飞秒激光诱导无机—有机杂化光子学微结构与非线性光学材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
飞秒激光具有极高的峰值功率及很短的脉冲持续时间,用它对材料进行微结构修饰是当今材料和信息科学研究的一个新领域。无机-有机杂化材料集无机、有机性质于一体,不仅兼有无机、有机材料两者的性能优势,并能够实现功能互补和协同优化,在光电应用中显示出了巨大的发展潜力。如何利用飞秒激光来诱导和调控无机-有机杂化材料的微结构,以获得光子学新材料,已经成为了材料科学、物理和信息等领域广泛关注和研究的热点课题。
     本论文对飞秒激光诱导无机-有机杂化光子学微结构与非线性光学材料进行了比较详细的研究。研究的主要内容包括偶氮染料掺杂杂化材料的飞秒激光诱导双折射性能、酞菁染料掺杂无机-有机杂化材料的飞秒激光诱导光Kerr效应、有机染料掺杂材料的飞秒激光诱导体微光栅以及偶氮染料掺杂无机-有机杂化材料的非共振全光极化等研究。
     实现了偶氮染料掺杂无机-有机杂化材料和聚甲基丙烯酸甲酯(PMMA)聚合物的飞秒激光诱导双折射效应,两种材料的光诱导透过率分别为92%(折射率改变值为5.2×10~(-5))和21%(折射率改变值为1.6×10~(-4))。通过对光诱导双折射效应信号的测量,考察了光诱导双折射效应的写入过程和衰减过程。研究表明偶氮染料掺杂PMMA聚合物的光诱导双折射效应主要来源于偶氮分子的重新取向,而偶氮染料掺杂无机-有机杂化材料的光诱导双折射效应主要来源于偶氮分子的光致异构。
     研究了飞秒激光写入参数对偶氮染料掺杂PMMA聚合物的光诱导双折射效应的影响。研究发现偶氮染料掺杂PMMA聚合物在下列三种写入情况下,飞秒激光诱导双折射的上升速率和信号强度的饱和值由写入光的峰值功率控制:激光重复率、脉冲宽度固定,而改变激光功率;激光功率、脉冲宽度固定,而改变激光重复率;激光功率、重复率固定,而改变激光脉冲宽度。但是,当激光脉冲宽度、脉冲能量固定,而改变写入激光重复率,飞秒激光诱导双折射的上升速率和信号强度的饱和值则由写入光的平均功率控制。考察了样品厚度对偶氮染料掺杂无机-有机杂化材料的飞秒激光诱导双折射效应的影响。研究发现增加样品的厚度会加快光诱导双折射的上升速率,减慢光诱导双折射的衰减速率;光诱导双折射信号强度的饱和值T_(sat)随样品厚度的增加有明显的增加,最终达到饱和值(80%);长时间稳定信号强度T_(perm)受样品厚度的影响很小。基于飞秒激光诱导双折射效应,在偶氮染料掺杂无机-有机杂化材料中实现了光学存储,存储的图像可以保持几星期。
     获得了酞菁铅掺杂无机-有机杂化材料的飞秒激光诱导超快响应的光Kerr效应。超快响应时间约为200fs,超快响应过程控制整个光Kerr效应信号强度的衰减过程。通过光Kerr效应信号强度和泵浦光功率的关系研究,探明光Kerr效应来源于酞菁铅的三阶非线性光学效应;通过光Kerr效应信号强度和泵浦光与偏振光的偏振方向夹角θ之间的关系研究表明,光Kerr效应来源于飞秒激光诱导瞬态光栅引起的自衍射效应。
     针对微光栅高衍射效率的要求,研究建立了飞秒激光诱导杂化材料体微光栅的新工艺。考察研究了利用飞秒激光双光束干涉的方法制作激光染料P-Orange掺杂无机-有机杂化材料的一维体微光栅,体微光栅的厚度超过450μm,一级Bragg衍射效率约为35%。在一维体微光栅的基础上,采用四束飞秒激光干涉的方法研究制作偶氮染料(DR1和DY9)和酞菁镍(NiPc)掺杂无机-有机杂化材料的四方晶格类型的二维体微光栅。在相同写入激光条件下,DR1掺杂PMMA聚合物的二维体微光栅的条纹宽度比DY9掺杂无机-有机杂化材料的二维体微光栅的条纹宽度小。研究表明,在相同写入条件下,没有观察到未掺染料无机-有机杂化材料的体微光栅,可见飞秒激光诱导体微光栅的形成直接与掺杂染料相关。
     实现了偶氮染料掺杂无机-有机杂化材料的非共振全光极化。通过对二次谐波的测量,研究了非共振全光极化的写入过程和衰减过程。研究表明偶氮染料掺杂无机-有机杂化材料的非共振全光极化主要来源于偶氮分子的光致异构。测得DR1掺杂杂化材料的二阶非线性光学系数d_(33)约为10~(-3)pm/V。在基频光与倍频光功率之比固定在750:1的前提下,随基频光功率的增加二次谐波信号强度的衰减被抑制。
Femtosecond (fs) lasers with high peak power and ultrashort pulse width have been used to make microscopic modifications to many kinds of materials through multiphoton absorption, which has become a new research field in materials and information science. Hybrid inorganic-organic materials with unique properties offered by the two components play an important role in the development of photonic devices. The microscopic modifications of hybrid inorganic-organic materials have become a hot research topic in the field of materials, physics, and infomations science.
    This thesis focuses on fs laser induced microstructures and nonlinear optical materials of hybrid inorganic-organic. We studied fs laser induced birefringence, ultrafast optical Kerr effect, microgratings and nonresonant all-optical poling in hybrid inorganic-organic materials and PMMA polymers doped with azodyes, laser dyes, and phthalocyanines.
    The photoinduced birefringence induced by a fs laser in hybrid inorganic-organic materials and PMMA polymers doped with azodyes was experimentally demonstrated. The probe transmittances for the induced birefringence in these two kinds of materials were estimated to be 92% and 21%, respectively. The characteristic kinetics of growth and decay of the indued birefringence was investigated by measuring the probe transmittance for the photoinduced birefringence. It is evidenced experimentally that the photoinduced birefringence for the azodyes-doped PMMA polymers is mainly due to the reorientation of the azodye molecules, while the photoinduced birefringence for the azodyes-doped hybrid inorganic-organic materials is mainly due to the trans-cis isomerization of the azodye molecules.
    The research of the effects of writing conditions on the probe transmittance for the photoinduced birefringence in the azodyes-doped
