玉米弯孢菌叶斑病抗性相关蛋白质鉴定及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弯孢菌叶斑病(Curvularia lunata(Wakker)Boed)是威胁我国玉米可持续生产的主要病害之一,培育和种植抗病品种是防治该病害发生与危害的根本途径。然而,目前我国缺少对该病免疫的品种,且病原菌具有明显的致病性分化现象,极易导致品种抗性丧失,为此,从目前已有的抗性种质资源中挖掘抗病基因,对培育持续抗性新种质具有重要意义。本研究利用以双向电泳(2-DE)和质谱(MS)鉴定为核心的蛋白质组学技术,筛选玉米弯孢菌叶斑病抗性相关蛋白质和基因,并研究其在寄主抗性中的作用,主要内容及结果如下:
     1.分析了弯孢叶斑病菌侵染玉米抗、感自交系后防御相关因子变化规律。结果表明:病原菌侵染后,抗性自交系中SA及O2-含量显著提高,病程相关蛋白PR-1、PR-10、PAL、CAT、POX等的转录水平也显著提高,而感病自交系中ABA含量显著提高,防卫基因转录水平也有提高但是不显著。由此推测,SA增强了玉米对弯孢菌叶斑病的抗性,ABA则相反,增强了玉米对该病害的易感性,而ROS的积累在早期抗性反应中发挥重要作用,PR-1、PR-10、PAL及ROS清除酶类也参与了玉米抗弯孢叶斑病菌侵染的防御反应。
     2.建立了基于2-DE技术的玉米叶片蛋白质高效分离系统。通过对蛋白质样品制备、蛋白质裂解液配方、IPG胶条pH范围和等电聚焦电泳时间等参数的优化,建立了玉米叶片总蛋白质分离的2-DE体系。同时,建立了以去除叶片高丰度蛋白Rubisco为主要目标的Mg/NP-40及PEG预分离体系,明显提高了2-DE系统对低丰度蛋白质的分离效率。
     3.鉴定出了部分与玉米抗弯孢菌叶斑病相关的蛋白质。通过对抗、感玉米自交系接种弯孢叶斑病菌后叶片蛋白质2-DE图谱的比较,利用MALDI-TOF MS/MS成功鉴定了36个差异表达的蛋白质点,其中与该病抗性密切相关的蛋白质包括22 kDa干旱诱导蛋白、脱落酸/成熟诱导蛋白Asr、萌发素类似蛋白GLP、谷胱甘肽过氧化物酶GPX、抗坏血酸过氧化物酶APX、翻译起始因子eIF-5A和ras相关蛋白等。光合作用、能量代谢等相关蛋白质也参与了玉米抗弯孢叶斑病菌侵染应答反应。综合分析,玉米耐受干旱和抗氧化胁迫相关蛋白质可能是玉米抗弯孢叶斑病菌侵染的重要因子,在玉米耐受逆境胁迫及抗病反应的“交叉对话”中发挥重要作用。
     4.克隆了玉米弯孢菌叶斑病抗性相关基因ZmDip。根据质谱鉴定结果,成功克隆了玉米22 kDa干旱诱导蛋白编码基因ZmDip且实现了其在大肠杆菌E. coli中的高效表达,并纯化了目的蛋白,为制备该蛋白的多克隆抗体提供了条件。本研究还发现ZmDip与Riccardi和Jeanneau等报道的ZmAsr1基因有98%的一致性,蛋白序列有99%的一致性,且均定位于10号染色体上,由此推测,ZmDip与ZmAsr1为同一个基因,两者之间核苷酸及编码蛋白的微小差异可能与基因来源即玉米基因型有关。
     5. ZmDip表达特性及弯孢叶斑病菌侵染后转录水平变化分析。利用半定量RT-PCR对ZmDip的表达特性进行了分析,发现该基因在正常生长的玉米根部表达,叶鞘不表达,而叶片中该基因的表达比较复杂,可能与玉米基因型有关。外源ABA、SA均能诱导该基因的表达,弯孢叶斑病菌侵染后,抗、感自交系中该基因的转录水平也发生变化,但与接种后寄主植物叶片中ABA、SA含量变化没有一致性,由此认为,ZmDip基因的表达可能主要受ABA、SA以外的其它路径调控。
     6.ZmDip表达提高了玉米叶片抗弯孢叶斑病菌侵染的能力。ZmDip基因在玉米离体叶片中的表达,促进了ROS主要是O2-的积累,抑制了弯孢叶斑病菌的侵染。因此,初步认为ZmDip基因表达调控了ROS代谢,从而提高了玉米对弯孢叶斑病菌侵染的抵抗力。至于该基因参与寄主植物抗性反应的具体路径,还需深入研究。
Maize leaf spot caused by Curvularia lunata (Wakker) Boed is one of the most widely distributed diseases in maize growing area of China. The disease ever outbroke seriously and resulted in a great grain loss in 1996 in northern China. In the long run, breeding resistant cultivars is the most economic and effective measures to control this disease. However, until now few cultivars possess high resistance to the disease. Furthermore, the resistance of cultivars may be easily lost due to the frequent genetic variance of the pathogen. Thus exploring proteins or genes related to the host resistance from tropic germplasm appears to be the most pressing task. Here, a proteomic approach mainly including 2-dimensional gel electrophoresis (2-DE) and MALDI-TOF MS/MS techniques was applied to screen and identify defense-related proteins from resistant inbred lines widely planted in China, then genes encoding corresponding proteins were cloned, eventually their functions in host resistance were discussed. The main results were as follows:
     1. Changes of defense-related factors in maize response to C. lunata infection. After inoculation with C. lunata, the content of SA and ROS especially O2- was significantly increased in resistant inbred lines. Besides, the transcription levels of defense genes including pathogenesis-related genes PR-1, PR-10, PAL, CAT, and POX were also significantly enhanced. While the content of ABA was found markedly increased in susceptible ones, and the transcription levels of defense genes were also increased to some extent but not significantly. Based on the results, SA was speculated to be positively correlated with maize resistance to C. lunata attack, but ABA was on the contrary. The accumulation of ROS in the early stage of pathogen infection was detected and inferred to stimulate the enhancement of maize disease resistance. Meanwhile PR-1, PR-10, PAL and ROS scavenging enzyme also played important roles in maize resistance to C. lunata infection.
     2. Optimized 2-DE system to separate proteins from maize leaves. A 2-DE system to effectively extract and separate total maize leaf proteins was established by optimizing protein extracting methods, sample lysis buffer, pH value of IPG gel and time for IEF. Meanwhile, Mg/NP-40 with PEG fraction was evidenced to be an effective method to remove high abundant proteins mainly Rubisco from total leaf protein samples according to Kim's methods (2001). The capacity of 2-DE system to visualize and detect low abundant proteins improved greatly.
