用户名: 密码: 验证码:
Bt毒素在矿物和土壤胶体上的吸附和残留研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
转Bt基因作物发展迅速,其释放的毒素可能在土壤中积累,影响土壤生态系统的功能和生物多样性,引发环境安全问题。本文研究了Bt毒素在矿物(蒙脱石、高岭石、针铁矿和二氧化硅)和土壤(红壤、砖红壤、黄棕壤和黄褐土)胶体表面的吸附特性,用动力学和热力学方法探讨了Bt毒素的吸附规律和时间、温度、pH、低分子量有机酸盐、无机配体等因素对吸附的影响,并用红外光谱、圆二色谱和荧光光谱等观察了供试胶体吸附对Bt毒素结构的影响,剖析了被吸附Bt毒素的解吸规律,还研究了在有或无外源微生物条件下土壤中外加Bt毒素的残留特性。本研究将土壤化学与现代生物技术相融合,为转Bt基因植物代谢产物的环境效应及生态安全评价提供参考。主要结果如下:
     1)Bt毒素在供试胶体表面的等温吸附曲线为L型,可用Langmuir和Freundlich方程拟合,且Freundlich方程拟合效果更好。在Bt毒素初始浓度为0-1 000 mg L~(-1)时,其在矿物胶体表面的吸附量随温度升高而减少,在供试胶体表面吸附的标准自由能(Δ_rG_m~θ)为负值,表明该吸附是自发反应。Bt毒素除在蒙脱石表面吸附的标准焓变(Δ_rH_m~θ)为正值是吸热反应外,在其它供试胶体表面吸附的标准焓变均为负值,是放热反应;且所有吸附的标准焓变值均小于40 kJ mol~(-1),说明该吸附主要是物理吸附。
     2)Bt毒素在供试胶体表面能快速吸附,0.25 h的吸附量约占平衡吸附量的64%-80%,1-2 h基本达平衡。该吸附可用粒子内扩散模型拟合,常数C值不为0,表明粒子内扩散速度不是Bt毒素在供试胶体表面吸附快慢的唯一控制因素。此外,其吸附动力学也符合一级方程、二级方程和Elovich方程,以二级动力学方程的拟合程度最好,说明该吸附主要受表面吸附控制。
     3)针铁矿、蒙脱石、高岭石、黄棕壤和黄褐土等胶体在pH 6时对Bt毒素的吸附量最大,二氧化硅、红壤和砖红壤等胶体在pH 7时吸附量最大,其吸附量一般随pH的升高而降低,这主要与Bt毒素的等电点及供试胶体的电荷零点有关。
     4)低分子量有机酸盐和无机配体对Bt毒素在供试胶体表面的吸附受的影响。对Bt毒素的吸附低浓度(<10 mmol L~(-1))有机酸盐(乙酸盐、草酸盐、柠檬酸盐)起抑制作用,高浓度有机酸盐起促进作用;不同有机酸盐抑制作用的强弱为草酸盐<柠檬酸盐≤乙酸盐。无机配体对Bt毒素吸附的影响与有机酸盐相反,低浓度无机盐促进其吸附,高浓度的起抑制作用,不同离子的影响为H_2PO_4~->NO_3~-,NH_4~+>K~+。
     5)吸附态Bt毒素很难被解吸。用0.1 mmol L~(-1) NaCl作解吸剂时,供试胶体表面吸附态Bt毒素的解吸率<5.3%,磷酸缓冲液作解吸剂时其解吸率<13.1%,表明它只有少部分以静电和配位的方式吸附在供试胶体表面。在有低分子量有机酸盐等配体存在条件下,NaCl和磷酸缓冲液对吸附态Bt毒素的解吸率均有显著增加(除乙酸盐体系中蒙脱石和砖红壤吸附态Bt毒素外),表明有机酸盐的存在一定程度上增加了静电和配位吸附,影响大小为草酸盐>柠檬酸盐>乙酸盐。
     6)荧光光谱显示Bt毒素在282 nm激发光的作用下有酪氨酸(314.5 nm)和色氨酸(338 nm)荧光峰,其与高岭石、蒙脱石及土壤等胶体作用后色氨酸荧光峰红移了5-9.5 nm,酪氨酸荧光峰没有变化;与针铁矿和二氧化硅胶体作用后色氨酸和酪氨酸的荧光峰蓝移了0.5-1 nm,变化不明显。荧光峰的红移表明Bt毒素的吸附导致其内源荧光基团所处的分子环境极性增强。圆二色光谱表明吸附导致Bt毒素的二级结构改变,α螺旋和β折叠含量增加,而β转角和无规则卷曲含量降低。红外光谱显示,吸附后Bt毒素的酰胺Ⅰ带(1653 cm~(-1))和酰胺Ⅱ带(1543 cm~(-1))等特征光谱峰未发生明显位移,只是1055,1240和2362 cm~(-1)处的峰消失,表明C-N残基在供试胶体吸附Bt毒素中起重要作用,且吸附后毒素的二级结构变化不明显。
     7)25℃条件下,初始浓度为0.3μg g~(-1)的游离态Bt毒素随时间增加残留量逐渐减少,10天时残留量小于原始加入量的55%,培养40天后约降解了80%,表明游离态Bt毒素降解速率较快。有外源微生物存在,其降解速率更快,表明微生物能利用游离态Bt毒素;双指数模型拟合结果表明,微生物存在下其降解速率更快,且从种植非转Bt植物上壤中提取的微生物对游离态Bt毒素的利用更快。Bt毒素在供试灭菌土壤(砖红壤、黄褐土和黄棕壤)中的残留量随着培养时间的推移先增加(1-2天)后逐步减少,降解50%的时间(DT_(50))为10天左右,外源微生物对土壤中Bt毒素的降解速率影响不明显。初始阶段Bt毒素在3种土壤中降解速度的差异不明显,而后期在黄棕壤和黄褐土中的降解速率比在砖红壤中的慢。
The wide-spread cultivation of transgenic plants would pose a risk to natural and agricultural ecosystems, especially the transgenic Bacillus thuringinesis (Bt) plants, for they release Bt toxin to the soil ecosystem by root exudates, plant biomass and pollen. This study investigated the adsorption and desorption of Bt toxin by montmorillinite, kaolinite, goethite, silicon dioxide, red soil (Ultisol), latosol (Oxisol), yellow brown soil (Alfisol) and yellow cinnamon soil (Alfisol). The kinetic and thermodynamic parameters were analyzed to understand the adsorption mechanisms, while infrared spectra, circular dichroism (CD) spectra and fluorescence spectra were used to investigate the secondary structure changes of Bt toxin during the adsorption and desorption process. The remaining of Bt toxin in soils with or without microorganisms were also studied. This investigation helps to evaluate the behavior and fate of Bt toxins in the soil ecosystem. The main results are described below.
     1) The isotherm adsorption curves were L-type, and the adsorption data fitted well with both Langmuir and Freundlich isotherm models, but the Freundlich equation was more suitable. The adsorption was much easier at low temperature than that at high temperature at the initial Bt toxin concentration varying from 0 to 1 000 mg L~(-1). The negative values of the standard free energy (Δ_rG_m~θ) indicated that the adsorption of Bt toxin by minerals and soil colloids were spontaneous. The standard enthalpy changes (Δ_rH_m~θ) of the toxin adsorbed by montmorillinite was positive while that by others were negative, suggesting that the adsorption by montmorillinite was endothermic and by others were exothermic. The standard enthalpy changes (Δ_rH_m~θ) were all less than 40 kJ mol~(-1), showing that the adsorption was physicosorption.
