长期定位施肥对石灰性紫色土微生物学特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为跟踪和监测长期定位施肥对石灰性紫色土土壤质量的影响,四川省农业科学院于1982年在四川遂宁市船山区的石灰性紫色土上建立了“NPK长期肥料定位试验”,并对长期定位施肥下土壤的理化性质以及作物产量进行了长期研究。为深入认识长期定位施肥对石灰性紫色土质量的影响,本文在前人已有研究基础上,运用平板菌落计数和最大或然法(MPN)对不同施肥制度下的土壤可培养微生物数量进行了测定;利用化学分析法对土壤微生物量碳和氮、土壤呼吸作用、硝化作用以及土壤酶活进行了分析;最后,应用DGGE分子标记技术对长期不同施肥下细菌、AM真菌、古菌、硝化细菌和氨氧化细菌等微生物群落结构特征进行了研究。结果总结如下:
     (1)长期定位施肥后土壤微生物学特性和土壤活性的研究结果表明:与对照无肥处理(CK)相比,施肥能增加微生物数量,SMBC和SMBN的含量变化分别是10.8-91.4mg.kg~(-1)和10.8-37.2 mg.kg~(-1),8种施肥方式中,NPKM处理下的土壤微生物量碳和氮最高。不同施肥方式对土壤中的酶活性具有不同影响,施肥能够增加土壤中转化酶、脲酶和磷酸酶的活性,而降低多酚氧化酶的活性。同样施肥也可以提高土壤呼吸作用强度,8种施肥处理中,CK处理的土壤呼吸作用最弱,NM肥料处理的土壤呼吸作用最强。施肥对土壤硝化作用表现为正向促进作用,与长期单施化肥相比,长期化肥配施农家肥对土壤硝化作用的促进作用最明显,不同作物种植方式也会影响土壤硝化作用,表现为紫色水稻土旱季硝化作用大于淹水土壤。
     (2) DGGE图谱分析表明不同施肥制度处理下土壤微生物群落结构出现了变化。N、P、K等无机肥料配合施用以及无机肥料与农家肥配合施用能够增加土壤细菌群落复杂性,特别是农家肥的处理,能够增加土壤中一些特殊的细菌类群,8种施肥处理中,在NPKM(或NM)处理的土壤细菌多样性最高,CK处理的多样性最低。DGGE条带序列分析表明不同施肥处理下土壤的优势共同条带与科克斯体科的lusitana菌(Aquicellalusitana)及酸杆菌纲(Acidobacteria)的细菌非常相似。
     (3)对长期不同施肥处理下的AM真菌群落结构特点的研究结果表明,石灰性紫色土上种植小麦的AM真菌多样性指数较种植水稻的大;8种施肥处理中,NM肥处理下的AM真菌多样性指数最高,农家肥配施无机肥的处理会提高AM真菌的多样性指数,施磷肥处理会降低AM真菌的遗传多样性:聚类分析表明土壤在种植水稻后,不同施肥处理的AM真菌的聚类分析表明,供试8种施肥处理土壤样品在0.53的水平上共分为四个群,N、CK、NM、NPKM和M为一个群;NP、NPK和NPM分别单独聚成另外三个群。在种植小麦后的聚类分析显示8种施肥处理土壤被分为三个族群:N、NM、NP、NPKM、NPM和M为一个群,NPK为第二族群,CK(无肥)独立为第三族群。
     (4)对长期不同施肥处理下的古菌群落结构特点的研究结果表明,长期定位施肥对土壤中的古菌形成明显的影响,具有不同的DGGE图谱。NP,NM和NPKM长期肥料处理下的土壤古菌多样性指数低于M、NPM、CK、N和NPK肥料处理。在DGGE图谱的基础上,分别选择种植水稻和小麦的NPK处理土壤DNA为样品,对土壤的古菌进行16S rDNA克隆测序分析,结果显示石灰性紫色土中的土壤古菌属于泉古菌界的陆生族里。系统发育分析发现,所有古菌克隆子聚在两个群里,群Ⅰ的古菌与前人分离自淡水池里的古菌非常相似。群Ⅱ的古菌与大陆土壤里的古菌非常相似。对DGGE图谱的聚类分析发现,不管是石灰性紫色土种植水稻还是小麦,8种施肥处理都聚在3个群里。种植水稻时,M和NPM肥料处理下的土壤古菌聚成第一个群,NP处理下的聚成第二个群,另外5种施肥处理(包括NPKM,NM,CK,N和NPM)聚成第三个群。种植小麦时,NPKM和M处理下的土壤古菌聚成一个群,NP处理下的聚成第二个群,N,NPK,NM,NPM和CK处理下的聚成第三个群。显示不同作物种植对土壤古菌也有一定影响。
     (5)利用DGGE技术研究了不同施肥制度对氨氧化细菌群落结构的影响。与对照无肥处理相比,施肥能改变氨氧化细菌的群落结构。无机肥配施农家肥的氨氧化细菌的群落结构丰富度比施用无机肥的处理高。主成分分析将8种施肥处理划分成两个主成分。植稻土壤,主成分1为NP、NM、NPM和NPKM,主成分2为CK、N、M和NPK;植麦土壤,主成分1为M、NM、NPM和NPKM,主成分2为CK、N、NP和NPK。主成分1的氨氧化细菌群落结构丰富度高于主成分2。水稻收获后土壤的氨氧化细菌群落结构丰富度高于小麦收获后土壤。
     (6)采用DGGE技术研究了长期不同施肥制度对石灰性紫色水稻土硝化细菌群落结构的影响。结果表明,施用化肥以及化肥配施有机肥会改变土壤中硝化细菌的群落结构。与长期单施化肥相比,长期化肥配施农家肥会提高土壤硝化细菌群落结构多样性。该紫色水稻土在种植水稻后的聚类分析(UPGMA)表明,供试8种土壤样品共分为三大族群:NP单独为一种族群,NPK、M、NM、NPM和NPKM为一个族群,CK,N为第三族群。在种植小麦后的聚类分析(UPGMA)显示参试8种土壤也被分为三个族群:CK、M、NM、NPM和NPKM为一个族群,NP与NPK为第二个族群,N独立为第三族群。
In order to address and monitor the effect of long-term fertilization on the soil quality, the Soil and Fertilizer Institute of Sichuan Academy of Agricultural Sciences established a 'N, P, K long-term fertilization field experiment'on the Calcareous Purplish Soil in 1982 located in Chuanshan district, Suining city, Sichuan province, China. The impact of the long term fertilization on soil physiochemical properties and crop yields were studied extensively. Based on the previous works, the pour plate count method and most probable number method were used to study the impact of different long term fertilizers on soil microbes' quantity. Chemical analysis was employed to determine the influence of long-term application of fertilizers on soil microbial biomass carbon and nitrogen, soil respiration, nitrification rates and enzymes activity. And finally, the Denaturing gradient gel electrophoresis (DGGE) molecule fingerprint method was applied to study the community structure of bacteria, AM fungi, archaea, ammonium oxidizing bacterial and nitrobacteria. The results were listed as following.
     (1) The results of long-term application of different fertilizers on soil microbial characteristics and activity in calcareous purple paddy soil showed that the treatments receiving any fertilizer application tended to increase the number of soil microbes compared with CK (no fertilizer treatment). The contents of SMBC and SMBN were among 10.8-91.4 mg.kg~(-1) and 10.8-37.2 mg.kg~(-1), respectively. Among the 8 fertilizer treatments, the highest amounts of SMBC and SMBN were the soil amended with NPKM. Different fertilizer treatments made varied impact on the soil enzyme activity. Fertilization could improve the activities of invertases, urease and phosphatase, but decrease the activities of polyphenoloxidase. Soil respiration was also improved with fertilization. The respiration in the soil amended with NM was the highest while it in the soil with CK was the lowest. The soil nitrification rates of the same soil varied substantially after long-term treatments with various fertilizers. Generally, soil amended with any fertilizers tended to increase nitrification rates compared with the control. The nitrification rates of the soil appeared to be lower under rice cultivation than those of the same soil under wheat cultivation.
