青冈栎容器苗培育关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青冈栎(Cyclobalanopsis glauca)为壳斗科栎属植物,它是我国亚热带东部湿润常绿阔叶林带的主要优势树种,也是我国亚热带东部地区主要造林树种。本文通过开展青冈栎容器苗基质配方、施肥技术、遮荫强度及密度控制等试验研究,为青冈栎容器苗壮苗培育提供技术理论依据,也为亚热带地区青冈栎幼林抚育技术提供一定的借鉴。通过本文研究主要得出以下结论:
     (1)15个不同基质配方青冈栎容器苗的苗高、地径、单株生物量、质量指数等指标差异显著,随着泥炭土比例的增加,苗木质量呈上升趋势。基质的容重、速效氮含量、速效磷含量是影响青冈栎容器苗质量的主要因子。根据基质理化性状、容器苗质量及生产成本多目标综合评价和决策,认为容器苗的基质配方[泥炭(0.46)+珍珠岩(0.27)+稻壳(0.27)]和[泥炭(0.46)+锯屑(0.27)+稻壳(0.27)]为最佳。
     (2)不同氮水平对青冈栎容器苗各个时段的生长效果明显不同。不同氮水平处理对青冈栎出圃容器苗高度、地径、生物量、质量指数差异显著,随着氮肥施用量的增加各指标增加,但达到一定水平后,再增加施氮量,各指标下降,呈二次曲线趋势,中水平氮素处理99.5mg/株时各指标为最佳。不同钾水平处理苗木质量均符合青冈栎容器苗质量要求,以中水平K3(100mgK2O/株)为最佳。P1(未施磷肥)处理青冈栎容器苗质量最差,其它处理随着施磷肥量的增加,苗木质量呈下降趋势,但均符合苗木质量标准,以施40 mg P2O5/株苗木质量最佳。影响青冈栎轻型基质容器苗生长的营养元素氮>磷>钾。不同施肥时间处理间苗木质量差异显著,以芽苗移植前施入缓释肥为最佳。综合基质配方与施肥试验的研究认为:基质[泥炭(0.46)+珍珠岩(0.27)+稻壳(0.27)]肥料最佳配方为:[N(99.5 mg)+K2O(100 mg)+P2O5(40 mg)/株。
     (3)青冈栎容器苗芽苗移植后至9月1日,遮荫(60%透光率)有利于苗木的生长,同时可以显著降低容器苗的耗水量,此后宜全光照栽培。不同透光率处理青冈栎容器苗出圃时,除100%、60%透光率处理之间透光率处理苗高差异不显著外,其它处理间苗高、地径、生物量、质量指数等指标差异达显著水平,指标由高到低分别为100%、60%、40%、20%、5%处理。随着透光率的增加,(Chl.a)/Chl.b)、Car/Chl、根重比呈现上升趋势,单位面积和单位重量的Chl.a、Chl.b、Car、比叶面积、叶重比呈现下降趋势,20%和5%透光处理其叶片PSⅡ电子传递效率高于其他处理,表现了在弱光条件下,为提高光能利用率而对环境的一种适应策略。青冈栎为喜阳性树种,但具有很强的耐荫性。
     (4)高密度和过低密度都不利于青冈栎容器苗的生长。随着青冈栎容器苗育苗密度的增加,苗木质量等级分化加大,单株平均生物量和质量指数降低。随着密度的降低,地径增加,但苗高和生物量降低,耗水量显著增加。根据容器苗苗木质量等多目标评价认为青冈栎网袋容器苗的栽培密度337株/m2为最佳。
Cyclobalanopsis glauca, a Fagaceae plant, is one of the dominant tree species of humid subtropical eastern evergreen broad-leaved forest in China and also the main afforestation species in the region. The present paper provided a theoretical basis for nursery technology of container seedlings of C. glauca by the experiments of matrix formulation, fertilization, and shading and plant density, and also provided technological reference for tending of young C. glauca plants. The main results showed that:
     1. Significant differences on the plant height, root collar diameter, biomass per plant, quality index (QI) of container seedlings were observed among the 15 kinds of media. Quality of seedlings increased with the increase of proportion of peat soil. Substrate bulk density, available nitrogen and phosphorus were the key factors influencing seedling quality of C. glauca. The substrate formula [peat soil (0.46)+ perlite (0.27)+rice husk (0.27)] and [peat soil (0.46)+saw dust (0.27)+rice husk (0.27)] were considered the best, according to the multi-objective comprehensive evaluation on physical and chemical properties of matrix, container seedling quality and production cost.
     2. Nitrogen effect on the growth of C. glauca was significantly different during the different growth periods. The differences on the container seedling height, root collar diameter, biomass and QI were significant between the nitrogen treatments. The parameters showed a quadratic curve trend with increase of nitrogen fertilizer. The parameters increased to the peak when the nitrogen content to a certain level then decreased when continued to increase the quantity of nitrogen. The nitrogen content of 99.5 mg/plant was the best for the evaluation parameters. Quality of container seedlings grown in different levels of potassium can meet the quality requirements, and the container seedlings were best with the potassium supply of 100 mg per plant. The poorest quality container seedlings of C. glauca were observed in the treatment of no P fertilizer supply, whereas all container seedlings were in line with seedling quality standards but seedlings quality declined with the increase of P fertilizer supply. As a result, the quality of container seedlings was best when plants grown in the treatments with P fertilizer of 40 mg P2O5 per plant. Fertilizer effect on the growth of container seedlings of C. glauca was in the sequence of N> P> K. Time effect of fertilization on seedling quality was significant difference between treatments with the best time in the seedling fertilization should be before transplantation. The comprehensive results of matrix formulation and fertilization experiment showed that the substrate formula [peat soil (0.46)+perlite (0.27)+rice husk (0.27)] and fertilizer combination [N (99.5 mg)+ K2O(100 mg)+P2O5(40 mg)/per plant were the excellent light-media for container seedlings nursery of C. glauca.