     2) The Bt toxin could be adsorbed easily by minerals and soil colloids, and the adsorption amount in the first 0.25 h was the 75%-80% of the equilibrium adsorption amount. The adsorption kinetic of Bt toxin can be described by the intra-particle diffusion model, however, the value of the contant C was not 0. This phenomenon showed that the speed of intra-particle diffusion was not the only dominant factor of the adsorption. Besides, the adsorption dynamic of Bt toxin consisted with the pseudo-first-order, pseudo-second-order, and Elovich equations in which the pseudo-second-order had the best fitting results, and it indicated that the adsorption is mainly controlled by the surface adsorption process.
     3) The adsorption amount of the toxin were greatest at pH 6 by goethite, montmorillonite, kaolinite, yellow brown soil, and yellow cinnamon soil, while the maximum adsorption by silicon dioxide, red soil, and latosol presented at pH 7. The ]overall trend was the adsorption capacity of the toxin decreased with the pH increase, which is attributed to the isoelectric point (IEP) of Bt toxin and the point of zero charge (PZC) of minerals and soils.
     4) The adsorption of Bt toxin by minerals and soil colloids were affected by low-molecular-weight organic acid ligands and inorganic salts. Low concentrations (< 10 mmol L~(-1)) of organic acid ligands (acetate, oxalate, citrate) inhibited toxin adsorption, whereas high concentrations promoted adsorption, and the inorganic salts had the opposite effects. The effect degree of the different organic acid ligands was oxalate > citrate > citrate, while H_2PO_4~- > NO_3~- and NH_4~+ > K~+ for inorganic ions.
     5) The adsorbed Bt toxin was hardly desorbed. The desorption rate of the toxin by 0.1 mmol L~(-1) NaCl and phosphate was less than 5.3% and 13.1%, respectively, which indicated that a small proportion of the toxin adsorbed by minerals and soil colloids via electrostatic forces and ligand exchange. The desorption rates of Bt toxin were increased obviously when the organic acid ligands were present, the results suggested that organic acid ligands can markedly loose the bond of Bt toxin to minerals and soil colloids, and oxalate had the most significant effects among the tested organic acid ligands.
     6) Two fluorescence peaks of Bt toxin presented at 338 ran of tryptophan residues and 314.5 nm of the tyrosine residues by the excitation at 282 nm. The tryptophan peak of the toxin desorbed from kaolinite, montmorillonite and soil colloids were red-shifted 5 to 9.5 nm, and their tyrosine peak remained at 314.5 nm without shift. However, the two peaks of the toxin desorbed from goethite and silicon dioxide didn't shift obviously. The red-shift of the fluorescence peaks suggested that the polarity of the microenvironment of the toxin increased during the adsorption and desorption. The CD spectra showed that theα-helix andβ-sheet content of the toxin after desorption from minerals and soil colloids increased while P-turn and random coil content decreased in comparison to native toxin, which indicated that the ordered structure (α-helix +β-sheet) of the toxin increased in a certain extent during the adsorption and desorption. The special IR spectra of amideⅠ(1653 cm~(-1)) and amideⅡ(1543 cm~(-1)) of the adsorbed toxin did not shifted obviously in comparision to the native toxin, and the peaks at 1055, 1240 and 2362 cm~(-1) were disappeared, these results indicated that the radicle of C-N played a key role in the adsorption of Bt toxin by minerals and soil colloids with no obvious changes in the secondary structure of Bt toxin after adsorption.
     7) At 25℃, the remaining amount of the free Bt toxin (without soils) when the initial concentration was 0.3μg g~(-1) decreased as the cultivation time increase, and the remaining amount was less than 55% of the initial content after cultivating 10 days. The results indicated that the free toxin could degrade rapidly, and the degradation of the toxin with microorganisms (especially extracted from the soil planting non transgenic Bt plants) was more than that without microorganisms. However, as the cultivation time increase, the remaining of Bt toxin in soils (latosol, yellow brown soil and yellow cinnamon soil) increased firstly (1-2 days) and then gradually decreased. The half-life (DT_(50)) of Bt toxin in soil tested was about 10 days, and the effects of macroorganisms on the degradation of Bt toxin in soils were not obvious. The degradation rates of Bt toxin in yellow brown soil and yellow cinnamon soil were lower that that in latosol at cultivation time varying from 10 to 40 days, with no obvious differences of degradation rate in 3 tested soils at the first cultivation days (less than 10 days).