     (2) Soil bacterial community structure was analyzed by PCR-DGGE targeting bacterial 16S rRNA genes. The results showed that higher diversity of the soil bacterial community was found in soil amended with farmyard manure plus mineral fertilizer than in other fertilizer treatments. Some specific band emerged in the soil amended with farmyard manure. The highest diversity of bacterial communities was found in the NPKM treated soil. The bacterial community structures differed in rice and wheat plots. Sequencing of PCR products separated in DGGE showed that some of the common and dominant bands were closely related to Aquicella lusitana and Acidobacteria.
     (3) The results about the impact of long-term fertilization on the AM fungi community showed that the diversity of AM fungi was affected by different fertilization treatments and different crop cultivation. The Shannon diversity index of the soil AM fungi community under different long term fertilization with wheat cultivation was higher than that in the soil with rice cultivation. Among the eight long term fertilizer treatments, the highest Shannon diversity index appeared in the soil amended with NM, the diversity index of AM fungi was improved as the soil exposed to the fertilizer treatments with manure (M, NM, NPM and NPK), while the application of phosphor fertilizer would decrease the diversity index. Cluster analysis showed that when the coefficient index was 0.53, in the soil after rice culitivation, the AM fungi communitiy in soil amended with N, CK, M, NM, NPKM was in the first cluster, fertilizers was in the first cluster. AM fungi communities exposed to the NP, NPK and NPM fell into the other three clusters, respectively. In the soil after wheat ciltivation, AM fungi communities in N, NP, M, NM, NPM and NPKM fertilizer treatments were clustered into one group, that in NPK to another group, and that in CK as the third cluster.
     (4) Archaea community structure in Calcareous Purplish Paddy soil under a long term fertilization experiment was studied. The results showed long term fertilizer could make great impact on the soil archaea community. Denaturing gradient gel electrophoresis (DGGE) analysis revealed that wheat and rice cropping had different impact on the soil archaea community structure, the richness and diversity of archaea community in the soil under NM, NP and NPKM were lower than those under the other fertilizer treatments (as M, NPM, CK, N, and NPK). The sequences analysis of cloned 16S ribosomal DNA showed that the archaea in this study fell into two groups within the terrestrial cluster of Crenarchaeota. One group was closely related to clones from freshwater reservoir, while the second group was similar to clones found in terrestrial habitats. Cluster analysis of the DGGE profiles showed that archaea communities under 8 fertilizer treatments with rice and wheat cultivation were all clustered into 3 groups. In the soil with rice cultivation, the archaea communities in soil amended with M and NPM were in the same cluster. Archaea communities exposed to NP fell into the second group, while those exposed to the NPKM, NM, CK, N and NPM treatments were in the third group. In the soil with wheat cultivation, archaea community under NP was clustered into a single cluster. Those under NPKM and M were fallen into the second cluster, while those in N, NPK, NM, NPM and CK fertilizer treatments were in the third cluster.
     (5) Soil ammonium oxidizing bacterial community structure was analyzed by using DGGE technique. The treatments receiving any fertilizer application tended to alter the ammonium oxidizing bacterial community compared with the control. Among the eight fertilizer treatments, soil samples from the treatments of mineral fertilizers in combination with farmyard manure acquired more complex ammonium oxidizing bacterial community structure than those receiving mineral fertilizers alone. The principal component analyses (PCA) for ammonium oxidizing bacterial community structure showed that the eight fertilizer treatments were grouped into two PCAs. In the soil after rice harvested, PCA1 was including NP, NM, NPM and NPKM fertilizer treatments, PCA2 were consisted of CK, N, M and NPK fertilizer treatments. In the soil after wheat harvested, PCA1 was formed by M, NM, NPM and NPKM fertilizer treatments. PCA2 was composed of CK, N, NP and NPK fertilizer treatments. The richness of ammonium oxidizing bacterial community in PCA1 was higher than that in PCA2 and also higher in the soil after rice harvested than that after wheat harvested.
     (6) DGGE method was employed to determine the influence of long-term application of fertilizers on nitrobacteria community in calcareous purple paddy soil. The results showed that fertilizer amendment altered the nitrobacteria community structures. As compared to the mineral fertilizer treatments, the soil amended with the combination of the mineral fertilizers and farmyard manure increased the diversity of the nitrobacteria community as revealed by Unweighted Pair Group Method Clustering Analysis (UPGMA) of he DGGE banding patterns and cluster analysis of the DGGE profiles. In the soil after rice culitivation, the nitrobacteria communitiy in soil amended with nitrogen-phosphor (NP) fertilizers was in the first cluster. Nitrobacteria communities exposed to the fertilizer treatments with manure [manure only (M), nitrogen plus manure (NM), nitrogen and phosphor plus manure (NPM), and nitrogen, phosphor and potassium (NPK)] fell into the second group while those exposed to the CK, N fertilzer treatments were in the third group. In the soil after wheat ciltivation, nitrobacteria communities in CK, M, NM, NPM and NPKM fertilizer treatments were clustered into one group, those in NP, NPK to another group, and those in N as a single cluster.
引文
曹志平,胡诚,叶钟年,等.不同土壤培肥措施对华北高产农田土壤微生物生物量碳的影响.生态学报2006,26(5):1486-1493.
    蔡玉祺,王珊龄,蔡道基.甲基异柳磷等四种农药对土壤呼吸的影响.农村生态环境,2005,3:36-40.
    戴万宏,王益权,黄耀,等.农田生态系统土壤CO_2释放研究.西北农林科技大学学报(自然科学版),2004,32(12):1-7.
    冯佩英,陆春等.DGGE/ TGGE技术在微生物基因分类鉴定中的应用.国外医学临床生物化学与检验学分册,2005,26(2):95-97.
    范晓晖,林德喜,沈敏,等.长期试验地潮土的矿化与硝化作用特征.土壤学报,2005,42(2):340-343.
    盖京苹,蒋家慧,刘培利.AM菌资源及生态学研究进展.莱阳农学院学报,1998,15(2):135-140.
    古巧珍,杨学云,孙本华,等.长期定位施肥对小麦籽粒产量及品质的影响.麦类作物学报,2004,24(3):76-79.
    韩晓日,郭鹏程.长期施肥对土壤固定态铵含量及其有效性影响.植物营养与肥料学报,1998,4(1):29-36.
    郝晓晖,刘守龙,童成立,等.长期施肥对两种稻田土壤微生物量氮及有机氮组分的影响.中国农业科学,2007,40(4):757-764.
    何毓蓉编.中国紫色土.下篇.北京:科学出版社.2003.
    黄不凡.绿肥麦秸还田培养地力的研究Ⅰ.对土壤有机质和团聚体性状的影响.土壤学报,1984,21(2):113-122.
    姬兴杰,熊淑萍,李春明,等.不同肥料类型对土壤酶活性与微生物数量时空变化的影响.水土保持学报,2008,22(1):123-128.
    孔维栋,刘可星,廖宗文.有机物料种类及腐熟水平对土壤微生物群落的影响.应用生态学报,2004,15(3):487-492.
    林葆,林继雄,李家康.长期施肥的作物产量和土壤肥力变化.植物营养与肥料学报,1994,1(1):6-18.
    林天,何园球,李成亮,等.红壤旱地中土壤酶对长期施肥的响应.土壤学报,2005,42(4):682-686.
    梁国庆,林葆.长期施肥对石灰性潮土氮素形态的影响.植物营养与肥料学报,2000,6(1):3-10.
    龙良鲲,羊宋贞,姚青,等.AM真菌DNA的提取与PCR-DGGE分析.菌物学报,2005,24(4):564-569.