    PMMA polymers confirmed that writing conditions had great impact on the growth rate and saturation value of the photoinduced birefringence. Four cases of writing conditions on the growth kinetics of the probe transmittance for the photoinduced birefringence were sdudied. In the following three conditions: (1) fixing the pulse width and repetition rate of the pulses with variation in the writing power, (2) fixing the writing power and repetition rate with variation in the pulse width and (3) fixing the writing power and pulse width with variation in the repetition rate, the peak power is the dominating parameter. When fixing the energy of the pulses or the incident energy, however, the writing power becomes the dominating parameter. The research of the effects of sample thickness on the probe transmittance for the photoinduced birefringence in the azodyes-doped hybrid inorganic-organic materials confirmed that sample thickness had great impact on the growth rate and saturation value of the photoinduced birefringence. The growth rate remarkably becomes fast and the saturation value increases with a longer saturation time with increasing the sample thickness and that the decay of the probe transmittance for the photoinduced birefringence in thicker sample becomes slower. In addition, the probe transmittance for the saturated photoinduced birefringence △n_(sat) is saturated at 80% after reaching a critical sample thickness, while the effect of the sample thickness on the permanent photoinduced birefringence △n_(perm) is not as sensitive as that for △n_(sat). We propose a novel method for optical srotage based on the photoinduced birefringence in hybrid inorganic-organic materials. The recorded image can be stored for several weeks.
    Ultrafast optical Kerr effect (~200 fs) in the order of the time-resolution of the experiment dominating over the decay process was demonstrated in lead (II) phthalocyanine (PbPc)-doped hybrid inorganic-organic materials. The research of the influence of pumping power on optical Kerr signal intensity confirms that the optical Kerr effect origins from third-order nonlinear optical properties of the PbPc molecules. By investigating the dependence of optical Kerr signal intensity on the polarization angle between the pumping beam and the probing beam, we have identified the origin of the optical Kerr effect in
    detail that the ultrafast response process should be attributed to self-diffraction of the pump pulse by the fs laser indued transient gratings.
    To increase the diffraction efficiency of the microgratings, a new method of fabricating microgratings in hybrid inorganic-organic materials and PMMA polymers doped with azodyes or phthalocyanines was developed. Holographic one-dimentional volume microgratings with high first-order Bragg diffraction efficiency (greater than 35%) were fabricated in the laserdyes-doped hybrid inorganic-organic materials by two-beam interference of fs pulses. The micrograting depth was greater than 450 μm. Based on one-dimensional volume microgratings, holographic two-dimensional volume microgratings were also fabricated in the azodyes- or phthalocyanines-doped materials by four-beam interference of fs pulses. Under the same writing conditions, the linewidth of the strip of the two-dimensional microgratings fabricated in the azodye-doped PMMA polymers is narrower than that of the strip of the two-dimensional microgratings in the azodye-doped hybrid inorganic-organic materials. The photodecomposition of the dyes doped is responsible for the microgratings.
    Nonresonant all-optical poling in the azodye-doped hybrid inorganic-organic materials was demonstrated. The characteristic kinetics of growth and decay of the photoinduced second-order nonlinear optical effect was measured by second-harmonic generation. It is evidenced experimentally that the nonresonant all-optical poling of the azodyes-doped hybrid inorganic-organic materials is mainly due to the trans-cis isomerization of the azodye molecules. The second-order nonlinear optical coefficient d_(33) is determined to be 10~(-3) pm/V. The decay for the photoindcued second harmonic intensity is improved when increasing the power of the seeding beams, with the intensity ratio between the fundamental and the second harmonic light kept at 750: 1.
引文
[1] E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett., 1987, 58, 2059-2062
    [2] Z. Sekkat, and M. Dumont, Photoassisted poling of azo dye doped polymeric films at room temperature, Appl. Phys. B, 1992, 54, 486-487
    [3] Z. Sekkat, J. Wood, and W. Knoll, Reorientation mechanism of azobenzenes within the trans-cis photoisomerization, J. Phys. Chem., 1995, 99, 17226-17234
    