     3. Identification of proteins associated with resistance to Curvularia leaf spot of maize. After inoculation with C. lunata, proteomic profiles of maize leaves between resistant and susceptible inbred lines were analyzed. Thirty-six differentially expressed protein spots resolved on the 2-DE gels were successfully identified by MALDI-TOF MS/MS. The results showed that the proteins were associated with photosynthesis, respiration, drought and oxidative stress tolerance as well as signal transduction. Of those stress related proteins, 22kDa drought-inducible protein, ABA/stress/ripening inducible protein (Asr), germin-like protein (GLP), glutathione peroxidase (GPX), ascorbate peroxidase (APX), translation initiation factor (eIF-5A) and ras related protein were unique or up-regulated in the resistant inbred lines and supposed to be implicated in host defense response to C. lunata infection. Meanwhile, drought and oxidative stress-related proteins were primarily considered to be most closely involved in maize resistance to pathogen infection. Based on the above and other observations, it was deduced that there might be cross-talk between host resistance to abiotic and biotic stresses.
     4. Cloning of defense-related gene ZmDip and its expression. Accoding to mass spectrometry result,the gene encoding 22 kDa drought inducible protein in maize was successfully cloned through RT-PCR and named as ZmDip. To carry out gene function analysis, the high level expression of ZmDip in E. coli was achieved, and subsequently purified for antibody preparation. Besides, ZmDip (Genbank accession No. EU164846) showed 98% and 99% consistency in gene and protein sequence with that of ZmAsr1 ( AX297905 , NCBI ) , respectively, so they were supposed to be one gene even though the minor difference existed, which was perhaps partly attributed to genotypes of maize inbred lines.
     5. Analysis of transcription levels of ZmDip in normal and inoculated conditions. The expression patterns of ZmDip in different tissues of maize were analyzed with semi-quantitative RT-PCR. The gene was constitutively expressed in root but not in leaf sheath. Its expression was very complicated in leaves, and depended probably on genotypes of maize inbred lines. Transient expression of ZmDip in maize leaves was induced when treated with ABA and SA. Moreover, differential transcript levels of ZmDip was found in resistant or susceptible inbred lines after inoculated with C. lunata, but no clear trend was found regarding to their correlation with maize resistance levels and content of ABA and SA in inoculated host. Thus it was deduced that ZmDip might be mainly regulated by other singal pathways besides ABA and SA.
     6. Expression of ZmDip improved host resistance to C. lunata infection. To discover the roles of ZmDip played in maize resistance to C. lunata infection, the recombinant vector pBI-ZmDip-Gus was constructed. ZmDip successfully expressed in leaves in vitro (Huangzao 4) through Agrobacterium-mediated transformation. The expression of ZmDip led to the accumulation of ROS specially O2- and remarkably reduced leaf spot area in transformed leaf tissue by subsequent challenge inoculation as compared with control. Taking together, ZmDip played a positive role in strengthening maize resistance to C. lunata infection, but the exact role ZmDip played needed to be further discussed.
引文
[1] Atkinson MM. Molecular mechanism of pathogen recognition by plants [J]. Advance in Plant Pathology, 1993, 10: 35-64.
    [2] Briggs SP, Johal GS. Genetic patterns of host-pathogen interactions [J]. Trend in Genetics, 1994, 10: 12-16.
    [3] Whitham S, Dinesh-Kumar SP, Choi D, et al. The product of the tobacco mosaic virus resistance gene N: Similarity to toll and the interleukin-1 receptor [J]. Cell, 1994, 78: 1101-1115.
    [4] Jones DA, Thomas CM, Hammod-Kosack KE, et al. Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging [J]. Science, 1994, 266: 789-793.
    [5]李文凤,牛永春,吴立人.植物抗病基因克隆与功能研究进展[J].生命科学, 2001, 13(4): 150-153.
    [6] Song WY, Wang GL, Chen LL, et al. A receptor kinase-like protein encoded by the rice disease resistance gene Xa21 [J]. Science, 1995, 270: 1804-1806.
    [7] Lawrence GJ, Finnegan EJ, Ayliffe MA, et al. Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N [J]. Plant Cell, 1995, 7: 1195-1206.
    [8] Payne G, Ahl P, Moyer M, et al. Isolation of complementary DNA clones encoding pathogenesis-related proteins P and Q, two acidic chitinases from tobacco [J]. Proc. Natl. Acad. Sci., 1990, 87(1): 98-102.
    [9]诸葛强,曾燕如,王义琴,等.植物抗病基因克隆的研究进展[J].南京林业大学学报(自然科学版), 2002, 25(5): 81-86.
    [10] Bol JE, Linthorst H. Plant pathogenesis-related proteins induced by virus infection [J]. Annu Rev Phytopathol., 1990, 28: 113-138.
    [11]韩庆典,陈志伟,段远霖,等.利用基因芯片检测水稻细菌性条斑病抗性相关基因[J].分子植物育种, 2008, 6(2): 239-244.
    [12] Wei H, Dhanaraj AL, Rowland LJ, et al. Comparative analysis of expressed sequence tags from cold-acclimated and no-acclimated leaves of Rhododedron cataw biense Michx [J]. Planta, 2005, 221(3): 406-416.
    [13] Kim ST, Cho KS, Yu S, et al. Proteomic analysis of differentially expressed proteins induced by rice blast fungus and elieitor in suspension-cultured rice cells [J]. Proteomics, 2003, 3(12): 2368-2378.
    [14] Kim ST, Kim SG, Hwang DH, et al. Proteomic analysis of pathogen-responsive proteins from rice leaves induced by rice blast fungus Magnaporthe grisea [J]. Proteomics, 2004, 4(11): 3569-3578.
    [15] Konishi H, Ishiguro K, Komatsu S. A proteomics approach towards understanding blast fungus infection of rice grown under different levels on nitrogen fertilization [J]. Proteomics, 2001, 1(9): 1162-1171.
    [16] Zhang H, Wang J, Goodman HM. An Arabidopsis gene encoding a putative 14-3-3-interacting protein, caffeic acid/ 5-hydroxyferulic acid O-methyltransferase [J]. Biochim. Biophys Acta, 1997, 1353: 199-202.
    [17]赵中秋,郑海雷,张春光.植物抗病的分子生物学基础[J].生命科学, 2001, 13(3): 135-138.