    刘爱民,黄为一等.镉铜污染尾矿土中添加耐镉铜菌剂后微生物区系多样性的变化.生态毒理学报,2006,1(3):265-270.
    刘金剑,吴萍萍,谢小立,等.长期不同施肥制度下湖南红壤晚稻田CH_4的排放.生态学报,2008,28(6):2878-2886.
    刘恩科,赵秉强,李秀英,等.不同施肥制度土壤微生物量碳氮变化及细菌群落16S rDNA V3片段PCR产物的DGGE分析.生态学报,2007,27(3):1079-1085.
    李秀英,赵秉强,李絮花,等.不同施肥制度对土壤微生物的影响及其与土壤肥力的关系.中国农业科学,2005,38(8):1591-1599.
    李娟,赵秉强,李秀英,Hwat Bing So.长期有机无机肥料配施对土壤微生物学特性及土壤肥力的影响.中国农业科学,2008,41(1):144-152.
    李庆逵.磷灰石肥效试验第三次报告.土壤学报,1953,2(3):167-177.
    李琳,胡立峰,陈阜,等.长期不同施肥类型对稻田甲烷和氧化亚氮排放速率的影响.农业环境科学学报,2006,25(B09):707-710.
    鲁如坤编.土壤与农业化学分析法.北京:中国农业科学技术出版社.1999.
    马维娜,杨京平,汪华,等.不同水分模式分次施氮对水稻根际土壤微生物生态效应的影响.浙江大学学报(农业与生命科学版),2007,33(2):184-189.
    门明新,李新旺,许皞.长期施肥对华北平原潮土作物产量及稳定性的影响.中国农业科学,2008,41(8):2339-2346.
    沈善敏.长期土壤肥力试验的科学价值.植物营养与肥料学报,1995,1(1):1-9.
    孙瑞莲,朱鲁生,赵秉强.长期施肥对土壤微生物的影响及其在养分调控中的作用,应用生态学报.2004,15(10):1907-1910.
    盛敏,唐明,张峰峰,等.土壤因子对西北盐碱土中VA菌根真菌的影响.土壤学报.2008,45(4):758-763.
    宋亚娜,李隆,包兴国,等.应用DGGE技术研究间、轮作对根际氨氧化细菌和固氮菌群落结构的影响.江西农业大学学报,2006,28(4):506-511.
    刘金剑,吴萍萍,谢小立,等.长期不同施肥制度下湖南红壤晚稻田CH_4的排放.生态 学报,2008,28(6):2878-2886.
    王娟,刘淑英,王平,等.不同施肥处理对西北半干旱区土壤酶活性的影响及其动态变化.土壤通报,2008,39(2):299-303.
    王淼焱,刁志凯,梁美霞,等.农业生态系统中的AM真菌多样性.生态学报,2005,25(10):2744-2749.
    王淼淼.长期定位施肥土壤中丛枝菌根真菌多样性的研究.山东莱阳:莱阳农学院,2005.
    王慎强,李欣.徐富安,等.长期施用化肥与有机肥对潮土土壤物理性质的影响.中国生态农业学报,2001,9(2):77-78.
    王改兰,段建南,贾宁凤,等.长期施肥对黄土丘陵区土壤理化性质的影响.水土保持学报,2006,20(4):82-86.
    王树起,韩晓增,乔云发,等.不同土地利用方式对三江平原湿地土壤酶分布特征及相关肥力因子的影响.水土保持学报,2007,21(4):150-153,154.
    熊明彪,雷孝章,田应兵,等.长期施肥对紫色土酶活的影响.四川大学学报(工程科学版),2003,35(4):60-64.
    徐华勤,肖润林,邹冬生,等.长期施肥对茶园土壤微生物群落功能多样性的影响.生态学报,2007,27(8):3355-3361.
    徐阳春,沈其荣,冉炜.长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响.土壤学报,2002,39(1):89-96.
    许光辉,郑洪元.土壤微生物分析方法手册.北京:农业出版社,1986:91-109.
    许秀云,姚贤良,刘克樱.长期施用有机肥对红壤性水稻土物理属性的影响.土壤,1996,28(2):57-1.
    邢德峰,任南琪.应用DGGE研究微生物群落时的常见问题分析.微生物学报,2006,46(2):331-335.
    杨兰芳,蔡祖聪.玉米生长中的土壤呼吸及其受氮肥施用的影响.土壤学报,2005,42(1):9-15.
    张庆美,王幼珊,刑礼军.AM菌在我国东南沿海各土壤气候带的分布.菌物系统,1996,18(2):145-148.
    张彦东,孙志虎,沈有信.施肥对金沙江干热河谷退化草地土壤微生物的影响.水土保持学报,2005,19(2):88-91.
    张丹.OLAND生物脱氮系统运行条件及其微生物群落结构的研究:[博士学位论文].北京: 中科院研究生院,2003.
    张平究,李恋卿,潘根兴,等.长期不同施肥下太湖地区黄泥土表土微生物碳氮量及基因多样性变化.生态学报,2004,24(12):2818-2824.
    章家思,廖宗文.试论土壤的生态肥力及其培育.土壤与环境,2000,9(3):253-256.
    郑勇,高勇生,张丽梅,等.长期施肥对旱地红壤微生物和酶活性的影响.植物营养与肥料学报,2008,14(2):316-321.
    赵秉强,张夫道.我国的长期肥料定位试验研究.植物营养与肥料学报,2002,8(增刊):3-8.
    钟文辉,蔡祖聪,尹力初,等.种植水稻和长期施用无机肥对红壤氨氧化细菌多样性和硝化作用的影响.土壤学报,2008,45(11):105-111.
    中国科学院南京土壤研究所.土壤微生物研究法.北京:科学出版社,1985:54-57,260-275.
    袁飞,冉炜,胡江,等.变性梯度凝胶电泳法研究我国不同土壤氨氧化细菌群落组成及活性.生态学报,2005,25(6):1318-1324.
    Abbott,L.K,Murphy,D.V.Soil Biological Fertility.Netherlands:Kluwer Academic Publishers,2003.
    Aber,J.D.1992.Nitrogen cycling and nitrogen saturation in temperate forest ecosystems.Trends in Ecology and Evolution,7:220-223.
    Alvey,S.,Yang,C H.,Buerkert,A.,Crowley,D E.2003.Cereal/legume rotation effects on rhizosphere bacterial community structure in West African Soils.Biology and Fertility of Soils,37:73-82.
    Angers,D.A.,Bissonnette,N.,Legere,A.,Samson,N.1993.Microbial and biochemical changes induced by rotation and tillage in a soil under barley production.Canadian Journal of Soil Science,73a:39-50.
    Amann,R.I.,Ludwig,W.,Sehleifer,K.H.1995.Phylogenetic identification and in situ detection of individual microbial cells without cultivation.Microbiology and Molecular Biology Review,59:143-169.
    Amwarzay,M.O.1990.Biological activity in soil in an 80-year long-term field experiment.Foerderungsdienst,38:18-22.
    Atlas,R.M.,Bartha,R.1993.Microbial Ecology Fundamentals and Applications.3rd ed. Benjamin Cummings Publishing, New York.
    Bakken, L. R. 1985. Separation and purification of bacteria from soil. Applied and Environmental Microbiology, 49: 1482-1487.
    Ball, S. C., Vande, W. M., Visser, R., 1998. Progress in understanding biosynthesis of amylose. Trends in Plant Science, 3(12): 462-467.
    Bassam, B. J., Caetano-Anolles, G., Gresshoffet, P. M. 1991. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochemistry, 196: 81-84.
    Birtrim, S.B., Donohue, T. J., Johandelsman, Roberts, G P., Goodman, R.M. 1997. Molecular phylogeny of Archaea from soil. Proceedings of the National Academy of Sciences of the United States of America, 94: 277-282.