    [4] T. Todorov, L. Nikolova, and N. Tomova, Polarization holography. 1: a new high-efficiency organic material with reversible photoinduced birefringence, Appl. Opt., 1984,23,4309-4316
    
    [5] P. Rochon, J. Gosselin, A. Natansohn, and S. Xie, Optically induced and erased birefringence and dichroism in azoaromatic polymers, Appl. Phys. Lett, 1992, 60, 4-5
    
    [6] M. Dumont, and A. EI Osman, On spontaneous and photoinduced orientational mobility of dye molecules in polymers, Chem. Phys., 1999,245,437-462
    
    [7] J. R. Silva, F. F. Dall'Agnol, O. N. Oliveira, and J. A. Giacometti, Temperature dependence of photoinduced birefringence in mixed Langmuir-Blodgett (LB) films of azobenzene-containing polymers, Polymer, 2002, 43, 3753-3757
    
    [8] L. L. Nedelchev, A. S. Mtharu, S. Hvilsted, and P. S. Ramanujam, Photoinduced anisotropy in a family of amorphous azobenzene polyesters for optical storage, Appl. Opt, 2003,42, 5918-5927
    
    [9] C. Cojocariu, and P. Rochon, Synthesis and optical storage properties of a novel polymethacrylate with benzothiazole azo chromophore in the side chain, J. Mater. Chem., 2004, 14, 2909-2916
    
    [10] Y. L. Wu, A. Natansohn, and P. Rochon, Photoinduced birefringence and surface relief gratings in polyurethane elastomers with azobenzene chromophore in the hard segment, Macromolecules, 2004, 37, 6090-6095
    
    [11] B. L. Lachut, S. A. Maier, H. A. Atwater, M. J. A. de Dood, A. Polman, R. Hagen, and S. Kostromine, Large spectral birefringence in photoaddressable polymer films, Adv. Mater., 2004, 16, 1746-1750
    
    [12] Q. Bo, A. Yavrian, T. Galstian, and Y Zhao, Liquid crystalline ionomers containing azobenzene mesogens: phase stability, photoinduced birefringence, and holographic grating, Macromolecules, 2005, 38, 3079-3086
    
    [13] F. J. Rodriguez, C. Sanchez, B. Villacampa, R. Alcala, R. Cases, M. Millaruelo, and L. Oriol, Fast and stable recording of birefringence and holographic gratings in an azo-polymethacrylate using a single nanosecond light pulse, J. Chem. Phys., 2005, 123, 204706
    
    [14] L. Angiolini, T. Benelli, L. Giorgini, E. Salatelli, R. Bozio, A. Dauru, and D. Pedron, Improvement of photoinduced birefringence properties of optically active methacrylic polymers through copolymerization of monomers bearing azoaromatic moieties, Macromolecules, 2006, 39, 489-497
    
    [15] A. Natansohn, P. Rochon, J. Gosselin, and S. Xie, Azo polymers for reversible optical storage. 1. poly[4'-[[2-(acryloyloxy) ethyl]ethyl amino]-4-nitroazobenzene], Macromolecules, 1992, 25, 2268-2273
    
    [16] A. Natansohn, and P. Rochon, A. Natansohn, and P. Rochon, Comments on the paper "Dynamic processes of optically induced birefringence of azo compounds in amorphous polymers below T_g" by O.-K. Song, C. H. Wang, and M. A. Pauley (Macromolecules 1997, 30, 6913), Macromolecules, 1998, 31, 7960-7961
    
    [17] D. Hore, A. Natansohn, and P. Rochon, Irradiance and temp erature dependence of photoinduced orientation in two azobenzene-based polymers, Can. J. Chem., 1998, 76, 1648-1653
    
    [18] O. K. Song, C. H. Wang, and M. A. Pauley, Dynamic processes of optically induced birefringence of azo compounds in amorphous polymers below T_g, Macromolecules, 1997, 30, 6913-6919
    