    [18] Dong H, Delaney TP, Bauer DW, et al. Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene [J]. Plant Journal, 1999, 20(2): 207-215.
    [19] Staskawicz BJ, Ausubel FM, Baker BJ, et al. Molecular genetics of plant disease resistance [J]. Science, 1995, (268): 661-667.
    [20] Vance CP, Kirk TK, Sherwood RT. Lignification as a mechanism of disease resistance [J]. Ann Rev Phytopathol., 1980, (18): 259-288.
    [21] Beardmore J, Ride JP, Granger JW. Cellular lignification as a factor in the hypersensitive resistance of wheat to stem rust [J]. Plant Pathol., 1983, 22: 209-220.
    [22] Staskawicz BJ, Ausubel FM, Baker BJ, et al. Molecular genetics of plant disease resistance [J]. Science, 1995, 268(5211): 661-667.
    [23] Wojtaszek P. Oxidative burst: an early plant response to pathogen infection [J]. Biochem J., 1997, (322): 681-692.
    [24] Doke N. Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components [J]. Physiol Plant Pathol., 1983, (23): 345-357.
    [25] Wu BJ, Shortt EB, Lawrence EB, et a1. Disease resistance conferred by expression of a gene encoding H2O2-enerating glucose oxidase in transgenic potato plants [J]. Plant Cell, 1995, (7): 1357-1368.
    [26] Adam A, Farkas T, somlyai G, et a1. Consequence of O2-generation during a bacterially induced hypersensitive reaction in tobacco deterioration of membrane lipids [J]. Physio1. Mo1. Plant Patho1., 1988, 34: 13-26.
    [26]周莹,寿森炎,贾承国,等.水杨酸信号转导及其在植物抵御生物胁迫中的作用[J].自然科学进展, 2007, 17(3): 305-312.
    [27] Delaney TP, Ukness S, Vernooij B, et al. A central role of salicylic acid in disease resistance [J]. Science, 1994, 266: 1247-1250.
    [28] Verberne MC, Verpoorte R, Boln JF, et al. Overproduction of salicylic acid in plants by bacterial transgenes enhances pathogen resistance [J]. Nature Biotechnology, 2000, 18: 779-783.
    [29] Van Loon LC. Induced resistance in plants and the role of pathogenesis-related proteins [J]. European Journal of Plant Pathology, 1997, 103: 753-765.
    [30] Carla C, Chilosi G, Caporale C, et a1. Induction of pathogenesis-related proteins in germinating wheat seeds infected with Fusarium culmorum [J]. Plant Science, 1999, 140 (14): 87-97.
    [31] Edwards K, Cramer CL, Bolwell GP, et al. Rapid transient induction of phenylalanine ammonia-lyase mRNA in elicitor-treated bean cells [J]. Proc. Natl. Acad. Sci., 1987, 82: 6731-6735.
    [32]陈姗.蛋白质组学研究方法[J].基础医学, 2005, 14(1): 52-58.
    [33]翟羽红.玉米弯孢叶斑病菌致病性分化定向选择机理与致病相关基因鉴定[D].上海交通大学硕士学位论文, 2008.
    [34] Gorg A, Weiss W, Dunn MJ. Current two-dimensional electrophoresis technology for proteomics [J]. Proteomics, 2004, 4(12): 3665-3685.
    [35] Shi Y, Xiang R, Horvath C, et al. The role of liquid chromatography in proteomics [J]. J Chromatogr A, 2004, 1053 (1-2): 27-36.
    [36]王阳梦,董银卯,何聪芬.蛋白质组学核心技术研究进展[J].北京工商大学学报(自然科学版), 2006, 24(4): 9-14.
    [37]钱小红,贺福初.蛋白质组学:理论与方法[M].北京:科学出版社, 2003.
    [38]夏其昌,曾嵘.蛋白质化学与蛋白质组学[M].北京:科学出版社, 2004.
    [39]赵宏伟.差异蛋白质组学研究与应用进展[J]. 2006年第4期临床决策论坛版, 2006.
    [40] Spengler SJ. Bioinformatics in the information age [J]. Science, 2000, 1221-1223.
    [41]陈捷,徐书法,黄秀丽,等.玉米几种重要病害蛋白质学研究进展[J].植物病理学报, 2007, 37(5): 449-455.
    [42]陶金州,山口勇.水稻与稻瘟病菌的蛋白质-细胞在体外的相互作用初步研究[J].中国水稻科学, 1994, 8(3): 169-176.
    [43]李跃建,姬红丽,彭云良,等.应该双向电泳技术研究条锈菌侵染后小麦蛋白质的改变[J].四川大学学报(工程科学版), 2005, 37(2): 80-85.
    [44] Chen ZY, Brown RL, Damann KE, et al. Identification of unique or evaluated levels of kernel proteins in aflatoxin-resistant maize genotype through proteome analysis [J]. Phytopathology, 2002, 92(10): 1084-1094.
    [45] Huang Z, White DG, Payne GA. Corn seed proteins inhibitory to Aspergillus flavus and aflatoxin biosynthesis [J]. Phytopathology, 1997, 87: 622-627.
    [46] Ji C, Norton RA, Wicklow DT, et al. Isoform patterns of chitinase andβ-1,3-glucanase in maturing corn kernels (Zea mays L.) associated with Aspergillus flavus milk stage infection [J]. Journal of Agricultural and Food Chemistry, 2000, 48: 507-511.
    [47] Guo BZ, Brown RL, Lax AR, et al. Protein profiles and antifungal activities of kernel extracts from corn genotypes resistant and susceptible to Aspergillus flavus [J]. Journal of Food Protection, 1998, 61: 98-102.
    [48] Campo S, Montserrat C, Maria C, et al. The defense response of germinating maize embryos against fungal infection: a proteomics approach [J]. Proteomics, 2004, 4(2): 383-396.
    [49] Stephen C, William JS, Yu XL, et al. Pathogen elicitor-induced changes in the maize extracellular matrix proteome [J]. Proteomics, 2005, 5(8): 4894-4904.
    [50] Harman GE, Howell, CR, Viterbo A, et al. Trichoderma species-opportunistic avirulent plant symbionts [J]. Nature Reviews Microbiology, 2004, 2: 43-56.
    [51] Chen J, Harman GE, Comis A, et al. Proteins related to the biocontrol of Pythium-damping off in maize with Trichoderma harzianum Rifai [J]. Journal of Intergrative Plant Biology, 2005, 47(8): 988-997.
    [52]李富华,叶华智,王玉涛,等.玉米弯孢菌叶斑病的研究进展[J].玉米科学, 2004, 12(2): 97-101,107.
