53. Swofford DL. PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4.0b10. Sinauer Associates, Sunderland, Mass. 1998.
    
    54. Thomas H. Cytogenetics of Avena. In: Marshall, H. G. & Sorrells M. E., eds. Oat Science and Technology, Monograph 33, Agronomy Series. Madison, Wisconsin: ASA and CSSA, 1992,473-508.
    
    55. Wada M, Cao QF, Kotoda N, Soejima J, Masuda T. Apple has two orthologues of FLORICAULA/LEAFY involved in flowering. Plant Molecular Biology, 2002,49:567-577.
    
    56. Wang CN, M(?)ller M, Cronk CB. Altered expression of GFLO, the Gesneriaceae homologue of FLORICAULA/LFY, associated with the transition to bulbil formation in Titanotrichum oldhamii. Development Genes and Evolution,2004,214:122-127.
    57.Watrous LE,Wheeler QD.The outgroup comparison method of character analysis.Systematic Zoology,1981,30:1-11.
    58.Weigel D,Alvarez D,Smyth DR,Yanofsky MF,Meyerowitz EM.LFY controls floral meristem identity in Arabidopsis.Cell,1992,69:843-859.
    59.Weigel D,Coupland G.LFYblooms in aspen.Nature,1995,377:482-483.
    60.Weigel D,Nilsson N.A development switch sufficent for flower initiation in diverse plants.Nature,1995,377:495-500.
    61.Wendel JF,Schnabel A,Seelanan T.Bidirectional interiocus concerted evolution following allopolyploid speciation in cotton(Gossypium).Proceedings of the National Academy of Sciences of USA,1995,88:2540-2544.
    62.Won H,Renner SS.Towards a phylogenyofGnetum:first results from rbcL,LEAFY,and ITS sequences.Botany,2001,Albuquerque,NM.http://www.botany2001.org/sectionl2/abstracts/200.shtml
    63.刘复权,朱广廉,罗达,吴相钰,许智宏.黄瓜LFY同源基因CFL的克降和分析.植物学报,1999,41:813-819.
    64.刘志鹏,王能飞,赵爱云,沈继红,刘小丽,刘公社.低拷贝核基因在异源多倍体植物中的进化与表达.遗传,2007,29(2):163-171.
    65.马月萍,陈凡,戴思兰.植物LEAFY同源基因的研究进展.植物学通报,2005,22(5):605-613.
    66.马月萍,戴思兰.植物花芽分化机理研究进展.分子植物育种,2003,1:539-545.
    67.马月萍,力晓华,申业,陈凡,戴思兰.植物开花基因新资源:甘菊中花分生组织决定基因DFL.分子植物育种,2004,2:597-599.
    68.邵寒霜,李继红,郑学勤,陈守方.拟南芥LFY cDNA的克隆及转化菊花的研究.植物学报,1999,41:268-271.
    69.王宁,陈润生.基于内含子和外显子的系统发育分析的比较.科学通报,1999,44(19):2095-2102.
    70.张建业,陈力耕,胡西琴,何新华.银杏LFY同源基因的分离与克隆.林业科学,2002,38(4):167-170.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700