     3. Moderate shade (60% light transmission rate) benefit for the growth of seedlings of C. glauca during the period between transplantation to September 1, simultaneously reduced significantly the water consumption of container seedlings. Then seedlings should be cultivated with no shading. The height, root collar diameter, biomass and QI of container seedling were significantly affected by shading. These parameters decreased with the increase in shading intensity, ranking from high to low were 100%, 60%,40%,20%, and 5% transmittance, whereas the height of seedlings in 60% transmittance was close to the treatment of all light cultivation. The ratios of Chla/Chlb, Car/Chl and root weight ratio increased but the contents of Chla、Chlb and Car, specific leaf area, and leaf weight ratio decreased with the increase of light transmittance. PSII electron transport efficiency in leaves of seedlings grown in treatments of 20% and 5% transmittance was higher than other treatment, suggesting that C. glauca can improve light use efficiency demonstrating an adaptation strategy for low-light conditions. Cyclobalanopsis glauca is a heliophile species but has a strong shade tolerance.
     4.Both high and low density was not conducive to the growth of container seedlings of C. glauca. The differentiation of seedling quality grades increased and average biomass per plant and QI decreased with the increase of container seedling density. The root collar diameter of seedlings increased with the decrease of density, but the height and biomass per plant decreased, moreover, water consumption increased significantly. The optimal planting density of container seedlings of C. glauca is 337 individuals per square meter.
引文
1. 艾希珍,郭延奎,马兴庄,等.弱光条件下日光温室黄瓜需光特性及叶绿体超微结构[J].中国农业科学,2004,37 268-273.
    2. 白尚斌,王懿祥,左显东,等.磷胁迫条件下北美红杉幼苗生长的适应性反应[J].生态环境,2005,14(4):488-492.
    3. 白尚斌.西南桦、思茅松和北美红衫幼苗对N、P养分的适应机制[D].哈尔滨:东北林业大学,2002.
    4. 鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000.
    5. 鲍思伟,谈锋.不同光强对曼地亚红豆杉扦插苗叶片膜脂过氧化和膜保护酶活性的影响[J].西部林业科学,2009,38(1):1-7.
    6.蔡道雄,黎明,郭文福,等.灰木莲容器苗培育基质筛选试验[J].浙江林业科技,2006,26(5):36-48.
    7. 蔡飞,陈爱丽,陈启常.浙江建德青冈常绿阔叶林种群结构和动态的研究[J].林业科学研究,1998,11(1):99-106.
    8.蔡飞.杭州西湖山区青冈种群结构和动态的研究[J].林业科学,2000,36(3):67-72.
    9.蔡萍,雷庆丰,营养基质和容器规格对侧柏育苗质量的影响[J].中国林副特产,2003(3):38-39.
    10.藏国长.闽南尾巨桉施肥与营养诊断研究[D].福州:建农林大学,2008.
    11.陈辉,洪伟,林光先,等.马尾松轻型基质容器苗造林初效的研究[J].福建林学院学报,1999,19(2):105-109.
    12.陈礼光,陆小静,蔡月琴,等.柳杉苗木综合营养诊断Ⅰ.田间DRIS图解法[J].福建林学院学,2005,25(4):318-322.
    13.陈丽飞.遮荫及干旱胁迫对大花董草生理特性的影响[D].长春:吉林农业大学,2006.
    14.陈秋夏,郑坚,林霞,等.不同容器对木荷等3个容器苗生长的影响[J].西北林学院学报,2009,24(2)75-79,96.
    15.陈卫文,罗治,建陈防,等.鄂南毛竹林的养分状况与营养诊断标准[J].东北林业大学学报.2004,32(2):41-44.
    16.陈文友.巨桉人工林树高直径年生长分析研究[J].四川林业科技,2001,22(1):73-75.
    17.陈小勇,宋永昌.华东地区青冈种群的等位酶变异[J].植物资源与环境,1995,4(4):10-16.
    18.陈小勇,王希华,宋永昌.华东地区青冈种群的遗传多样性及遗传分化[J].植物物学报,1997,39(2):149-155.
    19.程庆荣.蔗渣和木屑作尾叶桉容器育苗基质的研究[J].华南农业大学学报:自然科学版,2002,23(2):11-14.
    20.戴开结,何方,沈有信,等.不同磷源对云南松幼苗生长和磷吸收量的影响[J].生态学报,2009,29(8):4078-4083.
    21.单守田.樟子松苗木移植密度试验[J].防护林科技,2006,5:14-16.
    22.邓士坚,廖利平,汪思龙,等.湖南会同红栲-青冈-刨花楠群落生物生产力的研究[J].应用生态学报.2000,11(5):651-654.
    23.邓小梅.乐东拟单性木兰、华木莲、红叶石楠、红罗宾、的组织培养及快繁技术研究[D].南京林业大学,2004.
    24.邓煜,刘志峰.温室容器育苗基质及苗木生长规律的研究[J].林业科学,2000,36(5):33-39.
    25.董桂春,王余龙,吴华,等.水稻主要根系性状对施氮时期反应的品种间差异[J].作物学报,2203,29(6):871-877.
    26.董胜君,陆秀君,孙涛,等.黄栌容器苗和裸根苗抗旱性比较试验[J].沈阳农业大学学报,2000,31(2):190-192.
    27.端木圻.我国青冈属资源的综合利用[J].北京林业大学学报.1995,17(2):109-110.
    28.范志强,王政权,吴楚,等.不同供氮水平对水曲柳苗木生物及其季节变化的影响[J].应用生态学报,2004,15(9):1497-1501.
    29.范志强.氮磷营养及氮形态对水曲柳幼苗生长和生理的影响机制[D].北京:北京林业大学,2004.
    30.付玉嫔,徐亮,孟广涛,等.施用氮、磷肥对旱冬瓜苗木生长的影响[J].西部林业科学,2008,37(2):25-28.
    31.傅子健.不同育苗措施对马尾松容器苗育苗效果的影响[J].宁德师专学报.2005,17(2):142-145
    32.葛莹,常杰,陈增鸿,等.青冈净光合作用与环境因子的关系[J].生态学报,1999,19(5):683-688.
    33.顾明华,白厚义,沈方科,等.龙眼磷素营养诊断技术的研究[J].广西农业生物科学.2002,21(1):32-36.
    34.关连珠.土壤肥料学[M].北京:中国农业出版社,2001.