    [53]戴法超,王晓鸣,朱振东.玉米弯孢菌叶斑病研究[J].植物病理学报, 1998, 28(2): 123-129.
    [54]王晓鸣,戴法超,焦志亮,等.玉米种质资源抗弯孢菌叶斑病特性研究[J].植物遗传资源科学, 2001, 2(3): 22-27.
    [55]徐书法.中国玉米弯孢叶斑病菌致病性分化相关蛋白质组研究[D].上海交通大学博士后研究报告, 2007.
    [56]鄢洪海.玉米弯孢叶斑病生理分化和分子生物学研究[D].沈阳农业大学博士学位论文, 2002.
    [57]薛春生,肖淑芹,翟羽红,等.玉米弯孢叶斑病菌致病类型分化研究[J].植物病理学报, 2008, 38(1): 6-12.
    [58] Xu SF, Chen J, Liu LX, et al. Proteomics associated with virulence differentiation of Curvularia lunata in maize in China [J]. Journal of Integrative Plant Biology, 2007, 49(4): 487-496.
    [59] Shimizu K, Tanaka C, Tsuda M. Cloning of Brn1, a reductase gene involved in melanin biosynthesis in Cochliobolus heterostrophus [J]. Journal of General and Applied Microbiology, 1997, 43:145-150.
    [60]翟羽红,陈捷,刘力行,等.寄主诱导下的玉米弯孢叶斑病菌致病性分化相关蛋白的动态变化研究[J].植物病理学报, 2008, 38(2): 203-207.
    [61] Macri F. Isolation and partial characterization of phytotoxins from Curvularia lunata (wakker) Boed [J]. Physiogical Plant Pathology, 1976, 8(3): 325-331.
    [62]吕国忠,薛玉梅.玉米弯孢菌叶斑病菌毒素的生物活性测定及对玉米叶片超微结构的影响[J].沈阳农业大学学报, 1999, 30(3): 212-214.
    [63] Liu T, Liu LX, Jiang X, et al. A new furanoid toxin produced by Curvularia lunata the causal agent of maize Curvularia leaf spot [J]. Canadian Journal of Plant Pathology, 2009, In Press.
    [64] Nelson RR, Hodges CS. A new species of Curvularia lunata with a protuberant conidial hilum [J]. Mycologies, 1965, 57: 822-825.
    [65] Mandokhot M. Survival of Curvularia clavyincitant of leaf spot of maize [J]. Indian Phytopatlwlogy, 1980, 33: 396-398.
    [66]黄娅琳.玉米抗弯孢叶斑病的生化机制研究[D].四川农业大学硕士学位论文, 1999.
    [67]陈捷,蔺瑞明,高增贵,等.玉米弯孢菌叶斑病抗性机制的初步研究[J].沈阳农业大学学报, 1999, 30(3): 195-199.
    [68]陈捷,蔺瑞明,高增贵,等.玉米弯孢叶斑病菌毒素对寄主防御酶系活性的影响及诱导抗性效应[J].植物病理学报, 2002, 32(1): 43-48.
    [69]赵君,王国英,胡剑,等.玉米弯孢菌叶斑病抗性的ADAA遗传模型分析[J].作物学报, 2002, 28(1): 127-130.
    [1]黄娅琳.玉米抗弯孢叶斑病的生化机制研究[D].四川农业大学硕士学位论文, 1999.
    [2]陈捷,蔺瑞明,高增贵,等.玉米弯孢菌叶斑病抗性机制的初步研究[J].沈阳农业大学学报, 1999, 30(3): 195-199.
    [3]陈捷,蔺瑞明,高增贵,等.玉米弯孢叶斑病菌毒素对寄主防御酶系活性的影响及诱导抗性效应[J].植物病理学报, 2002, 32(1): 43-48.
    [4]邓文红,张风娟,金幼菊.反相高效液相色谱法测定植物组织中的水杨酸[J].北京林业大学学报, 2007, 29(1): 151-154.
    [5]吴耕西,毕桂红.高效液相色谱法测定苹果叶片中的吲哚乙酸和脱落酸[J].山东农业大学学报, 1994, 25(1): 51-55.
    [6]中国科学院上海植物生理研究所,上海市植物生理学会,编.现代植物生理学实验指南[M].北京:科学出版社, 1999, 305-323.
    [7]赵世杰,刘华山,董新纯.植物生理学实验指导[M].北京:中国农业科技出版社, 1998, 155-161.
    [8]赵中秋,郑海雷,张春光.植物抗病的分子生物学基础[J].生命科学, 2001, 13(3): 135-138.
    [9]周莹,寿森炎,贾承国,等.水杨酸信号转导及其在植物抵御生物胁迫中的作用[J].自然科学进展, 2007, 17(3): 305-312.
    [10]刘悦屏,宫飞,赵晓萌.水杨酸介导的信号转导途径与植物抗逆性[J].中国农学通报, 2005, 21(7): 227-229,转269.
    [11] Delaney TP, Ukness S, Vernooij B, et al. A central role of salicylic acid in disease resistance [J]. Science, 1994, 266: 1247-1250.
    [12] Verberne MC, Verpoorte R, Boln JF, et al. Overproduction of salicylic acid in plants by bacterial transgenes enhances pathogen resistance [J]. Nature Biotechnology, 2000, 18: 779-783.
    [13]张莹,王艳辉,郝敏,等.水杨酸诱导对玉米大斑病抗性的影响[J].农业生物技术学报, 2008, 16(3): 501-507.
    [14]翟彩霞,马春红,王立安,等.水杨酸(SA)诱导玉米抗小斑病研究[J].河北农业科学, 2004, 8(2): 57-60.
    [15]郭红莲,陈捷,高增贵,等.不同诱抗剂诱导玉米对灰斑病的抗性及其与PAL的关系[J].沈阳农业大学学报, 2000, 31(5): 465-467.
    [16] Davies WJ, Zhang J. Root to shoot signals and regulation of growth and development of plants in drying soil [J]. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1991, 42: 55-76.
    [17] Giraudat J, Parey F, Bertauche N, et al. Current advance in abscisic acid action and signaling [J]. Plant Mol. Biol., 1994, 26: 1557-1577.
    [18] Flors V, Ton J, Jakab G, et al. Abscisic acid and callose: Team players in defence against pathogens [J]. Journal of Phytopathology, 2005, 153: 7-8.
    [19] Fujita M, Fujita Y, Noutoshi Y, et al. Crosstalk between abiotic and biotic stress responses: A current view from the points of convergence in the stress signaling networks [J]. Current Opinion in Plant Biology, 2006, 9: 436-422.