    [19] D. Avnir, D. Levy, and R. Reisfeld, The nature of the silica cage as reflected by spectral changes and enhanced photostability of trapped Rhodamine 6G, J. Phy. Chem., 1984, 88, 5956-5959
    [20] M. Canva, G. L. Saux, P. Georges, A. Brun, F. Chaput, and J. -P. Boilot, All-optical gel memory, Opt. Lett., 1992, 17, 218-220
    [21] F. Chaput, D. Riehl, Y. Levy, and J.-P. Boilot, Azo oxide gels for optical storage, Chem. Mater., 1993, 5,589-591
    [22] N. Bohm, A. Materny, H. Steins, M. M. Müller, and G. Schottner, Optically induced dichroism and birefringence of disperse red 1 in hybrid polymers, Macromolecules, 1998, 31, 4265-4271
    [23] 母国光.光学[M].北京:人民教育出版社,1978
    [24] D.Y. Kim, S. Tripathy, L. Lian, and J. Kumar, Laser-induced holographic surface relief grating on nonlinear optical polymer films, AppL Phys. Lett., 1995, 66, 1166-1168
    [25] P. Rochon, E. Batalla, and A. Natansohn, Optically induced surface gratings on azoaromatic polymer films, Appl. Phys. Lett., 1995, 66, 136-138
    [26] O. Baldus, and S. Zilker, Surface relief gratings in photoaddre ssable polymers generated by cw holography, Appl. Phys. B, 2001, 72, 425-427
    [27] S. Bian, J. Williams, and D. Kom, Photoinduced surface deformations on azobenzene polymer films, J. Appl. Phys., 1999, 86, 4498-4508
    [28] F.J. Rodriguez, C. Sanchez, B. Villacampa, R. Alcala, R. Cases, M. Millaruelo, and L. Oriol, Surface relief gratings induced by a a nanosecond pulse in a liquid-crystalline azo-polymethacrylate, Appl. Phys. Lett., 2005, 87, 201914
    [29] A. Sharma, M. Dokhanian, A. Kassu, and A. N. Parekh, Photoinduced grating formation in azo-dye-labeled phospholipids thin films by 244-nm light, Opt. Lett., 2005, 30, 501-503
    [30] Y. Ohdaira, S. Hoshiyama, T. Kawakami, K. Shinbo, K. Kato, and F. Kaneko, Appl. Phys. Lett., 2005, 86, 051102
    [31] I. G. Marino, D. Bersani, and P. E Lottici, Holographic gratings in DRl-doped sol-gel silica and ORMOSILs thin films, Opt. Mater., 2001, 15,279-284
    [32] S. Kucharski, and R. Janik, Photochromic gratings in sol-gel films containing diazo sulfonamide chromophore, Opt. Mater., 2005, 27, 1637-1641
    [33] M. Serwadczak, and S. Kucharski, Photochromic gratings in sol-gel hybrid materials containing cyanoazobenzene chromophores, J. Sol-Gel Sci. Techn., 2006, 37, 57-62
    [34] R. Raschella, I. G. Marino, P. P. Lottici, D. Bersani, and A. Lorenzi, Photorefractive gratings in DRl-doped hybrid sol-gel films, Opt. Mater., 2004, 25,419-423
    [35] D. Blanc, and S. Pelissier, Fabrication of sub-micron period diffraction gratings in self-processing sol-gel glasses, Thin Solid Films, 2001, 384, 251-253
    [36] D.J. Kang, J. -U. Park, B.-S. Bae, J. Nishii, and K. Kintaka, Single-step photopatteming of diffraction gratings in highly photosensitive hybrid sol-gel films, Optics Express, 2003, 11, 1144-1148
    [37] 邱建荣,钱国栋,飞秒激光空间选择性诱导玻璃微结构及应用,材料研究学报,2003,17,1-9
    [38] W. Zhang, S. Bian, S. I. Kim, and M. G. Kuzyk, High-efficiency holographic volume index gratings in DRl-dye-doped poly(methyl methacrylate, Opt. Lett., 2002, 27, 1105-1107
    [39] K. Kawamura, T. Ogawa, N. Sarukura, M. Hirano, and H. Hosono, Fabrication of surface relief gratings on tansparent dielectric materials by two-beam holographic method using infrared femtosecond laser pulses, Appl. Phys. B, 2000, 71, 119-121
    [40] K. Kawamura, N. Sarukura, M. Hirano, and H. Hosono, Holographic encoding of permanent gratings embedded in diamond by two beam interference of a single near-infrared laser pulse, Jpn. J. Appl. Phys., 2000, 39, L767-L769
    [41] K. Kawamura, M. Hirano, T. Kamiya, and H. Hosono, Holo- graphic writing of volume-type microgratings in silica glass by a single chirped laser pulse, Appl. Phys. Lett., 2002, 81, 1137-1139
    [42] S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, Finer features for functional microdevices-Micromachines can be created with higher resolution using two-photon absorption, Nature, 2001, 412, 697-698
    [43] H. Guo, H. Jiang, L. Luo, C. Wu, H. Guo, X. Wang, H. Yang, Q. Gong, F. Wu, T. Wang, and M. Shi, Two-photon polymerization of gratings by interference of a femtosecond laser pulse, Chem. Phys. Lett., 2003, 374, 381-384
    [44] J. Si, J. Qiu, J. Zhai, Y. Shen, and K. Hirao, Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser, Appl. Phys. Lett., 2002, 80, 359-361
    [45] J. Zhai, Y. Shen, J. Si, J. Qiu, and K. Hirao, The fabrication of permanent holographic gratings in bulk polymer medium by a femtosecond laser, J. Phys. D: Appl. Phys., 2001, 34, 3466-3469
    [46] T. Takagahara, Biexciton states in semiconductor quantum dots and their nonlinear optical properties, Phys. Rev. B, 1989, 39, 10206-10231
    [47] T. Kobayashi, M. Yoshizawa, U. Stamm, M. Taiji, and M. Hasegawa, Relaxation dynamics of photoexcitations in polydiacetylenes and polythiophene, J. Opt. Soc. Am. B, 1990, 7, 1558-1563
    [48] Q. Chen, L. Kuang, E. H. Sargent, and Z. Y. Wang, Ultrafast nonresonant third-order optical nonlinearity of fullerene-containing polyurethane films at telecommunication wavelengths, Appl. Phys. Lett., 2003, 83, 2115-2117
    [49] Z. Liu, J. Tian, W. Zang, W. Zhou, C. Zhang, J. Zheng, Y. Zhou, and H. Xu, Large optical nonlinearities of new organophosphorus fullerene derivatives, Appl. Opt., 2003, 42, 7072-7076
    [50] S. Wang, W. Huang, R. Liang, Q. Gong, H. Li, H. Chen, and D. Qiang, Enlarged ultrafast optical kerr response of C_(60) with attached multielectron donors, Physcal Review B, 2001, 63, 153408
    
    [51] P. Yuan, Z. Xia, Y. H. Zou, L. Qiu, J. Shen, Y. Shen, and H. Xu, Ultrafast optical Kerr of phthalocyanine, Chem. Phys. Lett, 1994, 224,101-105
    
    [52] P. Yuan, Z. Xia, Y. H. Zou, L. Qiu, J. Shen, Y. Shen, and H. Xu, Femtosecond time-resolved optical response of phthalocyanine Langmuir-Blodgett film, J. Appl. Phys., 1994, 75, 4648-4651
    
    [53] B. K. Mandal, B. Bihari, A. K. Sinha, M. Kamath, and L. Chen, Third-order nonlinear optical response in a multilayered phthalocyanine composite,Appl . Phys. Lett., 1995, 66, 932-934
    
    [54] Y. Chen, M. Fujitsuka, S. M. O'Flaherty, M. Hanack, O. Ito, and W. J. Blau, Strong optical limiting of soluble axially substituted gallium and indium phthalocyanines, Adv. Mater., 2003, 15, 899-902
    
    [55] W. Sun, C. Byeon, C. Lawson, G. Gray, and D. Wang, Third order susceptibilities of asymmetric pentaazadentate porphyrin-like metal complexes,Appl . Phys. Lett., 1999, 74, 3254-3256
    
    [56] H. Kanbara, T. Maruno, A. Yamashita, S. Matsumoto, and T. Hayashi, Third-order nonlinear optical properties of phthalo cyanine and fullerene, J. Appl. Phys., 1996, 80, 3674-3682
    
    
    [57] J. S. Shirk, J. R. Lindle, F. J. Bartoli, C. A. Hoffman, Z. H. Kafafi, and A. W. Snow, Off-resonant third-order optical nonlinearities of metal-substituted phthalocyanines, Appl. Phys. Lett., 1989, 55, 1287-1289
    
    [58] A. Sastre, M. A. Diaz-Garcia, B. del Rey, C. Dhenaut, J. Zyss, I. Ledoux, and F. Agullo-Lopez, Push-pull phthalocyanines: a hammett correlation between the cubic hyperpolarizability and the donor-acceptor character of the substituents, J. Phys. Chem. A, 1997,101,9773-9777
    