    35.桂克印.不同光照处理对绿萝生长发育的影响研究[D].长沙:湖南农业大学,2007.
    36.郭盛磊,阎秀峰,白冰,等.供氮水平对落叶松幼苗光合作用的影响[J].生态学报,2005,25(6):1291-1298.
    37.郭晓敏.毛竹林平衡施肥及营养管理研究[D].南京:南京林业大学,2003.
    38.郭志华,王伯荪,张宏达.银杏的蒸腾特性及其对遮荫的响应[J].植物学报,1998,40(6):567-572.
    39.何钢,谢碧霞,谢涛,等.青冈属淀粉颗粒特性研究[J].江西农业大学学报,2003,25(5):681-684.
    40.何立新,何友军,李少锋.椿叶花椒幼苗施肥的生理特性响应[J].中南林业科技大学学报,2009,29(3):26-32.
    41.洪伟,吴承祯.杉木人工林种群密度与生长规律研究[J].福建林学院学报,2001,21(4):293-296.
    42.洪伟.林业试验设计技术与方法[M].北京科学技术出版社,1993,317-322.
    43.胡小兵,于明坚.青冈常绿阔叶林中青冈种群结构与分布格局[J].浙江大学学报,2002,30(5):574-579.
    44.胡正华,于明坚.古田山青冈林优势种群生态位特征[J].生态学杂志,2005,24(10):1159-1162.
    45.花妍,罗新兰,李天来,等.光照时间对番茄苗期生长发育的影响[J].河南农业科学, 2008,6:108-111.
    46.黄广远.油松侧柏樟子松容器苗配方施肥及其营养诊断的研究[D].咸阳:西北农林科技大学,2001.
    47.黄益宗,冯宗炜,李志先,等.叶枝叶片氮磷钾钙镁硼元素营养诊断指标[J].生态学报,2002,22(8):1254-1259.
    48.金国庆,周志春,胡红宝,等.3种乡土阔叶树种轻型基质容器育苗技术研究[J].林业科学研究,2005,17(3):636-640.
    49.景芸.三种青冈属苗木的生理特性研究[J].江西农业大学学报.2004,26(2):187-190.
    50.冷平生,马世超,李树蓉,等.兴安落叶松容器苗培育基质研究[J].京林业大学学报,1998,20(4):41-47.
    51.李朝周,梁恕坤,焦健,等.逆境胁迫下多胺与乙烯代谢的相关性及其对细胞膜保护系统影响的研究进展[J].甘肃农业大学学报,2002,37(3):265-271.
    52.李承水,王桂霞,宋全文,等.火炬松不同规格容器育苗试验初报[J].林业科技开发,1999(3):54—56
    53.李继承,李玉文,葛剑平,等.红松容器苗的培育技术[J].东北林业大学学报,2000,28(3):13-17
    54.李军,袁冬明.4种乡土阔叶树种容器苗生长规律及其培育技术研究[J].2007,27(1):24-27.
    55.李茗红,于明坚,陈启常,等.青冈常绿阔叶林的碳素动态[J].生态学报,1995,16(6):645-651.
    56.李茗红,于明坚,潘文戎.青冈常绿阔叶林钙的释放动态[J].浙江大学学报,2000,27(3):334-336.
    57.李谦盛.芦苇末基质的应用基础研究及园艺基质质量标准的探讨[D].南京:南京农业大学,2003.
    58.李瑞生,刘勇,乌丽雅丝,等.欧美雄性不育杨组培苗移栽用栽培基质配方的研究[J].江苏农业科学,2003,4:53-54,84.
    59.李绍稳,熊范纶,朱立武,等.砀山酥梨营养诊断与矫治模糊专家系统[J].中国科学技术大学学报.2001,V,31(5):558-563.
    60.李素艳.三倍体毛白杨养分动态变化规律及施肥技术研究[D].北京:北京林业大学,2008
    61.李倘弟,叶淡元,吴泽鹏,等.林木相关值营养诊断法及施肥技术研究[J].广东林业科技,1999,15(3):15-21.
    62.李倘弟.林木营养诊断方法的研究[J].广东林业科技,1999,15(4):8-15.
    63.李晓征.光逆境下白菜光合特性及抗逆机理的研究[D].南京:南京农业大学,2006.
    64.李学垣主编.土壤化学[M].北京:高等教育出版社,2001.
    65.李艳菊.元宝枫繁育技术与应用研究[D].北京:北京林业大学,2004.
    66.李永胜,朱锦茹,江波,等.乳源木莲管形容器育苗技术研究[J].浙江林业科技,2007,27(2):11-14.
    67.李玉蕾,俞新妥.光照强度与杉木苗生长发育的研究[J].福建林学科技,1983,1:43-51.
    68.李章田,段承俐,萧凤回.人工光照对一年生三七形态和光合特性的影响[J].云南农业大学学报,2009,24(5):677-683.
    69.李招弟.红花玉兰(Magnolia wufengensis)幼苗光合特性及其对温度胁迫的生理响应[D].北京: 北京林业大学,2009.
    70.梁津,王荣道,梁焕章.大麦拔节孕穗肥施用时间探讨[J].南京农专学报,2001,17(4):23-28
    71.梁君瑛.水分胁迫对桑树苗生长及生理生化特性的影响[D].北京:北京林业大学,2008.
    72.廖建雄,王根轩.植物的气孔振荡及其应用前景[D].植物生理学通讯,2000,36(3):272-276.
    73.廖胜彪.几个南方主要造林树种的施肥管理技术[J].山东林业科技,2005,5:35-37.
    74.林永英.卷斗青冈苗高生长时期有序聚类划分方法研究[J].福建林学院学报2002,22(3):223—226.
    75.林郑和,陈立松,陈荣冰,等.缺磷对茶树幼苗养分吸收的影响[J].茶叶科学,2009,29(4):295-300.
    76.刘宏斌,张云贵,李志宏,等.光谱技术在冬小麦氮素营养诊断中的应用研究[J].中国农业科学,2004,37(]1):1743-1748.
    77.刘文海,高东升,束怀瑞.不同光强处理对设施桃树光合及荧光特性的影响[J].中国农业科学,2006,39(10):2069-2075.