    Borneman, J., Triplett E. W. 1997. Molecular microbial diversity in soils from eastern Amazonian: evidence for unusual microorganisms and microbial population shifts associated with deforestation. Applied and Environmental Microbiology, 63: 2647-2653.
    Bossio, D.A., Scow, K. M., Gunapala, M., Graham, K. J. 1998. Determinants of soil microbial communities: effects of agricultural management. Season and soil type on Phospholipids fatty acid profiles. Microbial Ecology, 36: 1-12.
    Borneman, J., Skroch, P.W., O'Sullivan, K.M., Palus, J.A., Rumjanek, N.G., Jansen, J.L., Nienhuis, J., Triplett, E.W., 1996. Molecular microbial diversity of an agricultural soil in Wisconsin. Applied and Environmental Microbiology, 62: 1935-1943.
    Brentrup, F., Ku¨ sters, J., Lammel, J., Barraclough, P., Kuhlmann, H., 2004. Environmental impact assessment of agricultural production systems using the life cycle assessment (LCA) methodology II. The application to N fertilizer use in winter wheat production systems. European Journal of Agronomy. 20,265-279.
    Brown, J.R. 1991. Summary: long-term field experiments symposium. Agronomy Journal, 83: 85.
    Brock, T. D. 1987. The study of microorganisms in situ: progress and problems. Symposia of the Society for General Microbiology, 41: 1-17.
    Brookes, P.C., Powlson, D.S., Jenkinson, D.S., 1982. Phosphorus in the soil microbial biomass. Soil Biology and Biochemistry, 16: 169-175.
    Brussaard, L., de Ruiter, P.C., Brown, G.G., 2007. Soil biodiversity for agricultural sustainability. Agriculture, Ecosystems and Environment, 121: 233-244.
    Buckley, D.H., Graber, J.R., Schmidt, T. M. 1998. Phylogenetic analysis of nonthermophilic members of the kingdom Crenarchaeota and their diversity and abundance in soils. Applied and Environmental Microbiology, 64: 4333-4339.
    Castaldini, M., Turrini, A., Sbrana, C., Benedetti, A., Marchionni, M., Mocali, S., Fabiani, A., Landi, S., Santomassimo, F., Pietrangeli, B., Nuti, M. P., Miclaus, N., Giovannetti, M. 2005. Impact of Bt corn on rhizospheric and soil eubacterial communities and on beneficial mycorrhizal symbiosis in experimental microcosms. Applied and Environmental Microbiology, 71: 6719-6729.
    Castro-Filho, C., Lourenc o. A., Guimaraes, M.F., Fonseca, I.C.B, 2002. Aggregate stability under different management systems in a red Latosol in the state of Parana. Brazil. Soil and Tillage Research, 65:45-51.
    Carmine, C., Maddalena, C., Antonella, P., Patrizia, R., Nunzia, T., Pacifico, R. 2007. Soil microbial dynamics and genetic diversity in soil under monoculture wheat grown in different long-term management systems. Soil Biology and Biochemistry, 39: 1391-1400.
    Chorover, J., Kretzschmar, R., Garcia-Pichel, F., Sparks, D. L. 2007. Soil biogeochemical processes within the critical zone. Elements, 3: 321-326.
    Carpenter-Boggs, L., Kennedy, A. C., Reganold, J. P. 2000. Organic and biodynamic management: effects on soil biology. Soil Science Society of American Journal, 64: 1651-1659.
    Chang, Y. J., Anwar Hussain, A. K M., Stephen, J. R., Mullens, M. D., White, D. C., Peacock, A. 2001. Impact of herbicides on the abundance and structure of indigenous β-subgroup ammonia-oxidizer communities in soil microcosms. Environmental Toxicology and Chemistry, 20: 2462-2468.
    Chu, H. Y., Fujii, T., Morimoto, S., Lin, X.G., Yagi, K., Hu, J. L, Zhang, J. B. 2007. Community structure of ammonia-oxidizing bacteria under long-term application of mineral fertilizer and organic manure in a sandy loam soil. Applied and Environmental Microbiology, 73 (2): 485-491.
    Chu, H. Y., Lin, X. G., Fujii, T., Morimoto, S., Yagi, K., Hu, J. L., Zhang, J. B. 2007. Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management. Soil Biology and Biochemistry, 39:2971-2976.
    Crecchioa, C., Curcia, M., Pellegrinob, A., Ricciutia, P., Tursia, N., Ruggieroa, P. 2007. Soil microbial dynamics and genetic diversity in soil under monoculture wheat grown in different long-term management systems. Soil Biology and Biochemistry, 39: 1391-1400.
    De Boer, W., Klein Gunnewiek, P. J. A., Troelstra, S.R. 1990. Nitrification in Dutch health land soils. II. Characteristics of nitrate production. Plant and Soil, 127: 193-200.
    De Boer, W., Klein Gunnewiek, P. J. A., Veenhuis, M. 1991. Nitrification at low pH by aggregated chemolithotrophic bacteria. Applied and Environmental Microbiology, 57: 3600-3604.
    Degens, B.P., 1998. Microbial functional diversity can be influenced by addition of simple organic substrates to soil. Soil Biology and Biochemistry, 30: 1981-1988.
    Devereux, R, Willis, S.G. 1995. Molecular Microbial Ecology Manual. Klower Academic Publishers, Netherland, pp, 1-23.
    De Long, E. F. 1992. Archaea in coastal marine environments. Proceedings of the National Academy of Sciences of the United States of America, 89: 5685-5689.
    De Long, E.F., Wu, K.Y., Prézelin, B.B.; Jovine, R. V. M. 1994. High abundance of archaea in Antarctic marine picoplankton. Nature, 371: 695- 697.
    De Lipthay, J. R., Enzinger, C., Johnsen, K., Aamand, Jens., S(?)rensen, S. J., 2004. Impact of DNA extraction method on bacterial community composition measured by denaturing gradient gel electrophoresis. Soil Biology and Biochemistry, 36:1607—1614.
    Dick, R.P. 1992. A review: long-term effects of agricultural systems on soil biochemical and microbial. Agriculture, Ecosystems and Environment 40,25-36.
    Dick, R. P., Breakwall, D. P., Turco, R. F. 1996. Soil enzyme activities and biodiversity measurements as integrative microbiological indication. In Doran J W, Methods for Assessing Soil Quality, 247-271.
    Dilly, O., Bloem, J., Vos, A., Munch, J C., 2004. Bacterial diversity in agricultural soils during litter decomposition. Applied and Environmental Microbiology, 70: 468-474.
    Ding, W. X., Meng, L., Yin, Y. F. 2007. CO_2 emission in an intensively cultivated loam as affected by long-term application of organic manure and nitrogen fertilizer. Soil Biology and Biochemistry, 39: 669—679.
    Doran, J.W., Sarrantonio, M., Liebig, M. A. 1996. Soil heath and sustainability. Advances in Agronomy, 56. 1-54.
    Duarte, G. F., Rosado, A. S., Seldin, L., Welington, D. A., Jan Dirk, V. E. 2001. Analysis of bacterial community structure in sulfurous-oil-containing soils and detection of species carrying dibenzothiophene desulfurization (dsz) genes. Applied and Environmental Microbiology, 67: 1052-1062.
    Elcio, L. B., Arnaldo, C. R., Diva, S.A. 2004. Long term tillage and crop rotation effects on microbial biomass C and N mineralization in a Brazilian Oxisol. Soil and Tillage Research, 77(2): 137-145.
    Ellis, R. J., Morgan, P., Weightman, A. J., Fry, J. C. 2003. Cultivation-dependent and -independent approaches for determining bacterial diversity in heavy-metal-contaminated soil. Applied and Environmental Microbiology, 69: 3223-3230.
    Endale, D.M., Cabrera, M.L., Steiner, J.L., Radcliffe, D.E., Vencill, W.K., Schomberg, H.H., Lohr, L., 2002. Impact of conservation tillage and nutrient management on soil water and yield of cotton fertilized with poultry litter or ammonium nitrate in the Georgia Piedmont, Soil and Tillage Research 66: 55-68.