    [59] G. de la Torre, P. Vazquez, F. Agullo-Lopez, and T. Torres, Role of structural factors in the nonlinear optical properties of phthalocyanines and related compounds, Chem. Rev., 2004, 104, 3723-3750
    
    [60] T. Wada, M. Hosoda, A. F. Garito, H. Sasabe, A. Terasaki, T. Kobayashi, H. Tada, and A. Komo, Third-order optical nonlinearities and femtosecond responsese in metallophthalo cyanine thin films made by vacuum deposition, molecular beam epitaxy, and spin coating, SPIE, 1991,1560, 162-171
    
    [61] G Ma, L. Guo, J. Mi, Y. Liu, S. Qian, D. Pan, and Y. Huang, Femtosecond nonlinear optical response of metallophthalo cyanine films, Solid State Communications, 2001, 118, 633-638
    
    [62] L. Guo, G Ma, Y. Liu, J. Mi, and S. Qiu, Optical and non-linear optical properties of vanadium oxide phthalocyanine films, Appl. Phys. B, 2002, 74, 253-257
    
    [63] L. Qiu, J. Zhai, Y. Shen, L. Guo, G Ma, Y Liu, J. Mi, and S. Qian, Preparation of a novel class of phthalocyanine containing cross-linked polymers and their thin films, Thin Solid Films, 2005, 471,96-99
    
    [64] Robert W. Boyd, in Nonlinear Optics, Academic Press Inc. San Diego, USA 1992 (University of Rochester, New York)
    
    [65] F. Kajzar, K. S. Lee, and A. K. Y Jen, Polymeric materials and their orientation techniques for second-order nonlinear optics, Polymers for Photonics Applications II Advances in Polymer Science, 2003, 161, 1-85
    
    [66] S. K. Yesodha, C. K. S. Pillai, and N. Tsutsumi, Stable polymeric materials for nonlinear optics: a review based on azobenzene systems, Progress in Polymer Science, 2004, 29, 45-74
    
    [67] T. Gray, R. M. Overney, M. Haller, J. Luo, and A. K. Y Jen, Low temperature relaxations and effects on poling efficiencies of dendronized nonlinear optical side-chain polymers, Appl. Phys. Lett., 2005, 86, 211908
    [68] E. Gubbelmans, T. Verbiest, I. Picard, A. Persoons, and C. Samyn, Poly(phenylquinoxalines) for second-order nonlinear optical applications, Polymer, 2005, 46, 1784-1795
    [69] D.K. Seo, H. S. Lim, J. Y. Lee, and W. G. Kim, Novel photocrosslinking nonlinear optical polymer systems, Molecular Crystals and Liquid Crystals, 2006, 445,323-330
    [70] H. Hayashi, H. Nakayama, O. Sugihara, and N. Okamoto, Thermally stable and large second nonlinearity in poled silica films doped with Disperse Red 1 in high concentration, Opt. Lett., 1995, 20, 2264-2266
    [71] B. Lebeau, S. Brasselet, J. Zyss, and C. Sanchez, Design, characterization, and processing of hybrid organic-inorganic coatings with very high second-order optical nonlinearities, Chem. Mater., 1997, 9, 1012-1020
    [72] U. Osterberg, and W. Margulis, Dye-laser pumped by Nd-YAG laser-pulses frequency doubled in a glass optical fiber, Opt. Lett., 1986, 11,516-518
    [73] R.H. Stolen, and H. W. K. Tom, Organized phase-matched harmonic generation in optical fibers, Opt. Lett., 1987, 12, 585-587
    [74] F. Charra, F. Devaux, J. -M. Nunzi, and P. Raimond, Picosecond light-induced noncentrosymmetry in a dye solution, Phys. Rev. Lett., 1992, 68, 2440-2443
    [75] F. Charra, F. Kajzar, J. -M. Nunzi, P. Raimond, and E. Idiart, Light-induced second-harmonoc generation in azo-dye polymers, Opt. Lett., 1993, 18, 941-943
    [76] C. Fiorini, F. Charra, and J. -M. Nunzi, Six-wave mixing probe of light-induced second-harmonic generation: example of dye solutions, J. Opt. Soc. Am. B, 1994, 11, 2347-2356
    [77] V. M. Churikov, and C. -C. Hsu, Dynamics of photoinduced second order nonlinearity in dimethylamono-nitrostilbene polymer thin films, Opt. Commun., 2001, 190, 367-371
    
    [78] N. M. Lawandy, Intensity dependence of optically encoded second-harmonic generation in germanosilicate glass: evidence for a light-induced delocalization transition, Phys. Rev. Lett, 1990,65,1745-1748
    
    [79] D. Z. Anderson, V. Mizrahi, and J. E. Sipe, Model for second- harmonic generation in glass optical fibers based on asymmetric photoelectron emission from defect sites, Opt. Lett, 1991, 16, 796-798
    
    [80] T. E. Tsai, M. A. Saifi, E. J. Friebel, and R. H. Stolen, Correlation of defect centers with second-harmonic generation in Ge-doped and Ge-P-doped silica-core single-mode fibers, Opt. Lett., 1989, 14, 1023-1025
    
    [81] J. Si, K. Kiaoka, and T. Mitsuyu, Optically encoded second- harmonic generation in germanosilicate glass via a band-to-band excitation, Appl. Phys. Lett, 1999, 75, 307-309
    
    [82] Y. Quiquempois, A. Villeneuve, D. Dam, K. Turcotte, J. Maier, G Stegeman, and S. Lacroix, Second-order nonlinear susceptibility n As2S3 chalcogenide thin glass films, Electronics Lett, 2000, 36, 733-734
    