    78.刘勇.苗木质量评价的研究现状与趋势[J].世界林业研究.1991(3):62-67.
    79.刘勇.我国苗木培育理论与技术进展[J].世界林业研究,2000,13(5):43-49.
    80.刘勇等.苗木质量调控理论与技术[M].北京:中国林业出版社,1999.
    81.刘佐,朱静华,李明悦,等.钾素对蔬菜产量的影响及钾的吸收特性、利用率的研究[J].天津农业科学,2007,13(2):38-40.
    82.龙作义,张玉波.播种量与育苗密度对黄波罗苗木质量的影响[J].东北林业大学学报,2005,33(4):11-14.
    83.芦晓磊,宁伟,汤贺,等.光照强度对马齿苋生长及光合特性的影响[J].华北农学报,2008,23(2):41-44.
    84.鲁敏,程正渭,高凯.油松容器苗生长和生理指标的主分量分析[J].山东建筑工程学院学报.2006,21(2):133-136.
    85.鲁敏,姜风岐,宋轩.容器苗质量评定指标的研究[J].应用生态学报,2002,13(6):763-765.
    86.鲁敏,李英杰,王仁卿.油松容器育苗基质性质与苗木生长及生理特性关系[J].林业科学,2005,41(4):86-93.
    87.陆景陵,胡霭堂主编.植物营养学[M].北京,北京农业大学出版社,1994.
    88.罗宁.不同遮荫强度对几种苗木生长的影响[J].林业调查规划,2005,5:120-122.
    89.马常耕.世界容器苗研究生产现状和我国发展对策[J].世界林业研究,1994(5):33-41.
    90.马鲁沂,孙小玲.遮荫对高羊芽和沿阶章生活力及抗氧化酶体系的影响[J].草地学报,2009,17(2):187-192.
    91.马献良.钾肥对杉木育苗质量的影响[J].安徽林业科技,1995,增刊:12-13.
    92.马玉寿,郎百宁,李青云,等.施氮量与施氮时间对小嵩草草甸草地的影响[J].草业科学,2003,20(3):47-49.
    93.毛达如.植物营养研究方法[M].中国农业大学出版社,2005.
    94.梅俊学.逆温下发菜脯氨酸含量及质膜透性的变化与含水量的关系[J].山东师大学学报(自然科学版),2000,15(2):178-181.
    95.苗艳芳,李友军,张会民,等.氮钾肥对小麦养分吸收的影响及增产效应[J].西北农业大学学报,1999,7(2):43-47.
    96.NY/T1121.2-2006,土壤检测第2部分:土壤pH的测定[S].
    97.倪健,宋永昌.中国青冈的地理分布与气候的关系[J].植物学报,1997,39(5):451-460.
    98.倪穗,周光裕.青冈种群的能量积累[J].生态学杂志,1998,17(5):1-5.
    99.浦金云,金广泉,蔡一轮.专家系统和多目标决策理论在抗沉决策系统中的应用.海军工程大学学报,2000(1):83-86.
    100.齐泽民,王开运.密度对川西亚高山针叶林缺苞箭竹种群生物量、碳及养分贮量的影响[J].林业科学,2008,44(1):7-12.
    101.秦国峰,吴天林,金国庆等.马尾松舒根型容器苗培育技术研究[J].浙江林业科技,2000,20(1):68-73.
    102.沈国舫.森林培育学[M].北京:中国林业出版社,2001.
    103.沈允刚.光合作用在世纪之交的研究动向[J].生物学报,1999,34(6):1-4.
    104.孙海龙.氮磷营养对水曲柳苗木光合作用和氮同化的影响[D].哈尔滨:东北林业大学,2005.
    105.孙启武.西南桦人工林土壤质量变化及其苗期施肥效应与营养诊断[D].北京:中国林科院,2006.
    106.唐菁,杨承栋,康红梅.植物营养诊断方法研究进展[J].世界林业研究,2005,18(6):45-48.
    107.唐拴虎,张发宝,黄旭等.缓-控释肥料对辣椒生长及养分利用率的影响[J].应用生态学报,2008,19(5):986-991.
    108.唐中华,郭晓瑞,于景华,等.弱光对长春花(Catharanthus roseus)幼苗中可溶性糖、生物碱及激素含量的影响[J].生态学报,2007,27(11):4419-4424.
    109.滕汉书.马尾松容器育苗轻型基质筛选及指数施肥研究[D].福州:福建农林大学,2004.
    110.拓俊绒,曹雪峰,段治全,等.油松容器苗与裸根苗造林效果调研[J].中国水土保持,2007(2):35-36.
    111.王慧新,王伯伦,张城,等.不同肥密条件处理对水稻产量与品质影响[J].沈阳农业大学学报,2007,38(4):462-466.
    112.王继永.乌拉尔甘草栽培营养的研究[D].北京:北京林业大学,2003.
    113.王建霄,罗微,茶正早,等.水培条件下不同磷水平对橡胶树幼苗根系生长发育的影响[J].海南大学学报自然科学版,2009,27(3):265-269..
    114.王景祥.浙江省植物志[J].杭州:浙江省科学技术书版社,1993.
    115.王俊锋,王东升,穆春生,等.施肥对羊草叶面积与穗部数量性状关系的影响[J].吉林师范大学学报,2004,(1):34-38.
    116.王俊忠,张超男,赵会杰,等.不同施肥方式对超高产夏玉米叶绿素荧光特性及产量性状的影响[J].植物营养与肥料学报,2008,14(3):479-48.
    117.王丽娟.光质对草莓光合特性及果实品质的影响[D].保定:河北农业大学,2008.
    118.王琪真.肥料学[M].中国农业大学出版社,1998.
    119.王强盛,丁艳锋,严定春,等.不同施氮量对水稻旱育秧苗形态特征和生理特性的影响[J].南京农业大学学报,2004,27(3):11-14.
    120.王绍辉,郝翠玲,张振贤.植物遮荫效应的研究与进展[J].山东农业大学学报,1998,29(1):130-134
    121.王喜君,龙作义,王志军.钾肥对黄菠萝育苗质量的影响[J].防护林科技,2008,4:17-18.