    [20] Koga H, Dohi K, Mori M. Abscisic acid and low temperatures suppress the whole plant-specific resistance reaction of rice plants to the infection with Magnaporthe grisea [J]. Physiological and Molecular Plant Pathology, 2004, 65: 3-9.
    [21] Mauch-Mani B, Mauch F. The role of abscisic acid in plant-pathogen interactions [J]. Current Opinion in Plant Biology, 2005, 8: 409-414.
    [22] Medhy MC. Active oxygen species in plant defense against pathogens [J]. Plant Physi., 1994, 105: 467-473.
    [23] Mehdy MC, Sharma YK, Sathasivan K, et al. The role of activated oxygen species in plant disease resistance [J]. Physiol. Plant, 1996, 98: 365-374.
    [24] Low P, Merida J. The oxidative burst in plant defense: Function and signaltransduction [J]. Physiol Plant, 1996, 96: 533-542.
    [25] Wojtaszek P. Oxidative burst: an early plant response to pathogen infection [J]. Biochem J., 1997, (322): 681-692.
    [26] Lamb C, Dixon RA. The oxidative burst in plant disease resistance [J]. Annu Rev Plant Physiol Plant Mol Biol., 1997, 48: 251-275.
    [27] Alvarez ME, Pennell RI, Meijer PJ, et al. Reactive oxygen intermediate a systemic signal network in the establishment of plant immunity [J]. Cell, 1998, 92: 773-784.
    [28] Van Breusegem F, Vranova E, Dat JF, et al. The role of active oxygen species in plant signal transduction [J]. Plant Science, 2001, 161: 405-414.
    [29] Barna B, Fodor J, Pogany, et al. Role of reactive oxygen species and antioxidants in plant disease resistance [J]. Pest Management Science, 2003, 59: 459-464.
    [30]郭泽建,李德葆.活性氧与植物抗病性[J].植物学报, 2000, 42(9): 881-891.
    [31] Doke N. Involvement of superoxide anion generation in hypersensitive response of potato tuber tissue to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components [J]. Physiol. Plant Pathol., 1983, 23: 345-347.
    [32] Adam AL, Bestwick CS, Barna B, et al. Enzymes regulating the accumulation fo active oxygen species during the hypersensitive reaction to Pseudomonas syringae pv. phaseolicola [J]. Planta, 1995, 196: 240-249.
    [33] Barna B, Pogany M. Antioxidant enzymes and membrane lipid composition of disease resistant to tomato plants regenerated from crown galls [J]. Acta Physiol Plant, 2001, 23: 273-277.
    [34] Kiraly Z, Barna B, Kecskes A, et al. Down-regulation of antioxidative capacity in a transgenic tabacco which fails to develop acquired resistance to necrotization caused by TMV [J]. Free Rad Res., 2002, 32: 981-991.
    [35]刘利华,林奇英,谢华安,等.病程相关蛋白与植物抗病性研究[J].福建农业学报, 1999, 14(3): 53-58.
    [36] Van Loon LC. The nomenclature of pathogensis-related proteins [J]. Physiol. Mol. Plant Pathol., 1990, 37: 229-230.
    [37] Van Loon LC, Pierpoint WS, Boller T, et al. Recommendations for naming plant pathogenesis-related proteins [J]. Plant Molecular Biology Reporter, 1994, 12(3): 245-264.
    [38] Carla C, Chilosi G, Caporale C, et a1. Induction of pathogenesis-related proteins in germinating wheat seeds infected with Fusarium culmorum [J]. Plant Science, 1999, 140 (14): 87-97.
    [39] Chen ZY, Brown RL, Damann KE, et al. Identification of unique or evaluated levels of kernel proteins in aflatoxin-resistant maize genotype through proteome analysis [J]. Phytopathology, 2002, 92(10): 1084-1094.
    [40] Edwards K, Cramer CL, Bolwell GP, et al. Rapid transient induction of phenylalanine ammonia-lyase mRNA in elicitor-treated bean cells [J]. Proc. Natl. Acad. Sci., 1987, 82: 6731-6735.
    [41] Vurro M, Ellis BE. Effect of fungal toxin on induction of phenylalanine ammonia-lyase activity in elicited cultures of hybrid poplar [J]. Plant Science, 1997, 126: 29-38.
    [42] Shadle GL, Wesley SV, Korth KL, et al. Phenylpropanoid compounds and disease resistance in transgenic tobacco with altered expression of L- phenylalanine ammonia-lyase [J]. Phytochemistry, 2003, 64(1): 153-161.
    [1]夏其昌,曾嵘.蛋白质化学与蛋白质组学[M].北京:科学出版社, 2004.
    [2]钱小红,贺福初.蛋白质组学:理论与方法[M].北京:科学出版社, 2003.
    [3]郭晋隆,叶冰莹,黄庆煌,等.甘蔗叶片总蛋白提取及双向电泳条件的改进[J].生物技术通报, 2008, (5): 112-114,转125.
    [4]何瑞锋,丁毅,张剑锋,等.植物叶片蛋白质双向电泳技术的改进与优化[J].遗传, 2000, (5): 319-321.
    [5]李冠军,付凤玲.玉米叶片总蛋白提取和双向电泳技术的改进[J].玉米科学, 2006, 14(6): 100-103.
    [6]朱丽华.植物绿色组织蛋白质组分双向电泳分析[J].植物生理学通报, 1992, 28(3): 217-219.
    [7]范海延,陈捷,吕春茂,等.黄瓜杂交二代抗黄瓜白粉病的蛋白质组学初步分析[J].园艺学报, 2007, 34(2): 349-354.
    [8]范海延,陈捷,张春宇,等.适于黄瓜叶片蛋白质组分析的双向电泳方法最佳条件的研究[J].沈阳农业大学学报, 2008, 39(3): 365-367.
    [9] Fan HY, Xu SF, Chen J, et al. Proteomics related to resistance to the cucumberpowdery mildew disease in F2 generation of cucumber [J]. Journal of Shanghai Jiaotong University (Science), 2005, E-10 (S1): 167-171.
    [10]徐书法.中国玉米弯孢叶斑病菌致病性分化相关蛋白质组研究[D].上海交通大学博士后研究报告, 2007.
    [11] Porubleva L, Velden KV, Kothari S, et al. The proteome o f maize leaves: Use of gene sequences and expressed sequence tag data for identification of proteins with peptide mass fingerprints [J]. Electrophoresis, 2001, 22: 1724-1738.
    [12] Kim ST, Cho KS, Jang YS, et al. Two-dimensional electrophoretic analysis of rice proteins by polyethylene glycol fractionation for protein arrays [J]. Electrophoresis, 2001, 22: 2103-2109.