    [83] B. P. Antonyuk, All optical of glasses, Opt. Commun., 2000, 181, 191-195
    
    [84] J. R. Qiu, J. H. Si, and K. Hirao, Photoinduced stable second- harmonic generation in chalcogenide glasses, Opt. Lett, 2001, 26, 914-916
    
    [85] M. K. Balakirev, L. I. Vostrikova, V. A. Smirnov, K. J. Plucinski, and I. V. Kityk, Limitation of optical poling in germanium- silicate glasses, Opt Commun., 2004, 230, 211-218
    
    [86] J. Si, G Xu, X. Liu, Q. Yang, P. Ye, Z. Li, H. Ma, Y. Shen, L. Qiu, J. Zhang, and J. Zhai, All-optical poling of a polyimide film with azobenzene chromophore, Opt. Commun., 1997, 142, 71-74
    [87] G. Xu, J. Si, X. Liu, Q. Yang, P. Ye, Z. Li, and Y. Shen, Permanent optical poling in polyurethane via thermal crosslinking, Opt. Commun., 1998, 153, 95-98
    [88] G. Xu, X. Liu, J. Si, P. Ye, Z. Li, and Y. Shen, Optical poling in a crosslinkable polymer system, Appl. Phys. B, 1999, 68, 693-696
    [89] W. Chalupczak, C. Fiorini, F. Charra, J. -M. Nunzi, and P. Raimond, Efficient all-optical poling of an azo-dye copolymer using a low power laser, Opt. Commun., 1996, 126, 103-107
    [90] C. Fiorini, F. Charra, P. Raimond, A. Lorinn, and J. -M. Nunzi, All-optical induction of noncentrosymmetry in a transparent nonlinear polymer rod, Opt. Lett., 1997, 22, 1846-1848
    [91] C. Fiorini, F. Charra, J. -M. Nunzi, and P. Raimond, Quasipermanent all-optical encoding of noncentrosymmetry in azo-dye polymers, J. Opt. Soc. Am. B, 1997, 14, 1984-2003
    [92] X. Yu, X. Zhong, Q. Li, S. Luo, and Y. Chen, Method of improving optical poling efficiency in polymer films, Opt. Lett., 2001, 26, 220-222
    [93] G. Martin, E. Toussaere, L. Soulier, and J. Zyss, Photoinduced nonlinear susceptibility patterns in electro-optic polymers, Syn. Met., 2002, 127, 49-52
    [94] A. Migalska-Zalas, Z. Sofiani, B. Sahraoui, I. V. Kityk, S. Tkaczyk, V. Yuvshenko, J. L. Fillaut, J. Perruchon, and T. J. J. Muller, x~(2) grating in Ru derivative chromophores incorporated within the PMMA polymer matrices, J. Chem. Phys. B, 2004, 108, 14942-14947
    [95] N. Tsutsumi, and T. Shingu, x~(2) holography induced by alloptical poling, Chem. Phys. Lett., 2005, 403,420-424
    [96] Y.X. Wang, O. Y. H. Tai, and C. H. Wang, Second-harmonic generation in an optically poled azodye/polymer film, J. Chem. Phys., 2005, 123, 164704
    [97] S. Bidault, J. Gouya, S. Brasselet, and J. Zyss, Encoding multipolar polarization patterns by optical poling in polymers: towards nonlinear optical memories, Opt. Express, 2005, 13, 505-510
    [98] G. Xu, J. Si, X. Liu, Q. G. Yang, and P. Ye, Comparison of the temperature dependence of optical poling between guest-host and side-chain polymer films, J. Appl. Phys., 1999, 85, 681-685
    [99] K. Kitaoka, N. Matsuoka, J. Si, T. Mitsuyu, and K. Hirao, Optical poling of phenyl-solica hybrid thin films doped wuth azo-dye chromophore, Jpn. J. Appl. Phys., 1999, 38, L1029-L1031
    [100] K. Kitaoka, J. Si, T. Mitsuyu, and K. Hirao, Optical-poling of an azo-dye chromophore doped silica hybrid thin films, J. Ceram. Soc. Jpn., 1999, 107, 522-526
    [101] K. Kitaoka, J. Si, T. Mitsuyu, and K. Hirao, Optical poling of azo-dye-doepd thin films using an ultrashort pulse laser, Appl. Phys. Lett., 1999, 75, 157-159
    [102] N. Matsuoka, K. Kitaoka, J. H. Si, K. Fujita, and K. Hirao, Second-order nonlinearity and optical image storage in phenyl-silica hybrid films doped with azo-dye chromophore using optical poling technique, Opt. Commun., 2000, 185, 467-472
    [1] Z. Sekkat, and W. Knoll, Photoreactive organic thin films, (Academic Press, New York, 2002)
    [2] Y. Shimotsuma, K. Hirao, P. G. Kazansky, and J. Qiu, Three-dimensional micro- and nano-fabrication in transparent materials by femtosecond laser, Jpn. J. AppL Phys., 2005, 44, 4735-4748
    [3] Y. Wang, J. Zhao, J. Si, P. Ye, X. Fu, L. Qiu, and Y. Shen, Dynamic studies of degenerate four-wave-mixing in azobenzene-doped polymer films with optical pump, J. Chem. Phys., 1995, 103, 5357-5361
    [4] J. Si, J. Qiu, J. Guo, G. Qian, M. Wang, and K. Hirao, Photoinduced birefringence of azodye-doped materials by a femtosecond laser, Appl. Opt., 42, 2003, 7170-7173
    [5] F.H.M. Faisal, Theory of Multiphoton Processes, (Plenum, New York, 1987)
    [6] P. Sengupta, J. Balaji, S. Banerjee, R. Philip, G. R. Kumar, and S. Maiti, Sensitive measurement of absolute two-photon absorption cross sections, J. Chem. Phys., 2000, 112, 9201-9205
    [7] S. Hvilsted, F. Andruzzi, C. Kulinna, H. W. Siesler, and P. S. Ramanujam, Novel side-chain liquid crystalline polyester architecture for reversible optical storage, Macromolecules, 1995, 28, 2172-2183
    [8] F.L. Labarthet, and C. Sourisseau, Transient absorption spectroscopy and angular reorientation of azobenzene molecules in a DRl-doped PMMA polymer matrix, New J. Chem., 1997, 21, 879-887
    [9] G.D. Qian, Y. Yang, Z. Y. Wang, C. L. Yang, Z. Yang, and M. Q. Wang, Photostability of perylene orange, perylene red and pyrromethene 567 laser dyes in various precursors derived gel glasses, Chem. Phys. Lett., 2003, 368, 555-560
    [10] L.L. Brott, R. R. Naik, D. J. Pikas, S. M. Kirkpatrick, D. W. Tomlin, P. W. Whitlock, S. J. Clarson, and M. O. Stone, Ultrafast holographic nanopatterning of biocatalytically formed silica, Nature, 2001, 413, 291-293
    [11] P. Rochon, D. Bissonnette, A. Natansohn, and S. Xie, Azo polymers for reversible optical storage. 3. effect of film thichness on net phase retardation and writing speed, Appl. Opt., 1993, 32, 7277-7281
    [12] O.K. Song, C. H. Wang, and M. A. Pauley, Dynamic processes of optically induced birefringence of azo compounds in amorphous polymers below Tg, Macromolecules, 1997, 30, 6913-6919
    [13] Y.R. Shen, The Principles of Nonlinear Optics, (Wiley, New York, 1984)
    [14] R.L. Sutherland, Handbook of Nonlinear Optics, (Marcel Dekker, New York, 1996)
    [15] Z. Sekkat, and M. Dumont, Photoassisted poling of azo dye doped polymeric films at room temperature, Appl. Phys. B, 1992, 54,486-487
    