    122.王晓玲,石雷,孙吉雄,等.遮荫对山麦冬生长特性和生物量分配的影响[J].植物研究,2006,26(2):753-756.
    123.王毅,武维.植物钾营养高效分子遗传机制[J].植物学报,2009,44(1):27-36.
    124.王友凤.福建青冈种子萌发的生理生态学机制研究[D].博士论文:福建农林大学,2007.
    125.王玉杰.单形格子和单形重心设计统计模型的优化分析方法[J].生物数学学报.1998,13(1):124-126.
    126.王月生,周志春,金国庆.基质配比对南方红豆杉容器苗及其移栽生长的影响[J].浙江林学院学报,2007,24(5):643-646.
    127.王政权,张彦东,王庆成.氮、磷对胡桃楸幼苗根系生长的影响[J].东北林业大学学报,1999,27(1):1-4.
    128.王自新.柠条和沙棘工厂化容器育苗技术研究[D].北京:中国农业大学,2005.
    129.韦小丽,廖明,朱忠荣,等.芽苗移栽掌叶木的生长规律与密度调控技术[J].山地农业生物学报,2006,25(1):9-12.
    130.韦小丽,朱忠荣,尹小阳,等.湿地松轻基质容器苗育苗技术[J].南京林业大学学报(自然科学版).2003,27(5):55-58.
    131.魏焕勇.种群密度对喜树幼苗生物量及喜树碱含量的影响[D].硕哈尔滨:东北林业大学,2005,
    132.温达志,孔国辉,林植芳,等.光强对四种亚热带树苗生长特征影响的比较[J].热带亚热带植物学报,1999,7(2):125-132.
    133.乌丽雅斯.红栌欧美杨温室苗木生长与抗逆性调控技术研究[D].北京:北京林业大学,2004.
    134.吴楚,范志强,王政权.磷胁迫对水曲柳幼苗叶绿素合成、光合作用和生物量分配格局的影响[J].应用生态学报,2004,15(6):935-940.
    135.吴根良,何勇,王永传,等.不同光照强度下卡特兰和蝴蝶兰光合作用和叶绿素荧光参数日变化[J].浙江林学院学报,2008,25(6):733-738.
    136.吴一群,张丽娜,郑丽敏,等.高磷对番茄幼苗光合作用的影响[J].热带作物学报,2009,30(6):756-760.
    137.吴正锋,王才斌,李新国,等.苗期遮荫对花生光合生理特性的影响[J].生态学报,2009,29(3):1366-1373.
    138.武维华.植物生理学[M].科学出版社,2006.
    139.肖润林,王久荣,单武雄,等.不同遮荫水平对茶树光合环境及茶叶品质的影响[J].中国生态农业 学报,2007,15(6):6-11.
    140.谢安强,陆小静,杨榕,等.柳杉苗木综合营养诊断研究Ⅱ.田间DRIS指数法[J].福建林学院学报.2006,26(2):111-116.
    141.谢会成.检皮栋光合生理生态的研究[D].南京:南京林业大学,2002.
    142.谢灵玲等.光照对大豆叶片苯内氨酸裂解酶(PAL)基因表达及异黄铜合成调节[J].植物学报.2000,17(5):443-449.
    143.熊璇,于晓英,魏湘萍,等.遮荫对重瓣大花萱草光合色素含量及生理特性的影响[J].湖南农业科学,2009,(1):29-32.
    144.徐程扬.紫椴幼苗、幼树对光响应与适应研究[D].北京:北京林业大学,1999.
    145.徐方圆,徐锡珍.苗木生理与质量研究进展[J].世界林业研究,2000,13(4):17-24.
    146.徐明广.国外苗木质量研究方法概述[J].山东林业科技.1992(4):1-5.
    147.徐燕,张远彬,乔匀周,等.光照强度对川西亚高山红桦幼苗光合及叶绿素荧光特性的影响[J].西北林学院学报,2007,22(4):1-4.
    148.徐玉梅,王卫斌,景跃波,等.云南红豆杉育苗基质筛选试验[J].西南林学院学报,2009,29(1):41-48.
    149.许传森,许洋.林木工厂化育苗新技术[M].北京:中国农业科学技术出版社,2006.
    150.闫兴富,曹敏.不同光照梯度的遮荫处理对绒毛番龙眼幼苗生长的影响[J].热带亚热带植物学报,2007,15(6):465-472.
    151.杨斌,张延东.板栗不同施肥时间和施肥量的比试验[J].林业科技开发,2004,18(1):26-28.
    152.杨斌,赵文书,陈建文.西南桦容器苗苗木分级研究[J].云南林业科技.2003,(2):17-21.
    153.杨春洲.工厂化容器育苗基质筛选研究[J].林业科技通讯.1999,10:20-22.
    154.杨梅娇.不同光照强度对一年生油樟苗生长的影响[J].浙江林业科技,2006,26(3)41-43.
    155.杨晓盆,杨伟红,郭晋平,等.遮荫对温室盆栽茶梅光合特性及生长发育的影响[J].中国生态农业学报,2008,16(3):640-643.
    156.杨兴洪,陈翠容,施培.遮荫对棉花茎叶解剖结构的影响[J].山东农业大学学报(自然科学版),2000,31(4):373-377.
    157.杨永红,孙鹏.钾肥对云杉Ⅰ级苗产出率的影响及施肥量试验研究[J].甘肃林业科技,2006,31(3):44-46.
    158.易咏梅.光皮桦和青冈栎茎的比较解剖比较[J].南京林业大学学报,2000,24(1):45-50.
    159.尹晓阳,李德芬,金天喜等.云南樟、 刺槐不同基质容器育苗比较试验[J].山地农业生物学报,2003,22(2):122-126.
    160.于海群.飞播油松林群落特征及其与环境因子相互作用因子的研究[D].北京:北京林业大学,2008.
    161.于明坚,陈启常浙江建德青冈种群结构的研究[J].东北林业大学学报,1998,26(5):10-15.
    162.于明坚,杜勤,蔡飞,等.杭州西湖山区青冈生态遗传学的初步研究[J].浙江农业大学学报,1997, 23(1):23-26.
    163.于明坚,徐学红,李铭红,等.青冈常绿阔叶林氮的生物循环[J].生态学报,2005,25(4):740-748.