引文
1. 白耀宇,蒋明星,程家安.转Bt基因水稻CrylAb毒素在水稻土中的降解.中国水稻科学,2004,18(3):255-261
    2. 鲍士旦.土壤农化分析(第三版).北京:中国农业出版社,1999
    3. 蔡红,沈仁芳.改良茚三铜比色法测定土壤蛋白酶活性的研究.土壤学报,2005,42:306-313
    4. 陈真龙,刘清亮,张祖德,王守业,余华明.尖吻蝮蛇出血毒素Ⅲ三维荧光光谱研究.中国生物化学与分子生物学报,1999,15:507-509
    5. 范晓燕.傅立叶变换红外光谱在生命科学中的应用.生命科学研究,2003,7:38-78
    6. 沈法富,韩秀兰,范术丽.转Bt基因抗虫棉根际微生物区系和细菌生理群多样性的变化.生态学报,2004,24(3):432-437
    7. 高体玉,慈云祥,付爽,王德炳.应用傅立叶变换红外光谱研究白血病骨髓血红细胞.北京大学学报(自然科学版),2001,37:192-196
    8. 郭尧君.荧光实验技术及其在分子生物学中的应用.北京:科学出版社,1979
    9. 龚洁,姚萍,金岚,江明,淳于俐娟.乙醇对细胞色素c和脱辅基细胞色素c的结构转换影响.复旦学报(自然科学版),2001,40(4):355-363
    10. 郝雅琼,吴玉清,刘俊秋,任晓君,罗贵民.半胱氨酸在银基底表面吸附机理的拉曼光谱研究.光散射学报,2002,3:48-51
    11. 环境保护部.中国转基因生物安全性研究与风险管理.北京:中国环境科学出版社,2006
    12. 黄贤智,许金钩,李耀群.同步荧光法同时测定色氨酸、络氨酸和苯丙氨酸.分析化学,1987,15:199-202
    13. 黄顺红,张杨珠,杨曾平,徐玲,颜雄.几种稻田土壤对铵的矿物固定的动力学与热力学研究,土壤通报,2006,37(2):282-286
    14. 江泽洲.疏水力的热力学分析及生物学意义.湖北工学院学报,1997,12(1):85-87
    15. 介晓磊,刘凡.磷酸盐吸附对针铁矿表面电化学性质及锌次级吸附的影响.河南农业大学学报,2000,34:119-121
    16. 冷春龙,俞元春,刘标.转基因抗虫植物对土壤质量影响的研究进展.环境保护,2007,7:44-47
    17. 李学垣.离子吸附与交换.见:于天仁, 陈志诚主编.土壤发生中的化学过程.北京:科学出版社,1990,159-188
    18. 李学垣.土壤化学及实验指导.北京:中国农业出版社,1996
    19. 李云河,王桂荣,吴孔明,张永军,原国辉,郭予元.Bt作物毒素在农田土壤中残留动态的研究进展.应用与环境生物学报,2005,11:504-508
    20. 廖丽霞,胡红青,贺纪正.有机酸对恒电荷土壤表面电荷性质的影响.土壤学报,2005,42:866-870
    21. 聂艳丽,郑毅,林克惠.根分泌物对土壤中磷活化的影响.云南农业大学学报,2002,17:281-286
    22. 刘敏,孙德志,林瑞森,曲秀葵,王旭,李玲.人血清白蛋白与季铵盐双子表面活性剂的相互作用.化学学报,2007,65(2):123-128
    23. 刘凡,李学垣.鄂湘两省几种土壤中磷的有效性与氧化铁的类型.中国农业科学,1995,28:49-57
    24. 刘凡,介晓磊.不同pH条件下针铁矿表面磷的配位形式及转化特点.土壤学报,1997,34:367-374
    25. 欧阳立明,吴宏文,喻子牛.害虫对转Bt基因植物抗性的治理策略.植物保护学报,2001,28:183-188
    26. 芮玉奎.转基因抗虫棉生产安全性的研究.北京:中国农业大学,2003
    27. 商志才,易平贵,俞庆森,林瑞森.环丙沙星与牛血清白蛋白的结合反应.物理化学学报,2001,17(1):48-52
    28. 沈琼,黄滨,邵嘉亮,彭权,马林,古练权.运用圆二色谱研究酶与化合物相互作用的机理.中山大学学报(自然科学版),2006,45(14):62-64
    29. 沈星灿,梁宏,何锡文,王新省.圆二色光谱分析蛋白质构象的方法及研究进展.分析化学,2004,3:388-394
    30. 沈学优,卢瑛莹,朱利中.对-硝基苯酚在水/有机膨润土界面的吸附行为-热力学特征及机理.中国环境科学,2003,23(4):367-370
    31. 孙彩霞,陈利军,武志杰,张玉兰,张丽莉.种植转Bt基因水稻对土壤酶活性的影响.应用生态学报,2003,14(12):2261-2264
    32. 陶慰孙,李惟,姜涌明.蛋白质分子基础(第二版).北京:高等教育出版社,1995
    33. 童义平,李伟,林燕文.傅里叶红外光谱研究血清白蛋白构象.光谱学与光谱分析,1999,19:704-706
    34. 童义平,林燕文.概率神经网络及FTIR用于胃癌组织样品分类识别的研究.化学研究与应用,2007,19:420-423
    35. 王克夷.疏水作用和蛋白质.生命的化学,1999,19(5):233-235
    36. 王黎明,徐冬梅,刘广深.脲对麦芽酸性磷酸酶活力与构象的影响.浙江大学学报,2004,30(3):296-299
    37. 王忠华,叶庆富,舒庆尧.转基因植物根系分泌物对土壤微生态的影响.应用生态学报,2002,13(3):373-375
    38. 王建武,冯远娇,骆世明.Bt玉米秸秆分解对土壤酶活性和土壤肥力的影响.应用生态学报,2005,16(3):524-528
    39. 王建武,冯远娇,骆世明.Bt玉米抗虫蛋白表达的时空动态及其土壤降解研究.中国农业科学,2003,36:1279-1286
    40. 王建武,骆世明,冯远娇,CindyNakatsu.转Bt基因作物Bt毒素在土壤中的环境去向及其生态效应.生态学报,2003,23:797-804
    41. 王保民,李召虎,李斌,田晓莉,段留生,翟志席,何钟佩.转Bt抗虫棉各器官毒素的含量及表达.农业生物技术学报,2002,10:215-219
    42. 吴瑾光.现代傅立叶变换红外光谱技术及应用.北京:科学技术文献出版社,1994,65-128
    43. 吴丹,徐桂英.光谱法研究蛋白质与表面活性剂的相互作用.物理化学学报,2006,22(2):254-260
    44. 吴宏海,刘佩红,高嵩,何广平,王伟伟.高岭石/水溶液的界面反应特征.地球化学,2005,34(2):410-416
    45. 吴宏海.酶与矿物的交互作用.矿物-微生物研讨会论文集,南京:2004
    46. 吴桦,隋森芳.原位椭圆技术研究牛血清蛋白在固/液界面的吸附.生物物理学报,1992,8(2):245-250
    47. 吴桦,范涌,隋森芳.疏水表面对牛血清蛋白二级结构的诱导.生物化学与生物物理学报,1993,25(6):611-616
    48. 熊毅,陈家坊等编著.土壤胶体(第三册).北京:科学出版社,1990
    49. 熊毅等编著.土壤胶体(第二册).北京:科学出版社,1985
    50. 徐冬梅,刘广深,王黎明,刘维屏.麦芽酸性磷酸酶与乙醇相互作用的谱学研究.光谱学与光谱分析,2004,24:1388-1390
    51. 夏佑林,吴秀辉,刘琴等编著.生物大分子多维核磁共振.合肥:中国科学技术大学出版社,1999,246-248
    52. 徐仁扣.低分子量有机酸对可变电荷土壤和矿物表面化学性质的影响.土壤,2006,38:233-241
    53. 鄢远,许金钩,陈国珍.三维荧光光谱法研究蛋白质溶液构象.中国科学(B辑),1997,27:16-22
    54. 鄢远,刘韬,黄坚锋.溶液中溶菌酶的荧光光谱研究.化学学报,1997,55:1214-1218
    55. 颜青.几种变性剂对无花果蛋白酶分子去折叠与活力的影响.生物物理学报,1996,12(3):404-408
    56. 姚槐应,黄昌勇等编著.土壤微生物生态学及其实验技术.北京:科学出版社,2006
    57. 易平贵,商志才,俞庆森,劭爽,林瑞森.丝裂素C与牛血清蛋白结合作用的研究.化学学报,2000a,58(12):1649-1653
    58. 易平贵,俞庆森,商志才,宗汉兴.氧氟沙星与牛血清白蛋白相互作用机制.药学学报,2000b,35(10):774-777
    59. 喻子牛.苏云金芽孢杆菌制剂的生产和应用.北京:农业出版社,1993
    60. 赵振华,黄巧云,陈文莉.几种低分子量有机酸、磷酸对土壤胶体和矿物吸附酸性磷酸酶的影响.中国农业科学,2002,35(11):1375-1380.
    61. 赵振华,黄巧云,李学垣,郭学军.磷酸盐对土壤胶体和矿物表面吸附酸性磷酸酶的影响.土壤学报,2003,40(3):353-359
    62. 赵振华.几种低分子量有机酸、磷酸对BSA和酶在土壤胶体、矿物表面的吸附及活性影响.博士学位论文,武汉:华中农业大学图书馆,2002
    63. 周学永.苏云金芽胞杆菌喷雾干燥工艺和毒素纳米材料吸附剂型的研究.博士学位论文,武汉:华中农业大学图书馆,2004
    64. Alkan M, Demirbas O, Celikcapa S, Dogan M. Sorption of acid red 57 from aqueous solution onto sepiolite. Journal Hazardous Materials, 2004,116: 135-145
    65. Angle J S. Release of transgenic plants: biodiversity and population level consideration. Molecular Ecology, 1994, 3: 45-50
    