    Enwall, K., Philippot, L., Hallin, S. 2005. Activity and composition of the denitrifying bacterial community respond differently to long-term fertilization. Applied and Environmental Microbiology, 71: 8335-8343.
    Enwall, K., Nyberg, K., Bertilsson, S., Cederlund, H., Stenstrom, J., Hallin, S., 2007. Long-term impact of fertilization on activity and composition of bacterial communities and metabolic guilds in agricultural soil, Soil Biology and Biochemistry 39: 106-115.
    Fantroussi, S. E., Verschuere, L., Verstraete, W., Top, E. M. 1999. Effect of phenylurea herbicides on soil microbial communities estimated by analysis of 16S rRNA gene fingerprints and community-level physiological profiles. Applied and Environmental Microbiology, 65: 982-988.
    Fan, Q.Z., Xie, J.H. 2005. Variation of potassium fertility in soil in the long-term stationary experiment. Acta Pedologica Sinica, 42: 591-599. (In Chinese)
    Fang, M., Kremer, R J., Motavalli, Peter, P., Davis G. 2005. Bacterial diversity in rhizospheres of nontransgenic and transgenic corn. Applied and Environmental Microbiology, 71: 4132-4136.
    Fauci, M.F., Dick, R.P. 1994. Soil microbial dynamics: short-and long-term effects of organic and inorganic nitrogen. Soil Science Society of America Journal, 58: 801-808.
    Ferris, M. J., Ward, D. M. 1997. Seasonal distributions of dominant 16S rDNA-defined populations in a hot spring microbial mat examined by denaturing gradient gel electrophoresis. Applied and Environmental Microbiology, 63: 1375-1381.
    Feng, X.J., Simpson, M. J., 2009. Temperature and substrate controls on microbial phospholipid fatty acid composition during incubation of grassland soils contrasting in organic matter quality. Soil Biology and Biochemistry, 41: 804-812.
    Fernandes, E.C.M., Motavallic, P.P., Castilla, C., Mukurimbira, L. 1997. Management control of soil organic matter dynamics in tropical land use systems. Geoderma, 79: 49-67.
    Fierer, N., Bradford, M.A., Jackson, R.B. 2007. Toward an ecological classification of soil bacteria. Ecology, 88: 1354-1364.
    Fisher, S. G, Lerman, L. S. 1983. DNA fragment differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. PNAS, 80: 127-141.
    Franzluebbers, A.J. 2002. Soil organic matter stratification ratio as an indicator of soil quality. Soil and Tillage Research, 66: 95-106.
    Franzluebbers, A.J., Wilkinson, S.R., Stuedemann, J.A. 2004. Bermudagrass management in the Southern Piedmont, USA: IX. Trace elements in soil with broiler litter application. Journal of Environmental Quality, 33: 778-784.
    Fuhrman, J. A., McCallum, K., Davis, A. A. 1992. Novel major archaebacterial group from marine plankton. Nature, 356: 148-149.
    Gafan, G P., Lucas, V S., Rpberts, G J., Petrie, A., Wilson, M., Spratt, D A. 2005. Statistical analysis of complex denaturing gradient gel electrophoresis profiles. Applied and Environmental Microbiology, 43: 3971-3978.
    Garland, J L., Mills, A L. 1991. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source-utilization. Applied and Environment Microbiology, 57: 2351-2359.
    Gansert, D. 1994. Root respiration and its importance for the carbon balance of beech saplings (Fagus sylvatica L.) in a montane beech forest. Plant and Soil, 167: 109-119.
    Gelsomino, A., Cacco, G. 2006. Compositional shifts of bacterial groups in a solarized and amended soil as determined by denaturing gradient gel electrophoresis. Soil Biology & Biochemistry, 38: 91-102.
    Ge, Y., Zhang, J.B., Zhang, L.M., Yang, M., He, J.Z. 2008. Long-term fertilization regimes affect bacterial community structure and diversity of an agricultural soil in northern China. Journal of Soils and Sediments, 8: 43-50.
    Girvan, M.S., Bullimore, J., Pretty, J.N., Osborn, M, Ball, A.S. 2003. Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils. Applied and Environmental Microbiology, 69: 1800-1809.
    Grayston, S.J., Wang, S., Campbell, C. D., Edwards, A. C., 1998. Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biology and Biochemistry, 30: 369 - 378.
    Griffiths, R. I., Whiteley, A. S., O Donnell, A. G, Bailey, M J. 2003. Physiological and community responses of established grassland bacterial populations to water stress .Applied and Environmental Microbiology, 69: 6961-6968.
    Gregorich, M.R., Carter, J.W., Dorna, C.E., Pankhurst, Dwyer, L.M. Biological attributes of soil quality. In: E.G. Gregoric and M.R. Carter. (Eds.) Soil Quality and Ecosystem Health. Developments in Soil Science 25, Elsevier, Amsterdam, pp. 81-114.
    Gulledge, J., Hrywna, Y., Cavanaugh, C. 2004. Effects of long-term nitrogen fertilization on the uptake kinetics of atmospheric methane in temperate forest soils. FEMS Microbiology Ecology, 49: 389-400.
    Hatfield, J. L, Stewart, B. A. Soil Biology: Effect on Soil Quality. The United States of American: CRC Press, 1994.
    Hai, Y.C., Xian, G.L, Takeshi, F, Morimotob, S., Yagib, K., Hua, J.L., Zhang, J.B. 2007. Soil microbial biomass, dehydrogenize activity, bacterial community structure in response to long-term fertilizer management. Soil Biology & Biochemistry, 39: 2971-2976.
    Hershberger, K.L., Barns, S.M., Reysenbach, A.L., Dawson, S.C., Pace, N.R. 1996. Wide diversity of Crenarchaeota. Nature, 384: 420.
    Henckel, T., Ckel, U., Schnell, S., Conrad R. 2000. Molecular analyses of novel methanotrophic communities in forest soil that oxidize atmospheric methane. Applied Environmental Microbiology, 66: 1801-1808.
    Horz, H-P., Barbrook, A., Field, C. B., Bohannan, B. J. M., 2004. Ammonia-oxidizing bacteria respond to multifactorial global change. PNAS, 101: 15136-15141.
    Hu, S., Chapin, F. S., Firestone, M. K., Field, C. B., Chiariello, N. R. 2001. Nitrogen limitation of microbial decomposition in a grass land under elevated CO_2. Nature, 409: 188-191.
    Ibekwe, A.M., Kennedy, A.C. 1998. Phospholipid fatty acid profiles and carbon utilization patterns for analysis of microbial community structure under field and greenhouse conditions. FEMS Microbiology Ecology, 26: 151-163.
    Ingela Dahllf F I, Baillie H, Kjelleberg S., 2000. RpoB-based microbial community analysis avoids limitations inherent in 16S rRNA gene intraspecies heterogeneity. Applied and Environmental Microbiology, 66: 3376-3380.
    Innerebner, G., Knapp, B., Vasara, T., Romantschuk, M., Insama, H. 2006. Traceability of ammonia-oxidizing bacteria in compost-treated soils. Soil Biology and Biochemistry, 38: 1092-1100.
    Jenkinson, D. S., Ladd, J. N. 1981. Microbial biomass in soil: Measurement and turnover. In: Paul V E A, Ladd J N, eds. Soil Biochemistry. New York: Marcel Dekker, (5): 415-471.
    Jenkinson, D.S. 1991. The Rothamsted long-term experiments: are they still of use? Agronomy Journal, 83: 2-10.
    John, W.D., Alice, J. J., 1996. Methods for assessing soil quality. SSSA special Publication number 49. Madison, Wisconsin: Soil Science society of America pp203-272.