    164.于明坚.青冈常绿阔叶林群落动态研究[J].林业科学,1999,35(6):42-51.
    165.于显枫,郭天文,张仁陟,等.水氮互作对春小麦叶片气体交换和叶绿素荧光参数的作用机制[J].西北农业学报,2008,17(3):117-123.
    166.俞筱押.种群密度制约原理在生态恢复中应用的思考[J].黔南民族师范学院学报,2007,3:31-33,82.
    167.喻方圆,邵岚,易永娴,等.青冈栎等6种林木种子耐脱水性研究[J].南京林业大学学报,2006,30(1).
    168.臧慧,沈会权,陈晓静,等.钾肥对弱筋小麦苗期植株性状的影响[J].江西农业学报,2009,21(3):29-31.
    169.翟玫瑰,李纪元,徐迎春,等.遮荫对茶花幼苗生长及生理特性的影响[J].林业科学研究,2009,22(4):533-537.
    170.张边江,王荣富,张香桂,等.倪不同棉花栽培种的光合特性比较研究[J].中国生态农业学报,2008,16(5):1149-1153.
    171.张春华,廖声熙,李昆,等.金沙江干热河谷3个造林树种裸根1年生苗的育苗密度研究[J].西部林业科学,2007,36(4):79-86.
    172.张方钢.浙江九龙山青冈林的数值分类[J].浙江栋学院学报1996,13(3):293-300.
    173.张贵生,李素珍,石可为,等.芦笋不同种植密度的探讨[J].浙江农业科学,1994,2:85-87.
    174.张纪卯.毛果青冈1年生苗木生长规律及相关关系[J].中南林学院学报,2006,26(3):59-62.
    175.张建国,盛炜彤,罗红艳,等.杉木营养平衡与苗木干物质的分配关系[J].林业科学,2003,39(3):37-44.
    176.张静,赵正雄,李宏光,等.育苗阶段不同氮浓度对烟苗部分生理生化指标的影响.土壤肥料科学2007,23(7):366-369.
    177.张露,郭联华,杜天真,等.遮荫和土壤水分对毛红椿幼苗光合特性的影响[J].南京林业大学学报(自然科学版).2006,30(5):63-66.
    178.张其德.光强度对小麦幼苗光合特性的影响[J].植物学报,1988,30(5):508-514.
    179.张淑珍,窦永芹,曹俊训,等.火炬松容器苗裸根苗造林对比试验[J].山东林业科技,1990,1:53-55.
    180.张文元.毛竹根际土壤肥力质量变化及苗期营养管理研究[D].北京:中国林业科学研究院,2009.
    181.张晓鹏,赵忠,张博勇,等.氮磷钾对俄罗斯大果沙棘扦插苗生长效应的影响[J].西北林学院学报2007,22(3):96-99.
    182.张振贤,郭延奎,邹琦.遮荫对生姜叶片显微结构及叶绿体超微结构的影响[J].园艺学报,1999,26(2):96-100.
    183.张志.不同钾肥用量对黄瓜幼苗生长的影响[J].安徽农业科学,2007,36(9):3601-3602.
    184.赵伯善,翟丙年,韩燕来.施磷对玉米和大豆幼苗生长的影响[J].西北农业大学学报,1995,23(2):54-59.
    185.赵德修,李茂寅,邢建民,等.光质、光强和光期对水母雪莲愈伤组织生长和黄酮生物合成的影响[J].植物生理学报,1999,25(2)127-132.
    186.赵和文,刘勇,柳振亮.黄连木幼苗施肥试验研究[J].北京农学院学报,2005,20(1):68-70.
    187.周健,成浩,曾建明,等.茶树工厂化育苗的氮磷钾肥施用效应分析[J].中国土壤与肥料,2008(4):33-36.
    188.周健,成浩,曾建明.茶树工厂化育苗的氮磷钾肥施用效应分析[J].中国土壤与肥料,2008(4):33-36.
    189.周兴元,曹福亮.遮荫对假俭草抗氧化酶系统及光合作用的影响[J].南京林业大学学报,2006,30(3):32-36.
    190.周忆堂,红群,梁丽娇,等.不同光照条件下长春花的光合作用和叶绿素荧光动力学特征[J].中固农业科学,2008,41(11):3589-3595.
    191.朱业芹,陈家春,周群,等.不同种苗和种植密度对湖北麦冬质量与产量的影响[J].中国中药杂志,2008,33(11):1327-1329.
    192.朱祖祥.土壤学[M].北京:农业出版社,1983.
    193. Adriaanse FG, Human JJ. Effect of time of application and nitrate:ammonium ratio on maize grain yield, grain N concentration and soil mineral N concentration in a semi-arid region[J]. Field Crops Research,1993,34(1):57-70
    194. Alyne OL, De Souza Sant'Ana C, Schramm Mielke M, et al. Effects of light availability and soil flooding on growth and photosynthetic characteristics of Genipa americana L. seedlings[J]. New Forests, 2007,34:41-50.
    195. Anne P, Manfred J. Revegetation of waste fly ash lagoons Ⅱ.seedling transplants and plant nutrition[J].Waste Management & Research,1997,15:359-370.
    196. Ashok S, Anil K, Anuradha J, et al. Effects of shade on arbuscular mycorrhizal colonization and growth of crops and tree seedlings in Central India[J]. Agroforest Syst,2009,76:95-109.
    197. Bi H, Wan G, Turvey ND. Estimating the self-thinning boundary line as a density-dependent stochastic biomass frontier[J]. Ecology,81:66,1477-1483.
    198. Brunner I, Brodbeck S. Response of mycorrhizal Norway spruce seedlings to various nitrogen loads and sources[J].Environmental Pollution,2001,114(2):223-233.
    199. Bugbee GJ, Frink CR. Aeration of potting media and plant growth[J]. Soil Science,1986,141: 438-441.
    200. Bunt AC. Media and mixes for container-grown plants[D]. Unwin Hyman Ltd:London, UK,1988.
    201. Callahan HS, Pigliucci M. Shade-induced plasticity and its ecological significance in wild populations of Arabidopsis thaliana[J]. Ecology,2002,83:1965-1980.