    [13] Xu SF, Chen J, Liu LX, et al. Proteomics associated with virulence differentiation of Curvularia lunata in maize in China [J]. Journal of Integrative Plant Biology, 2007, 49(4): 487-496.
    [14]翟羽红.玉米弯孢叶斑病菌致病性分化定向选择机理与致病相关基因鉴定[D].上海交通大学硕士学位论文, 2008.
    [15]翟羽红,陈捷,刘力行,等.寄主诱导下的玉米弯孢叶斑病菌致病性分化相关蛋白的动态变换研究[J].植物病理学报, 2008, 38(2): 203-207.
    [16] PDQuest User Guide for Version 7.1, Bio-Rad公司.
    [17]吴庆丰,王崇英,王新宇,等.山黧豆叶片蛋白质双向电泳技术的建立[J].西北植物学报, 2006, 26(7): 1330-1336.
    [1]赵君,王国英,胡剑,等.玉米弯孢菌叶斑病抗性的ADAA遗传模型的分析[J].作物学报, 2002, 28(1): 127-130.
    [2]陈捷,徐书法,黄秀丽,等.玉米几种重要病害蛋白质学研究进展[J].植物病理学报, 2007, 37(5): 449-455.
    [3] Kim ST, Cho KS, Yu S, et al. Proteomic analysis of differentially expressed proteins induced by rice blast fungus and elieitor in suspension-cultured rice cells [J]. Proteomics, 2003, 3(12): 2368-2378.
    [4] Kim ST, Kim SG, Hwang DH, et al. Proteomic analysis of pathogen-responsiveproteins from rice leaves induced by rice blast fungus Magnaporthe grisea [J]. Proteomics, 2004, 4(11): 3569-3578.
    [5] Konishi H, Ishiguro K, Komatsu S. A proteomics approach towards understanding blast fungus infection of rice grown under different levels on nitrogen fertilization [J]. Proteomics, 2001, 1(9): 1162-1171.
    [6] Van Loon, LC and Van Kammen A. Polyacrylamide disc electrophoresis of the soluble leaf proteins from Nicotiana tabacum var. Samsun and Samsun NN.II. Changes in protein constitution after infection with tobacco mosaic virus [J]. Virology, 1970, 40: 199-211.
    [7]廖玉才,张启发,郑用琏.受白粉菌诱导大麦抗感等基因系蛋白质变化的双向电泳分析[J].遗传学报, 1991, 18(5): 431-436.
    [8] Huang Z, White DG, Payne GA. Corn seed proteins inhibitory to Aspergillus flavus and aflatoxin biosynthesis [J]. Phytopathology, 1997, 87: 622-627.
    [9] Ji C, Norton RA, Wicklow DT, et al. Isoform patterns of chitinase andβ-1,3-glucanase in maturing corn kernels (Zea mays L.) associated with Aspergillus flavus milk stage infection [J]. Journal of Agricultural and Food Chemistry, 2000, 48: 507-511.
    [10] Guo BZ, Brown RL, Lax AR, et al. Protein profiles and antifungal activities of kernel extracts from corn genotypes resistant and susceptible to Aspergillus flavus [J]. Journal of Food Protection, 1998, 61: 98-102.
    [11] Harman GE, Howell, CR, Viterbo A, et al. Trichoderma species-opportunistic avirulent plant symbionts [J]. Nature Reviews Microbiology, 2004, 2: 43-56.
    [12] Chen J, Harman GE, Comis A, et al. Proteins related to the biocontrol of Pythium-damping off in maize with Trichoderma harzianum Rifai [J]. Journal of Intergrative Plant Biology, 2005, 47(8): 988-997.
    [13] Chen ZY, Brown RL, Lax AR, et al. Resistance to Aspergillus flavus in corn kernels is associated with a 14 kDa protein [J]. Phytopathology, 1998, 88: 276-281.
    [14] Chen ZY, Brown RL, Damann KE, et al. Identification of unique or evaluated levels of kernel proteins in aflatoxin-resistant maize genotype through proteomeanalysis [J]. Phytopathology, 2002, 92(10): 1084-1094.
    [15] Campo S, Montserrat C, Maria C, et al. The defense response of germinating maize embryos against fungal infection: a proteomics approach [J]. Proteomics, 2004, 4(2): 383-396.
    [16] Stephen C, William JS, Yu XL, et al. Pathogen elicitor-induced changes in the maize extracellular matrix proteome [J]. Proteomics, 2005, 5(8): 4894-4904.
    [17] Verica JA, Maximova SN, Strem MD, et al. Isolation of ESTs from cacao (Theobroma cacao L.) leaves treated with inducers of the defense response [J]. Plant Cell Report, 2004, 23: 404-413.
    [18] Yang EJ, Oh YA, Lee ES, et al. Oxygen-evolving enhancer protein 2 is phosphorylated by glycine-rich 3/ wall-associated kinase 1 in Arabidopsis [J]. Biochemical and Biophysical Research Communication, 2003, 305: 862-868.
    [19] Bernier F, Berna A. Germins and germin-like proteins: Plant do-all proteins. But what do they do exactly? [J] Plant Physiology and Biochemistry, 2001, 39: 545-554.
    [20] Schweizer P, Christoffel A, Duller R. Transient expression of members of the germin-like gene family in epidermal cells of wheat confers disease resistance [J]. The Plant Journal, 1999, 20: 541-552.
    [21] Sugiharto B, Ermawati N, Mori H, et al. Identification and characterization of a gene encoding drought-inducible protein localizing in the bundle sheath cell of sugarcane [J]. Plant and cell physiology, 2002, 43(2): 350-354.
    [22] Iusem ND, Bartholomew DM, Hitz WD, et al. Tomato (Lycopersicon esculantum) transcript induced by water deficit and ripening [J]. Plant Physiol., 1993, 102: 1353-1354.
    [23] Schneider A, Salamini F, Gebhardt C. Expression patterns and promoter activity of the cold-regulated gene ci21A of potato [J]. Plant Physiol., 1997, 113: 335-345.
    [24] Silhavy D, Hutvagner G, Barta E, et al. Isolation and characterization of a water-stress-inducible cDNA clone from Solanum chacoense [J]. Plant Mol. Biol., 1995, 27: 587-595.
    [25] Chang S, Puryear JD, Dias MADL, et al. Gene expression under water deficit in loblolly pine (Pinus taeda): isolation and characterization of cDNA clones [J]. Physiol. Plant., 1996, 97: 139-148.