    [16] Z. Sekkat, J. Wood, and W. Knoll, Reorientation mechanism of azobenzenes within the trans-cis photoisomerization, J. Phys. Chem., 1995,99, 17226-17234
    [1] J. W. Perry, K. Mansour, I. Y. S. Lee, X. L. Wu, P. V. Bedwooth, C. T. Chen, D. Ng, S. R. Marder, P. Miles, T. Wada, M. Tian, and H. Sasabe, Organic optical limiter with a strong nonlinear absorptive response, Science, 1996,273, 1533-1536
    
    [2] Y. Chen, M. Fujitsuka, S. M. O'Flaherty, M. Hanack, O. Ito, and W. J. Blau, Strong optical limiting of soluble axially substituted gallium and indium phthalocyanines, Adv. Mater., 2003, 15, 899-902
    
    [3] E. Blanco, D. N. Rao, F. J. Aranda, D. V. G. L. N. Rao, S. Tripathy, J. A. Akkara, R. Litran, and M. Ramirez-del-Solar, Dispersion of the nonlinear absorption of copper phthalocyanine in a silica xerogel matrix through the visible spectrum, J. Appl. Phys., 1998,83,3441-3443
    
    [4] P. Yuan, Z. Xia, Y. Zou, L. Qiu, J. Shen, Y. Shen, and H. Xu, Ultrafast optical Kerr effect ofphthalocyanine, Chem. Phys. Lett, 1994,224,101-105
    
    [5] E. P. Ippen, and C. V. Shank, Picosecond response of a high-repetition-rate CS_2 optical Kerr gate, Appl. Phys. Lett, 1975, 26, 92-94
    
    [6] P. Yuan, Z. Xia, Y. H. Zou, L. Qiu, J. Shen, Y. Shen, and H. Xu, Femtosecond time-resolved optical response of phthalocyanine Langmuir-Blodgett film, J. Appl. Phys., 1994, 75, 4648-4651
    
    [7] H. J. Eichler, P. Gunter, and D. W. Pohl, Laser-induced Dynamic Gratings, (Springer, Berlin, 1986)
    
    [8] H. Kanbara, H. Kobayashi, T. Kaino, T. Kurihara, N. Ooba, and K. Kubodera, Highly efficient ultrafast optical Kerr shutters with the use of organic nonlinear materials, J. Opt. Soc. Am. B, 1994, 11, 2216-2219
    