    Julia, R. D. L., Enzinger, C., Johnsen, K., Aamand, J., S(?)rensen, S. J. 2004. Impact of DNA extraction method on bacterial community composition measured by denaturing gradient gel electrophoresis. Soil Biology and Biochemistry, 36: 1607-1614.
    Kaye,J.P., Hart, S.C.1997. Competition for nitrogen between plants and soil microorganisms. Trends in Ecology and Evolution, 12: 139-142.
    Kennedy, A.C., Smith, K.L. 1995. Soil microbial diversity and the sustainability of agricultural soils. Plant and Soil, 170: 75-86.
    Kent, A. D., Smith, D. J., Benson, B. J., Triplett, E. W. 1997. Web-based phylogenetic assignment tool for analysis of terminal restriction fragment length polymorphism profiles of microbial communities. Applied and Environmental Microbiology, 63: 4516-4522.
    Knief, C., Vanitchung, S., Narumon, W. H., Conrad, R., Dunfield, P. F., Chidthaisong, A. 2005. Diversity of methanotrophic bacteria in tropical upland soils under different land uses. Applied and Environmental Microbiology, 71: 3826-3831.
    Kong, P., Richardson, P. A., Hong, C. X. 2005. Direct colony PCR-SSCP for detection of multiple pythiaceous oomycetes in environmental samples. Journal of Microbiological Methods, 61:25-32.
    Kowalchuk G A, Stephen, J R., Boer, W D., Prosser, J I., Embley, T M., Woldendorp, J W. 1997. Analysis of ammonia-oxidizing bacteria of the β subdivision of the class proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. Applied and Environmental Microbiology, 63: 1489-1497.
    Kouno, K., Wu, J., Brookes, P.C., 2001. Turnover of biomass C and P in soil following incorporation of glucose or ryegrass. Soil Biology and Biochemistry, 34: 617-622.
    Krsek, M., Wellington, E. M. H. 1999. Comparison of different methods for the isolation and purification of total community DNA from soil. Microbiology Method, 39: 1-16.
    Kyllmar, K., Martensson, K., Johnsson, H., 2005b. Model-based coefficient method for estimation of N leaching from agricultural fields applied to small catchments and the effects of leaching reducing measures. Journal of Hydrology. 304, 343-354.
    Lane, D.J., Field, K.G., Olsen, G. J., Pace, N.R. 1998. Reverse transcriptase sequencing of ribosomal RNA for phylogenetic analysis. Methods in Enzymology, 167: 138-144.
    Larkin, R.P., Honeycutt, C.W., Griffin, T.S. 2006. Effect of swine and dairy manure amendments on microbial communities in three soils as influenced by environmental conditions. Biology and Fertility of Soils,43: 51-61.
    Leys, N. M. E. J., Ryngaert, A., Bastiaens, L., Verstraete, W., Top, E M., Springael, D. 2004. Occurrence and phylogenetic diversity of sphingomonas strains in soils contaminated with polycyclic aromatic hydrocarbons. Applied and Environmental Microbiology, 70: 1944-1955.
    Li, Z.M. 1989. Discussion on soil formation and soil taxonomy. Acta Pedologica Sinica, 26: 165-172. (in Chinese)
    Liu, W. T., Marsh, T. L., Cheng, H. 1997. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Applied and Environment Microbiology, 63: 4516-4522.
    Liu, A. B., Gumpertzb, M. L., Hua, S. J., Ristainoa, J. B. 2007. Long-term effects of organic and synthetic soil fertility amendments on soil microbial communities and the development of southern blight. Soil Biology and Biochemistry, 39: 2302-2316.
    Liu, W.T., Marsh, T.L., Cheng, H., Forney, L.J. 1997. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Applied and Environmental Microbiology, 63: 4516-4522.
    Livia, B., Uwe, L., Frank B. 2005. Microbial biomass, enzyme activities and microbial community structure in two European long-term field experiments. Agriculture, Ecosystems and Environment, 109: 141-152.
    Liu, S.Q., Zhang, M. 1996. Regional Soil Geography (In Chinese), ed. Sichuan University Press, Chengdu, China.
    Lu, R. K. 1999. Soil and Agro-Chemical Analytical Methods (In Chinese), ed. China Agricultural Science and Technology Press, Beijing, China.
    Li, T., Zhao, Z. W. 2005. Arbuscular mycorrhizas in a hot and arid ecosystem in southwest China. Applied Soil Ecology, 29: 135-141.
    Liang, Z. B., Drijber, R. A., Lee, D. J., Dwiekat, I. M., Harris, S. D., Wedin, D. A., 2008. A DGGE-cloning method to characterize arbuscular mycorrhizal community structure in soil. Soil Biology and Biochemistry, 40: 956-966.
    Lorenz, N., Hintemann, T., Kramarewa, T., Katayama, A., Yasuta, T., Marschner, P., Kandeler E. 2006. Response of microbial activity and microbial community composition in soils to long-term arsenic and cadmium exposure. Soil Biology and Biochemistry, 38: 1430-1437.
    Lovel, R.D., Jarvis, S.C., Bardget, R.D. 1995. Soil microbial biomass and activity in long-term grass land: effects of management change. Soil Biology and Biochemistry, 27: 969-975.
    Lupwayi, N. Z., Arshad, M.A., Rice, W. A., Clayton, G. W. 1998. Soil microbial diversity and community structure under wheat as influenced by tillage and crop rotation. Soil Biology and Biochemistry, 30: 1733-1741.
    Lupwayi, N.Z., Arshad, M. A., Rice, W. A., Clayton, G. W. 2001. Bacterial diversity in water-stable aggregates of soils under conventional and zero tillage management .Applied Soil Ecology, 16a: 251-26.
    Lupwayi, N Z., Monreal, M. A., Clayton, G. W., Grant, C.A., Johnston, A. M., Rice, W.A. 2001. Soil microbial biomass and diversity respond to tillage and sculpture fertilizers. Canadian Journal of Soil Science, 81b: 577-589.
    Lynch, J M., Panting, L M. 1982. Effects of season, cultivation and nitrogen fertilizer on the size of soil microbial biomass. Journal of the Science of Flood and Agriculture, 33: 249-252.
    Ma, W K., Siciliano, S D., Germida J J. 2005. A PCR-DGGE method for detecting arbuscular mycorrhizal fungi in cultivated soils. Soil Biology and Biochemistry, 37: 1589-1597.
    Marchesi, J R., Sato, T., Weightman A J. 1998. Design and evaluation of useful bacterium -specific PCR primers that amplify genes coding for bacterial 16S rRNA. Applied and Environmental Microbiology, 64: 795-799.
    Marschnera, P., Kandeler, E., Marschner, B. 2003. Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biology and Biochemistry, 35(3): 453-461.
    Maila, M P., Randimaa, P., Dronen, K., Cloete, T E., 2006. Soil microbial communities: Influence of geographic location and hydrocarbon pollutants. Soil Biology and Biochemistry, 38: 303-310.
    McCaig, A. E., Phillips, C. J., Stephen, J. R., Kowalchuk, G. A., Martyn Harvey, S., Herbert, R.A., Martin Embley, T., Prosser, J.I. 1999. Nitrogen cycling and community structure of proteobacterial β-subgroup ammonia-oxidizing bacteria within polluted marine fish farm sediments. Applied and Environmental Microbiology, 65: 213-220.
    Menéndez, S., López-Bellido, R. J., Benitez-Vega, J., González-Murua, C., López-Bellido, L., Estavillo, J. M.,2008. Long-term effect of tillage, crop rotation and N fertilization to wheat on gaseous emissions under rain fed Mediterranean conditions. European Journal of Agronomy, 28: 559-569.
    Miller, A K., Westergaard, K. 2001. The effect of long-term mercury pollution on the soil microbial community. FEMS Microbiology Ecology, 36: 11-19.
    Miller, D N., Bryant, J E., Madsen, E L., Ghiorse, W. C. 1999. Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Applied and Environmental Microbiology, 65: 4715-4724.