    66. Atkinson R J, Posner A M, Quirk J P. Adsorption of potential determining ions at the ferric oxide aqueous electrolyte interface. Journal of Physical Chemistry, 1967, 71: 550-558
    
    67. Baret J F. Kinetics of adsorption from a solution role of the diffusion and of theadsorption-desorption antagonism. Journal Physical Chemistry, 1968, 72: 2755- 2758
    
    68. Bentez E , Melgar R , Melgar H , Sainz H, Gomez M, Nogales R. Enzyme activities in the rhizosphere of pepper (Capsicum annuum L.) grown with live cake mulches. Soil Biology and Biochemistry, 2000, 32: 1829-1835
    
    69. Bowen R W, Hughes D T. Ion exchange of proteins: a microcalorimetric study of the adsorption of bovine serum albumin on anion-exchange materials. Journal of Colloid Interface Science, 1993, 158: 395-402
    
    70. Boyd S A, Mortland M M. Urease activity clay-organic complex. Soil Science Society of Ametica Journal, 1985,49: 619-622
    
    71. Brand L, Seliskar C J, Turner D C. The effects of chemical environment of fluorescence probes. In: Probes of Structure and Function of Macromolecules and Membranes, Chance B, Chuan-Pu Lee and Blasie J K, editors. Academic Press Inc., New York. 1971, 17-39
    
    72. Busto M D, Perezmateos M. Extraction of humic-P-glucosidase fractions from soil. Biology and Fertility of Soils, 1995, 20: 77-82
    
    73. Byler D M, Susi H. Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers, 1986, 25(3): 469-487
    
    74. Calamai L, Lozzi I, Stotzky G, Fusi P, Ristori G G Interaction of catalase with montmorillonite homoionic to cations with different hydrophobicity: effect on enzymeetic activity and microbial. Soil Biology and Biochemistry, 2000, 32: 815-823
    
    75. Chen Y H, Yang J T, Martiner H M. Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion. Biochemistry-USA, 1972, 11:4120-4131
    
    76. Claus H, FiliP Z. Effects of clays and other solids on the activity of Phenoloxidases produced by some fungi and actinomycetes. Soil Biology and Biochemistry, 1990, 22:483-488
    
    77. Crecchio C, Stotzky G Insecticidal activity and biodegradation of the toxin from Bacillus thuringiensis subsp. kurstaki bound to humic acids from soil. Soil Biology and Biochemistry, 1998, 30: 463-470
    
    78. Crecchio C, Stotzky G. Biodegradation and insecticidal activity of the toxin from Bacillus thuringiensis subsp. Kurstaki bound on complexes of montmorillonite- humic acids-Al hydroxylpolymers. Soil Biology and Biochemistry, 2001, 33: 573-581
    
    79. Deng S P, Tabatabai M A. Effect of tillage and residue management on enzyme activities in soils III. Phosphatases and arysuphatases. Biology and Fertility of Soils, 1997, 24: 141-146
    
    80. Diaz X, Abuin E, Lissi E. Quenching of BSA intrinsic fluorescence by alkylpyridinium cations: Its relationship to surfactant-protein association. Journal of Photochemistry and Photobiology A: Chemistry, 2003,155: 155-162
    