    [26] Wang CS, Liau YE, Wu TD, et al. Characterization of a desiccation-related protein in lily pollen during development and stress [J]. Plant Cell Physiol., 1998, 39: 1307-1314.
    [27] Yang CY, Chen YC, Jauh GY, et al. A lily ASR protein involves abscisic acid signaling and confers drought and salt resistance in Arabidopsis [J]. Plant Physiology, 2005, 139: 836-846.
    [28] Frankel N, Carrari F, Hasson E, et al. Evolutionary history of the Asr gene family [J]. Gene, 2006, 378: 74-83.
    [29] Maskin L, Frankel N, Gudesblat G, et al. Dimerization and DNA-binding of ASR1, a small hydrophilic protein abundant in plant tissues suffering from water loss [J]. Biochemical and Biophysical Research Communications, 2007, 352: 831-835.
    [30] Dresselhaus_ T, Cordts S, L?rz H. A transcript encoding translation initiation factor eIF-5A is stored in unfertilized egg cells of maize [J]. Plant Molecular Biology, 1999, 39: 1063-1071.
    [31] Wang TW, Lu L, Wang D, et al. Isolation and characterization of senescence-induced cDNAs encoding deoxyhypusine synthase and eucaryotic translation initiation factor 5A from tomato [J]. The Journal of Biological Chemistry, 2001, 276: 17541-17549.
    [32] Thompson JE, Hopkins MT, Taylor C, et al. Regulation of senescence by eukaryotic translation initiation factor 5A: implication for plant growth and development [J]. Trends in Plant Science, 2004, 9: 174-179.
    [33] Chou WC, Huang YW, Tsay WS, et al. Expression of genes encoding the rice translation initiation factor, eIF5A, involved in developmental and environmental response [J]. Physiologia Plantarum, 2004, 121: 50-57.
    [34]罗敏,吴乃虎.高等植物Rac家族的结构与功能[J].自然科学进展, 2003, 13(9): 901-909.
    [35] One E, Wong HL, Kawasaki T, et al. Essential role of the small GTPase Rac in disease resistance of rice [J]. Proc Natl Acad Sci., 2001, 98: 759-764.
    [1] Iusem ND, Bartholomew DM, Hitz WD, et al. Tomato (Lycopersicon esculantuml) transcript induced by water deficit and ripening [J]. Plant Physiol., 1993, 102: 1353-1354.
    [2] Schneider A, Salamini F, Gebhardt C. Expression patterns and promoter activity of the cold-regulated gene ci21A of potato [J]. Plant Physiol., 1997, 113: 335-345.
    [3] Silhavy D, Hutvagner G, Barta E, et al. Isolation and characterization of awater-stress-inducible cDNA clone from Solanum chacoense [J]. Plant Mol. Biol., 1995, 27: 587-595.
    [4] Chang S, Puryear JD, Dias MADL, et al. Gene expression under water deficit in loblolly pine (Pinus taeda): isolation and characterization of cDNA clones [J]. Physiol. Plant., 1996, 97: 139-148.
    [5] Wang CS, Liau YE, Wu TD, et al. Characterization of a desiccation-related protein in lily pollen during development and stress [J]. Plant Cell Physiol., 1998, 39: 1307-1314.
    [6] Yang CY, Chen YC, Jauh GY, et al. A lily ASR protein involves abscisic acid signaling and confers drought and salt resistance in Arabidopsis [J]. Plant Physiology, 2005, 139: 836-846.
    [7] Frankel N, Carrari F, Hasson E, et al. Evolutionary history of the Asr gene family [J]. Gene, 2006, 378: 74-83.
    [8] Maskin L, Frankel N, Gudesblat G, et al. Dimerization and DNA-binding of ASR1, a small hydrophilic protein abundant in plant tissues suffering from water loss [J]. Biochemical and Biophysical Research Communications, 2007, 352: 831-835.
    [9] Vaidyanathan R, Kuruvilla S, Thomas G. Characterization and expression pattern of an abscisic acid and osmotic stress responsive gene from rice [J]. Plant Sci., 1999, 140: 21-30.
    [10] Cakir B, Agasse A, Gaillard C, et al. A grape Asr protein involved in sugar and abscisic acid signaling [J]. Plant Cell, 2003, 15: 2165-2180.
    [11] Riccardi F, Gazeau P, Vienne D, et al. Protein changes in response to progressive water deficit in maize [J]. Plant Physiol., 1998, 117: 1253-1263.
    [12] Sugiharto B, Ermawati N, Mori H, et al. Identification and characterization of a gene encoding drought-inducible protein localizing in the bundle sheath cell of sugarcane [J]. Plant Cell Physiology, 2002, 43(3): 350-354.
    [13] Chen ZY, Brown RL, Lax AR, et al. Resistance to Aspergillus flavus in corn kernels is associated with a 14 kDa protein [J]. Phytopathology, 1998, 88: 276-281.
    [14] Chen ZY, Brown RL, Damann KE, et al. Identification of unique or evaluated levels of kernel proteins in aflatoxin-resistant maize genotype through proteome analysis [J]. Phytopathology, 2002, 92(10): 1084-1094.
    [15] Campo S, Montserrat C, Maria C, et al. The defense response of germinating maize embryos against fungal infection: a proteomics approach [J]. Proteomics, 2004, 4(2): 383-396.
    [16] Stephen C, William JS, Yu XL, et al. Pathogen elicitor-induced changes in the maize extracellular matrix proteome [J]. Proteomics, 2005, 5(8): 4894-4904.
    [17] Qiu YP, Yu DQ. Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis [J]. Environmental and Experimental Botany, 2009, 65(1): 35-47.
    [18] Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: A Laboratory Manual [M]. 2nd ed, 1989, Cold Spring Harbor Laboratary Press.
    [19] Riccardi F, Gazeau P, Jacquemot M P, et al. Deciphering genetic variations of proteome responses to water deficit in maize leaves [J]. Plant Physiology and Biochemistry, 2004, 42: 1003-1011.
    [20] Jeanneau M, Gerentes D, Foueillassar, et al. Improvement of drought tolerance in maize: towards the functional validation of the Zm-Asr1 gene and increase of water use efficiency by over-expression C4-PEPC [J]. Biochimie, 2002, 84: 1127-1135.
    [21] Espelund M, S?b?e-Larssen S, Hughes DW, et al. Late embryogenesis abundant genes encoding proteins with different numbers of hydrophilic repeats are regulated differentially by abscisic acid and osmotic stress [J]. The Plant Journal, 1992, 2(2): 241-252.
    [22] Xu D, Duan X, Wang B, et al. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice [J]. Plant Physiology, 1996, 110(1): 249-257.