    Mikamil, Aikawa M, Hirano H Y. Altered tissue-specific expression at the Wx gene of the plaque mutants in rice. Euphytica.1999, 105(2):91-97.
    Morie E. Effect of wind and rainfall on the grain filling and maturing and quality. Japan, Crop Science. 1989, 58(4):555-561.
    Murase, J., Noll, M., Frenzel, P. 2006. Impact of protists on the activity and structure of the bacterial community in a rice field soil. Applied and Environmental Microbiology, 72: 5436-5444.
    Muyzer, G., De Waal, E C., Uitterlinden, A G. 1993. Profiling of complex microbial population by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes encoding for 16S rRNA. Applied and Environmental Microbiology, 59(3): 695-700.
    Muyzer, G., Smalla, K. 1998. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek, 73: 127-141.
    Muyzer, G. 1999. DGGE/TGGE a method for identifying genes from natural ecosystems. Current Opinion in Microbiology, 2: 317-322.
    Muyers, R M., Fischer, S G., Lerman, I S., Maniatis, T. 1985. Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis. Nucleic Acids Research, 13: 3131-3145.
    Miransari, M., Bahrami, H A., Rejali, F., Malakouti, M J., Torabi, H. 2007. Using arbuscular mycorrhiza to reduce the stressful effects of soil compaction on corn (Zea mays L.) growth. Soil Biology and Biochemistry, 39: 2014-2026.
    Mitchell, C.C., Westerman, R.L., Brown, J.R., Peck, T.R., 1991. Overview of long-term agronomic research. Agronomy Journal 83,24-29.
    Norris, T.B., Wraith, J.M., Castenholz, R.W., McDermott, T.R. 2002. Soil microbial community structure across a thermal gradient following a geothermal heating event. Applied and Environmental Microbiology, 68: 6300-6309.
    Nsabimana D., Haynes R J., Wallis F M. 2004. Size, activity and catabolic diversity of the soil microbial biomass as affected by land use. Applied Soil Ecology, 26: 81-92.
    Nubel, U., Engelen, B., Felske, A., Snaidr, J., Wieshuber, A., Amann, R.I., Ludwig, W. H., Backhaus. 1996. Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. Journal of Bacteriology, 178: 5636-5643.
    Oehl, F., Sieverding, E., Ineichen, K., Mader, P., Boiler, T., Andres, W., 2003. Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of central Europe. Applied and Environmental Microbiology, 69(5): 2816-2824.
    O Donnell, A.O., Melanie, S., Andrew, M., Ian, W., John, T.D. 2001. Plants and fertilizers as drivers of change in microbial community structure and function in soils. Plant and Soil, 232: 135-145.
    Oved, T., Shaviv, A., Goldrath, T., Mandelbaum, R., Minz, D. 2001. Influence of effluent irrigation on community composition and function of ammonia-oxidizing bacteria in soil. Applied and Environmental Microbiology, 67: 3426-3433.
    (?)vre(?)s, L., Forney, L., Daae, F. L., Torsvik V. 1997. Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Applied and Environmental Microbiology, 63: 3367-3373.
    Phillips, C. J., Harris, D., Dollhopf, S L., Gross, K L., Prosser, J I., Paul, E A. 2000. Effects of agronomic treatments on structure and function of ammonia- oxidizing communities. Applied and Environmental Microbiology, 66: 5410-5418.
    Raich J W., Schlesinger W H. 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, 44b: 81—99.
    Rothamsted Research, 2006. Long-term Experiments-Guide to the Classical and Other Long-term Experiments, Datasets and Sample Archive. Rothamsted Research, UK.
    Ros, M., Pascual, J A., Garcia, C., Hernandez, T., Insam, H. 2006. Hydrolase activities, microbial biomass and bacterial community in a soil after long-term amendment with different composts. Soil Biology and Biochemistry, 38: 3443-3452.
    Riesner, D., Steger, G., Zimmat, R., Owens, R.A., Wagenhofer, M., Hillen, W., Vollbach, S., Henco, K. 1989. Temperature gradient gel electrophoresis of nucleic acids: analysis of conformational transitions, sequence variations, and protein-nucleic acid interactions. Electrophoresis, 10: 377-389.
    
    Ruben, A., Katsuji, T., Tatsuya, T., Nobuyasu, Y., Masao, N. 2003. Bacterial activity and community composition in stream water and biofilm from an urban river determined by fluorescent in situ hybridization and DGGE analysis. FEMS Microbiology Ecology, 43: 111-119.
    
    Rusznyak, A., Vladar, P., Molnar, P., Reskone, M. N., Kiss, G., Marialigeti, K., Borsodi, A. K., 2008. Cultivable bacterial composition and BIOLOG catabolic diversity of biofilm communities developed on Phragmites australis. Aquatic Botany, 88(3): 211-218.
    
    Ruppel, S., Torsvik, V., Daae, F.L., Ovreas, L., Ruhlmann, J., 2007. Nitrogen availability decreases prokaryotic diversity in sandy soils. Biology and Fertility of Soils 43: 449-459.
    
    Sandor, J.A., Eash, N.S. 1991. Significance of ancient agriculture soils for long-term agronomic studies and sustainable agriculture research. Agronomy Journal, 83: 29-37.
    
    Sarathchandra, S U., Ghani, A., Yeates, G W., Butch, G., Cox, N R. 2001. Effect of nitrogen and phosphate fertilizers on microbial and nematode diversity in pasture. Soil Biology and Biochemistry, 33: 953-964.
    
    Saikaly, P. E., Stroot, P.G., Oerther, D B. 2005. Use of 16S rRNA gene terminal restriction fragment analysis to assess the impact of solids retention time on the bacterial diversity of activated sludge. Applied and Environmental Microbiology, 71: 5814-5822.
    
    Salako, F. K., Babalola, O., Hauser, S., Kang, B.T. 1999. Soil macro-aggregate stability under different fallow management systems and cropping intensities in southwestern Nigeria. Geoderma,91: 103-123.
    Sait, M.K., Davis, E.R., Janssen, P.H. 2006. Effect of pH on isolation and distribution of members of subdivision 1 of the phylum acidobacteria occurring in soil. Applied and Environmental Microbiology, 72: 1852-1857.
    Salako, F.K., Babalola, O., Hauser, S., Kang, B.T. 1999. Soil macroaggregate stability under different fallow management systems and cropping intensities in southwestern Nigeria. Geoderma, 91: 103-123.
    Salinas-Garcia, J.R., Velazquez-Garcia, J.J., Gallardo-Valdez, M., Diaz-Mederos, P., Caballero-Hernandéz, F., tapia-Vargas, L.M., Rosales-Robles, E. 2002. Tillage effects on microbial and nutrient distribution in soils under rain-fed corn production in central-western Mexico. Soil and Tillage Research, 66: 143-152.
    Sanda, R.A., Enger, Torsvik, V. 1999. Abundance and diversity of archaea in heavy-metal-contaminated soils. Applied and Environmental Microbiology, 65: 3293-3297.
    Sandaa, R. A., Enger, Φ., Torsvik, V. 1999. Abundance and diversity of Archaea in heavy metal contaminated soils. Applied and Environmental Microbiology 65, 3293-3297.
    Sharma, S., Szele, Z., Schilling, R., Munch, J. C., Schloter M. 2006. Influence of freeze-thaw stress on the structure and function of microbial communities and denitrifying populations in soil. Applied and Environmental Microbiology, 72: 2148-2154.
    Sheffield, V. C., Cox, D. R., Myers, R. M. 1989. Attachment of a 40bp G+C rich sequence (GC clamp) to genomic DNA fragments by polymerase chain reaction results in improved detection of single-base changes. PNAS, 86:232-236.