    81. Dockal M, Carter D C, Ruker F. Conformational transitions of the three recombinant domains of human serum albumin depending on pH. Journal of Biological Chemistry, 2000, 275: 3042-3050
    
    82. Donegan K K, Palm C J, Fieland V J, Porteous L A, Ganio L M, Schaller D L, Bucao L Q, Seidler R J. Changes in levels, species, and DNA fingerprints of soil microorganisms associated with cotton expressing the Bacillus thuringiensis var. kurstaki endotoxin. Applied Soil Ecology, 1995, 2: 111-124
    
    83. Donegan K K, Schaller D L, Stone J K, Ganio L M, Reed G, Hamm P B, Seidler R J. Microbial populations, fungal species diversity and plant pathogen levels in field plots of potato plants expressing the Bacillus thuringiensis var. tenebrionis endotoxin. Transgenic Research, 1996, 5: 25-35
    
    84. Dong A, Huang P, Caughey W S. Protein secondary structures in water from second-derivative amide I infrared spectra. Biochemistry, 1990, 29: 3303-3308
    
    85. Dong A, Jones L T S, Kerwin B A, Krishnan S, Carpenter J F. Secondary structures of proteins adsorbed onto aluminum hydroxide: infrared spectroscopic analysis of proteins from low solution concentrations. Analytical Biochemistry, 2006, 351:282-289
    
    86. Dukhin S S, Kretzmar G, Miller R. Dynamics of adsorption at liquid interfaces: theory, experiment, application. Amsterdam, Netherlands, 1995
    
    87. Dynes J J, Huang P M. Influence of organic acids on selenite adsorption by poorly ordered aluminum hydroxides. Soil Science Society of America Journal, 1997, 61: 772-783
    88. Fusi P, Ristorl G. G, Calamai L, Stotzky G Adsorption and binding of protein on "clean" (homoionic) and "dirty" (coated with Fe oxyhydroxides) montmorillonite, illite and kaolinite. Soil Biology and Biochemistry, 1989, 21: 911-920
    
    89. Freundlich H M F. Uber die adsorption in losungen. Zeitschrift fur Physikalische Chemie, 1906, 57: 385-470
    
    90. Gao D J, Yuan T, Bi S Y, Chen Y H, Yu A M, Zhang H Q. Studies on the interaction of colloidal gold and serum albumins by spectral methods. Spectrochimica Acta Part A,2005,62: 1203-1208
    
    91. Ghosh S, Banerjee A. A multitechnique approach in protein/surfactant interaction study: physicochemical aspects of sodium dodecyl sulfate in the presence of trypsin in aqueous medium. Biomacromolecules, 2002, 3:9-16
    
    92. Giacomelli C E, Norde W. The adsorption-desorption cycle: reversibility of the BSA-silica system. Journal of Colloid and Interface Science, 2001, 233: 234-240
    
    93. Gianfreda L, Rao M A, Violante A. Invertase (P-Fructosidase): Effects of montmorillonite, Al-hydroxide and Al(OH)x-Montmorillonite complex on activity and kinetic properties. Soil Biology and Biochemistry, 1991, 23(6): 581-587
    
    94. Gianfreda L, Rao M A, Violante A. Adsoprtion, activity and kinetic properties of urease on montmorillonite, aluminium hydroxide and A1(OH)_X- montmorillonite complexes. Soil Biology and Biochemistry, 1992, 24(1): 51-58
    
    95. Gianfreda L, Rao M A, Violante A. Interaction of invertase with tannic acid, hydroxyl-aluminium (OH-Al) species or montmorrillionite. Soil Biology and Biochemistry, 1993, 25(6): 671-677
    
    96. Gianfreda L, Bollag, J M. Effect of soils on the behaviour of immobilized enzymes. Soil Science Society of American Journal, 1994, 58: 1672-1681
    
    97. Gianfreda L, Rao M A, Violante A. Formation and activity of urease-tannate complexes affected by aluminum, iron, and manganese. Soil Science Society of Ametica Journal, 1995a, 59: 805-810
    
    98. Gianfreda L, Cristofaro A D, Rao M A, Violante A. Kinetic behavior of synthetic organo- and organo-mineral-urease complexes. Soil Science Society of Ametica Journal, 1995b, 59: 811-815
    
    99. Garke G, Hartmann R, Papamichael N, Deckwer W D, Anspach F B. The influence of protein size on adsorption kinetics and equilibria in ion-exchange chromatography. Separation Science and Technology, 1999, 34(13): 2521-2538
    
    100.Greenfied N J. Methods to estimate the conformation of proteins and polypeptides from circular dichroism data. Analytical Biochemistry, 1996, 235: 1-10
    101.Hall K R, Eagleton L C, Acrivos A, Vermeulen T. Pore- and solid- diffusion kinetics in fixed-bed adsorption under constant-pattern condition. Industrial Engineering Chemistry Fundamentals, 1966, 5: 212-223
    102.Hameed B H. Equilibrium and kinetic studies of 2,4,6-tichlorophenol adsorption onto activated clay. Colloid Surface A, 2007,307:45-52
    103.Herman R A, Wolt J D, Halliday W R. Rapid degradation of the CrylF insecticidal crystal protein in soil. Journal of Agricultural and Food Chemistry, 2002, 50(24): 7076-7078
    104.Head G, Surber J B, Watson J A, Martin J W, Duan J J. No detection of Cry1 Ac protein in soil after multiple years of transgenic Bt cotton (Bollgard) use. Environmental Entomology, 2002, 31(1):30-36
    105.Ho Y S, Ofomaja A E. Kinetics and thermodynamics of lead ion sorption on palm kernel fibre from aqueous solution. Process Biochemistry, 2005,40: 3455-3461
    