    [23] Lan T, Cai D, Zheng YZ. Expression in escherichia coli of three different soybean late embryogenesis abundant (LEA) genes to investigate enhanced stress tolerance [J]. J. Integr. Plant. Biol., 2005, 47, 613-621.
    [24] Tolleter D, Jaquinod M, Mangavel C, et al. Structure and function of a mitochondrial late embryogenesis abundant protein are revealed by disiccation [J]. The Plant Cell, 2007, 19: 1580-1589.
    [25] Rajesh S, Raveendran M, Sivakumar P, et al. Overexpression analysis of emv2 gene coding for late embryogenesis abundant protein from Vigna radiata (Wilczek) [J]. Journal of Stress Physiology & Biochemistry, 2008, 4(3): 9-16.
    [26] Kalemba EM, Pukacka S. Changes in late embryogenesis abundant protein and a small heat shock protein during storage of beech (Fagus sylvatica L.) seeds [J]. Environmental and Experimental Botany, 2008, 63(1-3): 274-280.
    [27] Hundertmark M, Hincha DK. LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana [J]. BMC Genomics, 2008, 9: 118.
    [1] Iusem ND, Bartholomew DM, Hitz WD, et al. Tomato (Lycopersicon esculantum) transcript induced by water deficit and ripening [J]. Plant Physiol., 1993, 102: 1353-1354.
    [2] Frankel N, Carrari F, Hasson E, et al. Evolutionary history of the Asr gene family [J]. Gene, 2006, 378: 74-83.
    [3] Schneider A, Salamini F, Gebhardt C. Expression patterns and promoter activity of the cold-regulated gene ci21A of potato [J]. Plant Physiol., 1997, 113: 335-345.
    [4] Silhavy D, Hutvagner G, Barta E, et al. Isolation and characterization of awater-stress-inducible cDNA clone from Solanum chacoense [J]. Plant Mol. Biol. 1995, 27: 587-595.
    [5] Chang S, Puryear JD, Dias MADL, et al. Gene expression under water deficit in loblolly pine (Pinus taeda): isolation and characterization of cDNA clones [J]. Physiol. Plant., 1996, 97: 139-148.
    [6] Wang CS, Liau YE, Wu TD, et al. Characterization of a desiccation-related protein in lily pollen during development and stress [J]. Plant Cell Physiol., 1998, 39: 1307-1314.
    [7] Yang CY, Chen YC, Jauh GY, et al. A lily ASR protein involves abscisic acid signaling and confers drought and salt resistance in Arabidopsis [J]. Plant Physiol., 2005, 139: 836-846.
    [8] Vaidyanathan R, Kuruvilla S, Thomas G. Characterization and expression pattern of an abscisic acid and osmotic stress responsive gene from rice [J]. Plant Sci., 1999, 140: 21-30.
    [9] Cakir B, Agasse A, Gaillard C, et al. A grape Asr protein involved in sugar and abscisic acid signaling. Plant Cell, 2003, 15: 2165-2180.
    [10] Riccardi F, Gazeau P, Vienne D, et al. Protein changes in response to progressive water deficit in maize [J]. Plant Physiol., 1998, 117: 1253-1263.
    [11] Canel C, Bailey-Serres JN, Roose ML. Pummelo fruit transcript homologous to ripening-induced genes [J]. Plant Physiol., 1995, 108: 1323-1324.
    [12] Mbeguie-A-Mbeguie D, Gomez RM, Fils-Lycaon B. Molecular cloning and nucleotide sequence of an abscisic acid-, stress-, ripening-induced (ASR)-like protein from apricot fruit (accession no. U82760). Gene expression during fruit ripening (PGR97-161) [J]. Plant Physiol., 1997, 115: 1288.
    [13] Riccardi F, Gazeau P, Vienne D, et al. Protein changes in response to progressive water deficit in maize: quantitative variation and polypeptide identification [J]. Plant Physiol., 1998,117: 1253-1263.
    [14] Riccardi F, Gazeau P, Jacquemot M P, et al. Deciphering genetic variations of proteome responses to water deficit in maize leaves [J]. Plant Physiology and Biochemistry, 2004, 42: 1003-1011.
    [15] Jeanneau M, Gerentes D, Foueillassar, et al. Improvement of drought tolerance in maize: towards the functional validation of the Zm-Asr1 gene and increase of water use efficiency by over-expression C4-PEPC [J]. Biochimie, 2002, 84: 1127-1135.
    [16] Vienne D, Leonardi A, Damerval C, et al. Genetics of proteome variation for QTL characterization: application to drought-stress responses in maize [J]. Journal of Experimental Botany, 1999, 50(332): 303-309.
    [17] Frankel N, Nunes-Nesi A, Balbo I, et al. ci21A/Asr1 expression influences glucose accumulation in potato tuber [J]. Plant Mol. Biol., 2007, 63: 719-730.
    [18] Kalifa Y, Gilad A, Konrad Z, et al. The water- and salt-stress-regulated Asr1 (abscisic acid stress ripening) gene encodes a zinc-dependent DNA-binding protein [J]. Biochem. J., 2004, 381: 373-378.
    [19] Chen ZY, Brown RL, Damann KE, et al. Identification of unique or evaluated levels of kernel proteins in aflatoxin-resistant maize genotype through proteome analysis [J]. Phytopathology, 2002, 92(10): 1084-1094.
    [20] Campo S, Montserrat C, Maria C, et al. The defense response of germinating maize embryos against fungal infection: a proteomics approach [J]. Proteomics, 2004, 4(2): 383-396.
    [21]李静,陈敏,刘现伟,等.莴苣高效瞬时表达体系的建立[J].园艺学报, 2006, 33(2): 405-407.
    [22]中国科学院上海植物生理研究所,上海市植物生理学会.现代植物生理学实验指南[M].北京:科学出版社, 1999, 305-323.
    [23]赵世杰,刘华山,董新纯.植物生理学实验指导[M].北京:中国农业科技出版社, 1998, 155-161.
    [24] Aebi H. Catalase in vitro [J]. Methods Enzymol., 1984, 105: 121-126.
    [25] Bradford MM. A rapid and sensitive method for quantitation of microgram quantities of utilizing the principle of protein-dye-binding [J]. Anal Biochem., 1976, 72: 248-254.
    [26] Wojtaszek P. Oxidative burst: an early plant response to pathogen infection [J]. Biochem J., 1997, (322): 681-692.
    [27]郭泽建,李德葆.活性氧与植物抗病性[J].植物学报, 2000, 42(9): 881-891.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700