    202. Catherine AG. Growth responses to arbuscular mycorrhizae by rain forest see-dlings vary with light intensity and tree species[J]. Plant Ecology,2003,167:127-139.
    203. Catovsky S, Bazzaz FA. Nitrogen availability influences regeneration of temperate tree species in the understory seedling bank[J]. Ecological Applications,2002,12(4):1056-1070.
    204. Evans CA, Eric K, Miller, et al.. Effect of nitrogen and light on nutrient concentrations and associated physiological responses in birch and fir seedlings[J]. Plant and Soil,2001,236:197-207.
    205. Chen JJ, Li YC. Coal fly ash as an amendment to container substrate for Spathiphyllum production[J]. Bioresource Technology,2006,97:1920-1926.
    206. Cruz JL, Mosquim PR, Pelacani CR, et al. Photosynthesis impairment in cassava leaves in response to nitrogen deficiency[J]. Plant and Soil,2003,257:417-423.
    207. David BS, Sandy WH, James PB, et al. Effect of container type and seedling size on survival and early height growth of Pinus palustris seedlings in Alabama, U.S.A.[J]. Forest Ecology and Management,2005,204:385-398.
    208. Dickson A, Leaf AL, Hosner JF,1960. Quality appraisal of white spruce and white pine seedling stock in nurseries. For.Chronicle 36,10-13.
    209. Dominguez-Lerena S, Herrero SN, Carrasco MI, et al. Container characteristics influence Pinus pinea seedling development in the nursery and field[J]. Forest Ecology and Management,2006,221: 63-71.
    210. Eva S, Christoph K, Peter JE, et al.. Influence of light and nutrient conditions on seedling growth of native and invasive trees in the Seychelles[J]. Biol Invasions,2009,11:1941-1954.
    211. Guo K, Marinus, Werger JA. Responses of Fagus engleriana seedlings to light and nutrient availability[J]. Acta Botanica Sica,2004,46(5):533-541.
    212. Hahne KS, Schuch UK. Nitrogen requirements of Prosopis Velutina during early seedling growth[EB].2004. http://cals.arizona.edu/pubs/crops/azl359/.
    213. Hawkins BJ, Burgess D, Mitchell AK. Growth and nutrient dynamics of western hemlock with conventional or exponential greenhouse fertilization and planting in different fertility conditions[J]. Canadian Journal of Forest Research,2005,35(4):1002-1016.
    214. Hawkins BJ, Henry G, Kiiskila. SBR. Biomass and nutrient allocation in Douglas-fir and amabilis fir seedlings:influence of growth rate and nutrition[J]. Tree Physiology,1998,18(12):803-810.
    215. Heuvelink E. Effect of plant density on biomass allocation to the fruits in tomato (Lycopersicon esculentum Mill.) [J]. Scientia Horticulture,1995,64:193-201.
    216. Ilari L, Aino S. Effect of nitrogen deposition level on nitrogen uptake and bud burst in Norway spruce (Picea abies Karst.) seedlings and N uptake by soil microflora[J]. Forest Ecology and Management,1996,89:197-204.
    217. Inger SF, Ketil K. Influence of nutrient supply on spring frost hardiness and time of bud break in Norway spruce (Picea abies (L.) Karst.)seedlings[J]. New Forests,2004,27:1-11.
    218. Jaime P, Luis FB, Juan LP. Effects of nursery shading on seedling quality and post-planting performance in two Mediterranean species with contrasting shade tolerance[J]. New Forests,2009,38: 295-308.
    219. James JJ. Effect of soil nitrogen stress on the relative growth rate of annual and perennial grasses in the Intermountain West[J]. Plant Soil,2008,310:201-210.
    220. Jiang MM, Li DJ, Per G. Seedling growth response of two tropical tree species to nitrogen deposition in southern China[J]. Eur J Forest Res,2008,127:275-283.
    221. Jose S, Merritt S, Ramsey CL. Growth, nutrition, photosynthesis and transpiration responses of longleaf pine seedlings to light, water and nitrogen[J]. Forest Ecology And Management,2003,180: 335-344.
    222. Juha H. Effects of pre- and post-planting shading on growth of container Norway spruce seedlings. New Forests(2004)27:101-114.
    223. Keith EF.Effect of sedimentation,hydrology,and light intensity on the emergence of seedlings in a Taxodium distichum swamp[D]. Southern illinois:Southern illinois university,2002.
    224. Kessle JB. The effect of light,temperature,and carbon dioxide on growth and flowering of Begonia X semperflorens-cultorum[D].Georgia:University of Gerogia,1989.
    225. Khasa DP, Fung M, Logan B. Early growth response of container-grown selected woody boreal seedlings in amended composite tailings and tailings sand[J]. Bioresource Technology,2005,96: 857-864.
    226. Klelmens JA.Biomass allocation and growth of tropical dry forest tree seedlings across light and soil gradients[D]. Pennsylvania:University of Pennsylvania,2003.
    227. Kotowskil W, AndellJV, Diggelen RV. Responses of fen plant species to groundwater level and light intensity[J]. Plant Ecology,2001,155:147-156.
    228. Laura MM, Michael BW. Effects of nitrogen supply and wood species on Tsuga canadensis and Betula alleghanlensis seedling growth on decaying wood[J]. Canadian Journal of Forest Research,2006, 36(11):2873-2884.
    229. Levy PE, Lucas ME, McKay HM, et al. Testing a process-based model of tree seedling growth by manipulating[CO2]and nutrient uptake[J]. Tree Physiology,2000,20(5):993-1005.
    230. Long SP,Baker NR,Raines CA. Analysing the responses of photosynthetic CO2 assimilation to long-term elevation of atmospheric CO2 concentration. Vegetation 1993,104/105:33-45.
    231. Marco G, Maria EG, Claudio C. Compost-based growing media:Influence on growth and nutrient use of bedding plants[J]. Bioresource Technology,2007,98:3526-3534.
    232. Marianthi T. Kenaf (Hibiscus cannabinus L.) core and rice hulls as components of container media for growing Pinus halepensis M. seedlings[J]. Bioresource Technology,2006,97:1631-1639.