    106.Ho Y S, McKay G. Pseudo-second order model for sorption process. Process Biochem. 1999, 34: 451-465
    107.Hocking P J. Organic acids exuded from roots in phosphorus uptake and aluminum tolerance of plants in acid soils. In: Advances in Agronomy, Sparks D L (Ed). Academic Press, 2001
    108.Huang Q, Li X. Effects of clay minerals and organic matter on the activity of enzymes. Progress in Soil Science, 1995,23: 192-198
    109.Huang Q, Jiang M, Li X. Effects of iron and aluminum oxides and kaolinite on adsorption and activity of invertase. Pedosphere, 1998, 8: 251-260
    110.Huang Q, Zhao Z, Chen W. Effects of several low-molecular weight organic acids and phosphate on the adsorption of acid phosphatase by soil colloids and minerals. Chemosphere, 2003, 52: 571-579
    111.Huang Q Y, Liang W, Cai P. Adsorption, desorption and activities of acid phosphatase on various colloidal particles from an Ultisol. Colloid Surface B, 2005, 45: 209-214
    112.James C. Global status of commercialized transgenic crops. ISAAA Brief, 2007
    113.Javier A C, Fernando G, Laura B, Maria Teresa G G Sorption of As, Cd, and Ti as influenced by industrial by-products applied to an acidic soil: equilibrium and kinetic experiments. Chemosphere, 2006, 65: 2377-2387
    114.Jepson P C, Croft B A, Pratt G E. Test systems to determine the ecological risks posed by toxin release for Bacillust huringiensis genes in crop plants. Molecular Ecology, 1994, 3(1): 81-89
    115.Jones D L. Organic acids in the rhizosphere - a critical review. Plant and Soil, 205: 25-44
    116.Jones D L, Dennis P G, Owen A G, Hees P A W. Organic acid behavior in soils-misconceptions and knowledge gaps. Plant and Soil, 2003, 248: 31-41
    117.Keeton T P, Bulla Jr L A. Ligand specificity and affinity of BT-R1, the Bacillus thuringiensis CrylA toxin receptor from Manduca sexta, expressed in mammalian and insect cell cultures. Applied Environment Microbiology, 1997, 63: 3419-3425
    118.Kelly S M, Price N C. The application of circular dichroism to studies of protein folding and unfolding. Biochimica et Biophysica Acta, 1997, 1338: 161-185
    119.Koopal L K, Avena M J. A simple model for adsorption kinetics at charged solid-liquid interfaces. Colloid Surface A, 2001, 192: 93-107
    120.Kondo A, Fukuda H. Effects of adsorption conditions on kinetics of protein adsorption and conformational changes at ultrafine silica particles. Journal of Colloid and Interface Science, 1998, 198: 34-41
    121.Koskella J, Stotzky G Microbial utilization of free and clay bound activity after incubation with microbes. Applied Environment Microbiology, 1997, 63(9): 3561-3568
    122.Lagergren S. Zur theorie der sogenannten adsorption geloster stoffe, Kungliga Svenska Vetenskapsakademiens. Handlingar, 1898, 24(4): 1-39
    123.Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of American Chemical Society, 1918,40: 1361-1403
    124.Levitt M, Chothia C. Structural patterns in globular proteins. Nature, 1976, 261: 552-558
    125.Liu F, He J, Li X, Xu F, He H. Chemical states of phosphorus adsorbed on goethite at various phosphate concentrations. Chinese Science Bulletin, 1995, 40(6): 506-511
    126.Liu Y, Xie M X, Kang J, Zheng D. Studies on the interaction of total saponins of panax notoginseng and human serum albumin by Fourier transform infrared spectroscopy. Spectrochimica Acta Part A: Molecular and biomolecular spectroscopy, 2003, 59:2747-2758
    127.Losey J E, Rayor L S, Carter M E. Transgenic pollen harms monarch larvae. Nature, 1999,399:214
    128.Lowery O H, Roseboroigh N J, Farr A L, Randall R J. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 1995, 193: 265
    129.Lloyd E C. Accurate Characterization of the High-Pressure Environment. Washington, DC: National Bureau of Standards, 1971
    130.Manceva S D, Marianne P C, Butko P. Effect of pH and ionic strength on the cytolytic toxin CytlA: a fluorescence spectroscopy study. Biochimica et Biophysica Acta, 2004,1699:123-130
    131 .MacGregor A N, Turner M A. Soil effects of transgenic agriculture: biological processes and ecological consequences. Soil News, 2000,48: 166-169
    132.Mallick A, Maity S, Haldar B, Purkayastha P, Chattopadhyay N. Photophysics of 3-acetyl-4-oxo-6,7-dihydro-12H indolo-[2,3-a] quinolozine: emission from two states. Chemical Physics Letters, 2003, 371: 688-693
    133.Manavalan P, Johnson W C Jr. Sensitivity of circular dichroism to protein tertiary structure class. Nature, 1983, 305: 831-832
    134.Maste M C L, Norde W, Antonie J W G V. Adsorption-induced conformational changes in the serine proteinase savinase: a tryptophan fluorescence and circular dichroism study. Journal of Colloid and Interface Science, 1997, 196: 224-230
    135.McLintock I S. The Elovich Equation in Chemisorption Kinetics. Nature, 1967, 216, 1204-1205
    136.Mierlo C P M, Steensma E. Protein folding and stability investigated by fluorescence, circular dichroism (CD), and nuclear magnetic resonance (NMR) spectroscopy: the flavodoxin story. Journal of Biotechnology, 2000, 79: 281-298
    137.Miller J N. Recent advances in molecular luminescence analysis. Proc Anal Div Chem Soc, 1979,16: 203-209
    138.Morra M J. Assessing the impact of transgenic plant products on soil organisms. Molecular Ecology, 1994, 3: 53-55
    139.Mortland M M. Clay-organic complexes and interactions. Advance in Agronomy, 1970,22:75-114
    140.Naidja A, Violante A, Huang P M. Adsorption of tyrosinase onto montmorillonite as influenced by hydroxyaluminum coatings. Clays and Caly Minerals, 1995, 43(6):647-655
    141.Naidja A, Huang P M, Bollag J M. Activity of tyrosinase immobilized on hydroxyaluminum-montmorillonite complexes. Journal of Molecular Catalysis A: Chemical, 1997,115:305-316
    142.Naidja A, Huang P M, Bollag J M. Enzyme-clay interactions and their impact on transformations of natural and anthropogenic organic compounds in soil. Journal of Environmental Quality, 2000, 29(3): 677-691