    [9] H. Inouye, K. Tanaka, I. Tanahashi, Y. Kondo, and K. Hirao, Mechanism of a terahertz optical Kerr shutter with a gold nanoparticle system, J. Phys. Soc. Jpn., 1999, 68, 3810-3812
    [10] C.V. Shank, J. E. Bjorkholm, and H. Kogelnik, Tunable distributed-feedback laser, Appl. Phys. Lett., 1971, 18, 395-397
    [11] X.L. Zhu, and D. Lo, Sol-gel glass distributed feedback waveguide laser, Appl. Phys. Lett., 2002, 80, 917-919
    [12] P. Cheben, F. del Monte, D. J. Worsfold, D. J. Carlsson, C. P. Grover, and J. D. Mackenzie, A photorefractive organically modified silica glass with high optical gain, Nature, 2000, 408, 64-67
    [13] T. Schneider, D. Wolfframm, R. Mitzner, and J. Reif, Ultrafast optical switching by instantaneous laser-induced grating formation and self-diffraction in barium fluoride, Appl. Phys. B, 1999, 68, 749-751
    [14] T. Schneider, and J. Reif, Influence of an ultrafast transient refractive-index grating on nonlinear optical phenomena, Phys. Rev. A, 2002, 65, 023801
    [15] H. Inouye, K. Tanaka, I. Tanahashi, and K. Hirao, Femtosecond optical Kerr effect in the gold nanoparticle system, Jpn. J. Appl. Phys., 1998, 37, L1520-L1522
    [1] H.P. Webber, W. J. Tomlinson, and E. A. Chandross, Organic materials for integrated optics, Opt. Quantum Electron., 1975, 7, 465-470
    [2] B.H. Softer, and B. B. McFarland, Continuously tunable, narrow-band organic dye lasers, Appl. Phys. Lett., 1967, 10, 266-268
    [3] O. G. Perterson, and B. B. Snavely, Stimulated emission from flashlamp-excited organic dyes in polymethyl methacrylate, Appl. Phys. Lett., 1968, 12, 238-240
    [4] H. Zhang, D. Lu, T. Liu, M. Mansuripur, and M. Fallahi, Direct laser writing of electro-optic waveguide in chromophore-doped hybrid sol-gel, AppL. Phys. Lett., 2004, 85, 4275-4277
    [5] T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals, Appl. Phys. Lett., 2001, 79, 725-727
    [6] Y. Yang, G. D. Qian, Z. Y. Wang, and M. Q. Wang, Influence of the thickness and composition of the solid-state dye laser media on the laser properties, Opt. Commun., 2002, 204, 277-282
    [7] Y. Yang, M. Wang, G. Qian, Z. Wang, and X. Fan, Laser properties and photostabilities of laser dyes doped in ORMOSILs, Opt. Mater., 2004, 24, 621-628
    [8] G. D. Qian, Y. Yang, Z. Y. Wang, C. L. Yang, Z. Yang, M. Q. Wang, Photostability of perylene-orange, perylene red and pyrromethene 567 laser dyes in various precursor derived gel glasses, Chem. Phys. Lett., 2003, 368, 555-560
    [9] J. Si, J. Qiu, J. Zhai, Y. Shen, and K. Hirao, Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser, Appl. Phys. Lett., 2002, 80, 359-361
    [10] J. Si, Z. Meng, S. Kanehira, J. Qiu, B. Hua, and K. Hirao, Multiphoton-induced periodic microstructures inside bulk azodye-doped polymers by multibeam laser interference, Chem. Phys. Lett., 2004, 399, 276-279
    [11] D. Avnir, D. Levy, and R. Reisfeld, The nature of the silica cage as reflected by spectral changes and enhanced photostability of trapped rhodamine 6G, J. Phys. Chem., 1984, 88, 5956-5959
    [12] J.D. Badjic, and N. M. Kostic, Behavior of organic compounds confined in monoliths of sol-gel silica glass. Effects of guest-host hydrogen bonding on uptake, release, and isomerization of the guest compounds, J. Mater. Chem., 2001, 11,408-418
    [13] M. Canva, G. L. Saux, P. Georges, A. Brun, F. Chaput, and J. -P. Boilot, All-optical gel memory, Opt. Lett., 1992, 17, 218-220
    [14] I. G. Marino, D. Bersani, and P. P. Lottici, Holographic gratings in DRl-doped sol-gel silica and ORMOSILs thin films, Opt. Mater., 2001, 15,279-284
    [15] J. Si, J. Qiu, and K. Hirao, Photofabrication of periodic microstructures in azodye-doped polymers by interference of laser beams, Appl. Phys. B, 2002, 75,847-851
    [1] J. Zyss (Ed.), Molecular Nonlinear Optics-Materials, Physics and Devices, Academic, San Diego, CA, 1994
    [2] D.M. Burland, R. D. Miller, and C. A. Walsh, Second-order nonlinearity in poled-polymer systems, Chem. Rev., 1994, 94, 31-75
    [3] J. Si, T. Mitsuyu, P. Ye, Y. Shen, and K. Hirao, Optical poling and its application in optical storage of a polyimide film with high glass transition temperature, Appl. Phys. Lett., 1998, 72, 762-764
    [4] 叶成,朱培旺,王鹏,吴伟,冯知明,二阶非线性光学聚合物光波导与器件的现状与问题,物理,2000,29,148-151
    [5] W. Margulis, F. C. Garcia, E. N. Hering, L. C. G Valente, B. Lesche, F. Laurell, and I. C. S. Carvalho, Poled glasses, MRS Bulletin, 1998, 10, 31-35
    [6] F. Charra, F. Kajar, J. -M. Nunzi, P. Raimond, and E. Idiart, Light-induced second-harmonic generation in azo-dye polymers, Opt. Lett., 1993, 18, 941-943
    [7] C. Fiorini, E Charra, J. -M. Nunzi, and P. Raimond, Quasi-permanent all-optical encoding of noncentrosymmetry in azo-dye polymers, J. Opt. Soc. Am. B, 1997, 14, 1984-2003
    [8] C. Fiorini, F. Charra, P. Raimond, and J. -M. Nunzi, All-optical induction of noncentrosymmetry in a transparent nonlinear polymer rod, Opt. Lett., 1997, 22, 1846-1848
    [9] J. Si, J. Qiu, K. Kitaoka, and K. Hirao, Photoinduced phase-matched second-harmonic generation in azodye-doped polymer films, J. Appl. Phys. 2001, 89, 2029-2032
    [10] J. Jerphagnon, and S. K. Kurtz, Optical nonlinear susceptibilities: accurate relative values for quartz, ammonium dihydrogen phosphate, and potassium dihydrogen phosphate, Phys. Rev. B, 1970, 1, 1739-1744
    [11] C. Fiorini, and J. -M. Nunzi, Dynamics and efficiency of all-optical poling in polymers, Chem. Phys. Lett., 1998, 286, 415-420
    [12] G. D. Qian, Y. Yang, Z. Y. Wang, C. L. Yang, Z. Yang, and M. Q. Wang, Photostability of perylene orange, perylene red and pyrromethene 567 laser dyes in various precursors derived gel glasses, Chem. Phys. Lett., 2003, 368, 555-560
    [13] L. L. Brott, R. R. Naik, D. J. Pikas, S. M. Kirkpatrick, D. W. Tomlin, P. W. Whitlock, S. J. Clarson, and M. O. Stone, Ultrafast holographic nanopatterning of biocatalytically formed silica, Nature, 2001, 413, 291-293

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700