    233. Masarovieova EE, Welschen R, Lux A, et al. Photosynthesis biomass partitioning and peroxisomicine A1 production of Karwinskia species in response to nitrogen supply[J]. Physiol Plant, 2000,108:300-306.
    234. Medina E, Paredes C, Perez-Murcia MD, et al. Spent mushroom substrates as component of growing media for germination and growth of horticultural plants[J]. Bioresource Technology,2009, 100:4227-4232.
    235. Michael EL, Karen DH. Photosynthetic responses of tree seedlings in grass and under shrubs inearly-successional tropical old fields, Costa Rica[J]. Oecologia,2001,127:40-50.
    236. Michael PR. Effect of nursery media particle size distribution on container-grown woody ornamental production[D]. Louisiana State:B. S., Louisiana State University,2006.
    237. Mu SB, Norbert B. Early seedling growth of pine (Pinus densiflora) and oaks (Quercus serrata, Q. mongolica, Q. variabilis) in response to light intensity and soil moisture[J]. Plant Ecology,2003,167: 97-105.
    238. Nakaji T, Fukami M, Dokiya Y, et al. Effects of high nitrogen load on growth, photosynthesis and nutrient status of Cryptomeria japonica and Pinus densiflora seedlings[J]. Trees,2001,15:453-461.
    239. Natalia SA, FeijO MS, Mielke F PG, et al.. Growth and photosynt-hetic responses of Gallesia integrifolia(Spreng.) Harms and Schinus terebinthifolius Raddi seedlings in dense shade[J]. Agroforest Syst,2009,77:49-58.
    240. Pokorny FA. Pine bark container media-an overview[J]. Proc. Intl. Plant Prop,1979,29:484-494.
    241. Puri S, Swamy SL. Growth and biomass production in Azadirachta indica seedlings in response to nutrients (N and P) and moisture stress[J]. Agroforestry Systems,2001,51:57-68.
    242. Quoreshi M, TimmerGrowth VR. Nutrient dynamics, and ectomycorrhizal development of container-grown Picea mariana seedlings in response to exponential nutrient loading[J]. Canadian Journal of Forest Research,2000,30,2:191-202.
    243. Raul I. Cabrera. Monitoring chemical properties of container growing media with small soil solution samplers[J].Scientia Horticulturae,1998,75:113-119.
    244. Ribeiro HM, Romero AM, Pereira H, et al. Evaluation of a compost obtained from forestry wastes and solid phase of pig slurry as a substrate for seedlings production[J]. Bioresource Technology, 2007,98:3294-3297.
    245. Richards D, Lane M, Beardsell DV. The influence of particle-size distribution in pinebark:brown coal potting mixes on water supply, aeration and plant growth[J]. Scientia horticulturae,2007,29:1-14.
    246. Roman T, Jordi C, Alberto V. Short-term nitrogen deprivation increases field performance in nursery seedlings of Mediterranean woody species[J]. Journal of Arid Environments,2008,72(6):879-890.
    247. Rothstein DE, Cregg BM. Effects of nitrogen form on nutrient uptake and physiology of Fraser fir (Abies fraseri) [J].Forest Ecology and Management,2005,219:69-80.
    248. Samuel AFB, Nick O, Chris F. Short-term effect of deep shade and enhanced nitrogen supply on Sphagnum capillifolium morphophysiology[M]. Plant Ecol,2009.
    249. Schiefelbein JW, Benfy PN. The development of plant Root:New approaches to underground problem[J]. The Plant Cell,1991,3,1147-1154.
    250. Tarin Toledo-Aceves, Michael D, Swaine. Above- and below-ground competition between the liana Acacia kamerunensis and tree seedlings in contrasting light environments[J]. Plant Ecol,2008,196: 233-244.
    251. Tatsuro N, Motohiro F, Yukiko D, et al. Effects of high nitrogen load on growth, photosynthesis and nutrient status of Cryptomeria japonica and Pinus densifloraseedlings[J]. Trees,2001,15:453-461.
    252. Terry MS, James AM, John DM. Root chemistry of Douglas-fir seedlings grown under different nitrogen and potassium regimes[J]. Canadian Journal of Forest Research,1998,28(10):1568-1573.
    253. Torsten WB, Gerhard G.Response of Quercus petraea seedlings to nitrogen fertilization[J].Forest Ecology and Management,2001,149:1-14.
    254. Wang X, Tang C, Guppy CN, et al. Phosphorus acquisition characteristics of cotton(Gossypium hirsutum L.), wheat (Triticum aestivum L.)and white lupin (Lupinus albus L.) under P deficient conditions [J]. Plant Soil,2008,312:117-128.
    255. Warren CR, Adams MA. Phosphorus affects growth and partitioning of nitrogen to Rubisco in Pinus pinaster[J]. Tree Physiol,2002,22:11-19.
    256. Wei HY, Wan GY, Wang ZY. Effect of planting density on plant growth and camptothecin content of Camptotheca acuminata seedlings[J]. Forestry Research,2005,16(2):137-139.
    257. William CP, Gina HM. Photosynthetic acclimation of shade-grown red pine(Pinus resinosa Ait.) seedlings to a high light environment[J]. New Forests,2000,19:1-11.
    258. Woodard K. The effects of nitrogen fertilizer application amounts and timing on the quality of barefoot loblolly pine (Pinus taeda L.) seedlings[D]. Austin:Stephen F. Austin State University,2002.
    259. Xiao ZS, Zhang ZB, WangYS. Effects of seed size on dispersal distance in five rodent-dispersed fagaceous species[J]. Acta Oecologica,2005,28:221-229.
    260. Xiong F, Wang Z, Gu YJ, et al. Effects of Nitrogen Application Time on Caryopsis Development and Grain Quality of Rice Variety Yangdao 6[J].Rice Science,2008,15(1):57-62.
    261. Xu DQ. Progress in Photosynthesis Research:From Molecular Mechanisms to Green Revolution[J]. Acta Phytophsiologica Smca,2001,27(2):97-108.
    262. Zhao CZ, Liu Q. Growth and physiological responses of Picea asperata seedlings to elevated temperature and to nitrogen fertilization[J]. Acta Physiol Plant,2009,31:163-173.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700