    143.Naidja A, Liu C, Huang P M. Formation of protein-brinessite complex: XRD, FTIR, and AFM analysis. Journal of colloid and interface science, 2002, 251: 46-56
    144.Naidja A, Violante A, Huang P M. Adsorption of tyrosinase onto montmorillonite as influenced by hydroxyaluminum coatings. Clay and Clay Mineral, 1995, 43(6): 647-655
    145.Nigam R, Srivastava S, Prakash S, Srivastava M M. Cadmium mobilisation and plant availability - the impact of organic acids commonly exuded from roots. Plant and Soil, 2001,230: 107-113
    146.Norde W, Giacomelli C E. BSA structural changes during homomolecular exchange between the adsorbed and the dissolved states. Journal of Biotechnology, 2000, 79: 259-268
    147.0brycki J J, Losey J E, Jesse L C H. Transgenic insecticidal corn: beyond insecticidal toxicity to ecological complexity. Bioscience, 2001, 51: 353-361
    148.Palm C J, Donegan K K, Harris D, Seidler R J. Quantification in soil of Bacillus thuringiensis van kurstaki 5-endotoxin from transgenic plants. Molecular Ecology, 1994,3: 145-151
    149.Palm C J, Schaller D L, Donegan K K, Seidler R J. Persistence in soil of transgenic plants produced Bacillus thuringiensis van kurstaki 8-endotoxin. Canadian Journal of Microbiology, 1996,42 (12): 1258- 1262
    150.Peng Z G, Hidajat K, Uddin M S. Conformational change of adsorbed and desorbed bovine serum albumin on nano-sized magnetic particles. Colloids and Surfaces B: Biointerfaces, 2004a, 33: 15-21
    151.Peng Z G, Hidajat K, Uddin M S. Adsorption and desorption of lysozyme on nano-sized magnetic particles and its conformational changes. Colloids and Surfaces B: Biointerfaces, 2004b, 35: 169-174
    152.Quiquampoix H, Ratcliffe R G. A (31)P NMR study of the adsorption of Bovine Serum Albumin on montmorillonite using phosphate and the paramagnetic cation Mn~(2+):modifincation of conformation with pH. Journal of Colloid Interface Science, 1992, 148: 343-352
    153.Rao M A, Gianfreda L. Properties of acid phosphatase-tannic acid complexes formed in the presence of Fe and Mn. Soil Biology and Biochemistry, 2000, 32: 1921-1926 154.Reid I D. Biodegradation of lignin. Canadian Journal of Botany, 1995, 73: 1011-1018
    155.Revault M, Quiquampoix H, Baron M H, Noinville S. Fate of prions in soil: Trapped conformation of full-length ovine prion protein induced by adsorption on clays. Biochimica et Biophysica Acta, 2005,1724: 367-374
    156.Saxena D, Flores S, Stotzky G. Transgenic plants - insecticidal toxin in root exudates from Bt corn. Nature, 1999,402: 480
    157.Saxena D, Flores S, Stotzky G. Bt toxin is released in root exudates from 12 transgenic corn hybrids representing three transformation events. Soil Biology and Biochemistry, 2002, 34: 133-137
    158.Saxena D, Stotzky G. Bacillus thuringiensis (Bt) toxin released from root exudates and biomass of Bt corn has no apparent effect on earthworms, nematodes, protozoa, bacteria and fungi in soil. Soil Biology and Biochemistry, 2001, 33: 1225-1230
    159.Saxena D, Stewart C N, Altosaar I, Shu Q, Stotzky G Larvicidal Cry proteins from Bacillus thuringiensis are released in root exudates of transgenic B. thuringiensis corn, potato, and rice but not of B. thuringiensis canola, cotton, and tobacco. Plant Physiology and Biochemistry, 2004,42: 383-387
    160.Sepelyak R J, Feldkamp J R, Moody T E, White J L, Hem S L. Adsorption of pepsin by aluminum hydroxide. I: Adsorption mechanism. Journal of Pharmaceutical Science, 1984,73:1514-1517
    161.Servagent-Noinville S, Revault M, Quiquampoix H, Baron M H. Conformational changes of bovine serum albumin induced by adsorption on different clay surfaces: FTIR analysis. Journal of Colloid Interface Science, 2000,221: 273-293
    162.Shen Y, Strom L, Jonsson J A, Tyler G. Low-molecular organic acids in the rhizosphere soil solution of beech forest (Fagus sylvatica L.) cambisols determined by ion chromatography using supported liquid membrane enrichment technique. Soil Biology and Biochemistry, 1996, 28: 1163-1169
    163.Shen X C, Liang H, Guo J H, Song C, He X W, Yuan Y Z. Studies on the interaction between Ag+ and human serum albumin. Journal of inorganic biochemistry, 2003, 95: 124-130
    164.Sibylle P W, Jürgen N, Walter R F, Frank G Effects of physical and chemical properties of soils on adsorption of the insecticidal protein (CrylAb) from Bacillus thuringiensis at CrylAb protein concentrations relevant for experimental field sites. Soil Biology and Biochemistry, 2007, 39: 3034-3042
    165.Sims S R, Holden L R. Insect bioassay or determining soil degradation of Bacillus thuringiensis ssp. kurstaki CrylA(b) protein in corn tissue. Environmental Entomology, 1996, 25: 659- 664
    166.Sims S R, Ream J E. Soil inactivation of the Bacillus thuringiensis subsp. kurstaki CryIIA insecticidal protein within transgenic cotton tissue: laboratory microcosm and field studies. Journal of Agricultural food and chemistry, 1997,45: 1502-1505
    167.Sparks D L. Kinetics of soil chemical processes. Academic press, New York, 1989
    168.Sparks D L. Environmental soil chemistry. Academic Press, Inc., San Diego, California, 1995
    169.Sreerama N, Woody R W. A self-consistent method for the analysis of protein secondary structure from circular dichroism. Analytical biochemistry, 1993, 209:32-44
    170.Sreerama N, Woody R W. Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Analytical Biochemistry, 2000, 287: 252-260
    171.Sreerama N, Venyaminov S Y, Woody R W. Estimation of protein secondary structure from circular dichroism spectra: inclusion of denatured proteins with native proteins in the analysis. Analytical Biochemistry, 2000, 287: 243-251
    172.Sreerama N, Venyaminov Y S, Woody R W. Analysis of Protein Circular Dichroism Spectra Based on the Tertiary Structure Classification. Analytical Biochemistry, 2001, 299: 271-274