    Stach, J. M., Bathe, S., Clapp J., Burns, R. G. 2001. PCR-SSCP comparison of 16S rDNA sequence diversity in soil DNA obtained using different isolation and purification methods. FEMS Microbiology Ecology, 36: 139-151.
    Stephen, J. R., Kowalchuk, G. A., Bruns, M. V., Mccaig, A. E., Phillips, C. J., Embley, T. M., Prosser, J. I.1998. Analysis of β-subgroup proteobacterial ammonia oxidizer populations in soil by denaturing gradient gel electrophoresis analysis and hierarchical phylogenetic probing. Applied and Environmental Microbiology, 64: 2958-2965.
    Sun, H Y., Deng, S P., Raun, W R. 2004. Bacterial community structure and diversity in a century-old manure-treated agroecosystem. Applied and Environmental Microbiology, 70: 5868-5874.
    Suzuki, M. 1990. Effect of continuous applications of organic fertilizer for 60 years on soil entility and rice gild in paddy field. Trans. 14th ICSS. 5: 14-19.
    Soupir, M.L., Mostaghimi, S., Yagow, E.R., Hagedorn, C., Vaughan, D.H., 2006. Transport of fecal bacteria from poultry litter and cattle manure applied to pastureland. Water, Air, and Soil Pollution 169:125-136.
    Spedding T A., Hamel C., Mehuys G R. 2004. Soil microbial dynamics in maize-growing soil under different tillage and residue management systems. Soil Biology and Biochemistry 36, 499-512.
    Sims, G. K., 2006. Nitrogen starvation promotes biodegradation of N-heterocyclic compounds in the soil. Soil Biology and Biochemistry. 38,2478-2480.
    Sessitsch, A., Weilharter, A., Gerzabek, M.H., Kirchmann, H., Kandeler, E. 2001. Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment. Applied and Environmental Microbiology, 67: 4215-4224.
    Stach, J.E., Bathe, S., Clapp, J.P., Burns, R.G. 2001. PCR-SSCP comparison of 16SrDNA sequence diversity in soil DNA obtained using different isolation and purification methods. FEMS Microbiology Ecology, 36: 139-151.
    Stein, L.Y., Jones, G., Alexander, B., Elmund, K., Wright-Jones, C., Nealson, K.H. 2006. Intriguing microbial diversity associated with metal-rich particles from a freshwater reservoir. FEMS Microbiology Ecology, 42: 431-440.
    Tening, A.S., Omueti, J.A.I. 2000. Potassium availability in soils from different parent materials in the subhumid zone of Nigeria. Communications in Soil Science and Plant Analysis, 31: 509-519.
    Tiquia, S. M., Lloyd, J., Herms, D. A., Hoitink, H. A.J., Michel, F. C. 2002. Effects of mulching and fertilization on soil nutrients, microbial activity and rhizosphere bacterial community structure determined by analysis of T-RFLPs of PCR-amplified 16S rRNA genes. Applied Soil Ecology, 21: 31-48.
    Tributh, H., Boguslawski, E.V., Lieres, A.V., Stefens, D., Mengel, K. 1987. Effect of potassium removal by crops on transformation of illitic clay minerals. Soil Science, 143: 404-409.
    Troels- Smith, J., 1984. Stall-feeding and field-manuring in Switzerland about 6000 years ago. Tools and Tillage, 5(1): 13-25.
    Turner, B.L., Bristow, A.W., Haygarth, P. M. 2001. Rapid estimation of microbial biomass in grassland soils by ultra-violet absorbance. Soil Biology and Biochemistry, 33: 913-919.
    Vallaeys, T., Topp, E., Muyzer, G., Marcheret, V., Laguerre G., Rigaud A., Soulas G. 1997. Evaluation of denaturing gradient gel electrophoresis in the detection of 16S rDNA sequence variation in rhizobia and methanotrophs. FEMS Microbiology Ecology, 24: 279-285.
    Vanotti,M.B., Leclerc,S.A., Bundy, LG. 1995. Short -term effects of nitrogen fertilization on soil organic nitrogen availability. Soil Science Society of America Journal, 59: 1350-1359.
    Vestal, J.R., White, D.C., 1989. Lipid analysis in microbial ecology: quantitative approaches to the study of microbial communities. Bioscience, 39 (8): 535-541.
    Von Wintzingerode, F., Goebel, U B., Stackebrandt, E. 1997. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiology Review, 213: 213-229.
    Watanabe, T., Kimura, M., Asakawa, S. 2006. Community structure of methanogenic archaea in paddy field soil under double cropping (rice-wheat). Soil Biology and Biochemistry, 38: 1264-1274.
    Wardle, D.A. 1992. A comparative assessment of factors which influence microbial biomass carbon and nitrogen level in soil. Biological Review, 67: 321-358.
    Watanabe, T., Kimura, M., Asakawa, S. 2006. Community structure of methanogenic archaea in paddy field soil under double cropping (rice-wheat). Soil Biology and Biochemistry, 38: 1264-1274.
    Woese, C.R., Fox, G.E. 1977. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proceedings of the National Academy of Sciences of the United States of America, 74: 5088-5090.
    Woese, C.R., Kandler, O., Wheelis, M.L. 1990. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences of the United States of America, 87: 4576-4579.
    Wu, T., Chellemi, D.O., Graham, J.H., Martin, K.J., Rosskopf, E.N. 2008. Comparison of soil bacterial communities under diverse agricultural land management and crop production practices. Microbial Ecology, 55: 293-310.
    Yamada, Y. 1980. The effect of intensive use of chemical fertilizers on fertility in comparison with the use of organic manure. Fertilizer law resources, needs and commerce in Asia and Pacific. 122.
    Yamaguchi, N., Kawasaki, A., Iiyama, I., 2009. Distribution of uranium in soil components of agricultural fields after long-term application of phosphate fertilizers . Science of The Total Environment, 7: 1383-1390.
    Yang, C. H., Crowley, D. E. 2000. Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Applied and Environmental Microbiology, 66: 345-351.
    Yang, Y H., Yao, J., Hu, S., Qi, Y. 2000. Effects of agricultural chemicals on DNA sequence diversity of soil microbial community: a study with RAPD marker. Microbial Ecology, 39: 72-79.
    Yao, H., He, Z., Campbell, C. D., 2000a. Some limitations of Biolog system for determining soil microbial community. Pedosphere, 10:37 - 44.
    Yao, H., He, Z., Wilsonl, M. J., Campbell, C. D., 2000b. Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use. Microbial Ecology, 40: 223 - 237.
    Yeates, G. W., Bardgett, R. D., Cook, R., Hobbs, P. J., Bowling, P. J., Potter., J. F., 1997. Faunal and microbial diversity in three Welsh grassland soils under conventional and organic management regimes. Journal of Applied Ecology, 34(2): 453-470.
    Zak, J.C., Willig, M.R., Moorhead, D.L., Wildman, H.G. 1994.Accelerated paper: functional diversity of microbial communities: a quantitative approach. Soil Biology and Biochemistry, 26: 1101-1108.
    Zanatta, J. A., Bayer, C.J., Vieira Dieckowb, F. C. B, Mielniczuk, J., Wang, J. G., Bakken, L. R. 2007. Soil organic carbon accumulation and carbon costs related to tillage, cropping systems and nitrogen fertilization in a subtropical Acrisol. Soil and Tillage Research, 94: 510-519.
    Zhang, M.K., He, Z.L. 2004. Long-term changes in organic carbon and nutrients of an Ultisol under rice cropping in southeast China. Geoderma, 119: 167-179.
    Zhong, W.H., Cai, Z.C. 2007. Long-term effects of inorganic fertilizers on microbial biomass and community functional diversity in a paddy soil derived from quaternary red clay. Applied Soil Ecology, 36: 84-91.
    Zhu, B., Wang, T., You, X., Gao, M. R. 2008. Nutrient release from weathering of purplish rocks in the Sichuan Basin, China. Pedosphere, 18: 257-264.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700