    173.Staunton S, Quiquampoix H. Adsorption and conformation of bovine serum albumin on montmorillonite: modification of the balance between hydrophobic and electrostatic interactions by protein methylation and pH variation. Journal of Colloid Interface Science, 1994, 166: 89-94
    174.Stevenson F J. Organic acids in soil. In: Mclarne A D and Peterson J H, eds. Soil Biochemistry. New York: Marcel Dekker, 1967, 119-146
    175.Stevenson. Humus chemistry: genesis, composition, reactions. New York: John Wiley and Sons, Inc. 1994
    176.Stotzky G. Influence of soil mineral colloids on metabolic processes, growth, adhesion, and ecology of microbes and viruses. In: Huang P M, Schnitzer Meds. Interactions of soil minerals with natural organics and microbes. Madison: Soil Science Society of America, 1986, 305-428
    177.Stotzky G. Persistence and biological activity in soil of insecticidal proteins from Bacillus thuringiensis and of bacterial DNA bound on clays and humic acids. Journal of Environmental Quality, 2000, 29: 691-705
    178.Stotzky G. Persistence and biological activity in soil of the insecticidal proteins from Bacillus thuringiensis, especially from transgenic plants. Plant and Soil, 2004, 266:77-89
    179.Strater N, Klabunde T, Tucker P, Witzel H, Krebs B. Crystal structure of a purple acid phosphatase containing a dinuclear Fe(III)-Zn( II) active site. Science, 1995, 268: 1489-1492
    180.Strobel B W. Influence of vegetation on low-molecular-weight carboxylic acids in soil solution-a review. Geoderma, 2001, 99: 169-198
    181.Susi H, Byler D M. Protein structure by Fourier transform infrared spectroscopy: second derivative spectra. Biochemical and biophysical research communications, 1983,30, 115(1): 391-397
    182.Susi H, Byler D M Resolution-enhanced Fourier transform infrared spectroscopy of enzymes. Methods in Enzymology, 1986,130: 291-311
    183.Surewicz W K, Mantsch H H. New insight into protein secondary structure from resolution-enhanced infrared spectra. Biochimica et biophysica acta, 1988, 952: 115-130
    184.Tabatabai M A, Garcia Manzanedo A M, Acosta Martinez V. Substrate specificity of arylamidase in soils. Soil Biology and Biochemstry, 2002, 34: 103-110
    185.Tapp H, Calamai L, Stotzky G Adsorption and binding of the insecticidal proteins from Bacillus thuringiensis subsp. kurstaki and subsp. tenebrionis on clay minerals. Soil Biology and Biochemistry, 1994,26: 663-679
    186.Tapp H, Stotzky G Insecticidal activity of the toxin from Bacillus thuringiensis subsp. kurstaki and tenebrionis adsorbed and bound on pure and soil clays. Applied and Environmental Microbiology, 1995a, 61: 1786-1790
    187.Tapp H, Stotzky G Dot blot enzyme-linked immunoabsorbent assay for monitoring the fate of insecticidal toxins from Bacillus thuringiensis in soil. Applied Environmental Microbiology, 1995b, 61: 602- 609
    188.Tapp H, Stotzky G Persistence of the insecticidal toxin from Bacillus thuringiensis subsp. kurstaki in soil. Soil Biology and Biochemistry, 1998, 30: 471-476
    189.Taylor D H, Bosmann H B. Measurement of the electrokinetic properties of vaccinia and reovirus by laser-illuminated whole-particle microelectrophoresis. Journal of Virological Methods, 1981, 2: 251-260
    190.Vaeck M A, Reynaerts H, Hofte J, Jansens M, Beukeleer D C, Dean M, Zabeau M, Montagu V, Leemans J. Transgenic plants protected from insect attack. Nature, 1987, 328: 33-37
    191 .Veen M, Stuart M C, Norde W. Spreading of proteins and its effect on adsorption and desorption kinetics. Colloids and Surfaces B: Biointerfaces, 2007, 54: 136-142
    192.Venkateswerlu G, Stotzky G. Binding of protoxin and toxin proteins of Bacillus thuringiensis subsp. kurstaki on clay minerals. Current Microbiology, 1992, 25: 225-233
    193.Venyaminov S Y, Vassilenko K S. Determination of protein tertiary structure class from circular dichroism spectra. Analytical Biochemistry, 1994, 222: 176-84
    194.Vermonden T, Giacomelli C E, Norde W. Reversibility of structural rearrangements in bovine serum albumin during homomolecular exchange from Agl particles. Langmuir, 2001, 17: 3734-3740
    195.Watrud L S, Seidier R J. Nontarget ecological effects of plants, microbial, and chemical introductions to terrestrial system. Soil chemistry and Ecosystem Health, Special Publication 52. Madison, Wiscomisin: Soil Science Society of America, 1998, 313-340
    196.West A, Burges H D, Dixon T J, Wyborn C H. Survival of Bacillus thuringiensis and Bacillus cereus spore inocula in soil: effects of pH, moisture, nutrient availability and indigenous microorganisms. Soil Biology and Biochemistry, 1985,17: 657-665
    197.Wijinjia H, Schulthess C P. Interaction of carbonate an organic anions with sulfate and selenate adsorption on an aluminum oxide. Soil Science Society of America Journal, 2000, 64: 898-908
    198.Wu H, Fan Y, Sheng J, Sui S E. Induction of changes in the secondary structure of globular proteins by a hydrophobic surface. European Biophysics Journal, 1993, 22(3): 201-205
    199.Xu R, Zhao A, Ji G. Effect of low-molecular-weight organic anions on surface charge of variable charge soils. Journal of Colloid and Interface Science, 2003, 264: 322-326
    200.Xu R, Li C, Ji G. Effect of low-molecular-weight organic anions on electrokinetic properties of variable charge soils. Journal of Colloid and Interface Science, 2004, 277:243-247
    201.Yu L, Berry R E, Croft B A. Effects of Bacillus thuringiensis toxins in transgenic cotton and potato on Folsomia Candida (Collembola: Isotomidae) and Oppia nitens (Acari: Orhatidae). Journal of Economic Entomology, 1997, 90(1): 113-118
    202.Zwahlen C, Hilbeck A, Gugerli P, Nentwig W. Degradation of the CrylAb protein within transgenic Bacillus thuringiensis corn tissue in the field. Molecular Ecology, 2003, 12: 765-775
    203.Zhou X, Huang Q, Chen S, Yu Z. Adsorption of the insecticidal protein of Bacillus thuringiensis on montmorillonite, kaolinite, silica, goethite and red soil. Applied Clay Science, 2005, 30: 87-93

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700