MicroRNA功能的生物信息学分析及相关平台的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
miRNA(microRNA)是一类重要的非编码RNA,通过在转录后水平上抑制靶基因的mRNA翻译或降解靶基因mRNA来发挥作用。根据miRBase数据库,到目前为止,已经发现了678个人类的microRNA基因,并且有证据表明在人类中尚有大量的microRNA有待发现,microRNA的总数可能会更多。目前认为microRNA参与很多重要的生物学过程,如转录因子调控网络,发育过程中的时序控制,神经突触形成,细胞增殖,细胞死亡,细胞分化等。micmRNA的研究成为生命科学中的研究热点,本文就利用生物信息方法研究microRNA的功能进行了初步探索。
     目前有多种计算生物学的工具用来预测哺动物中micmRNA的靶基因(miRanda,TargetScan,PicTar),但得到实验验证的靶基因数目远远小于通过计算方法预测的数目。现实的情况是,尽管发现了大量的microRNA,然而寻找microRNA靶基因的步伐相对迟缓。发现microRNA的靶基因将极大地促进microRNA的功能研究,因此本文第一部分提出了一个用于改进microRNA靶基因预测效率的整合机器学习算法,算法在训练集上、FMRP相关mRNA数据集上都获得了较好的效果。进一步选择miR-9作为测试对象,随机抽取16个预测靶基因进行荧光素酶报告基因验证实验,结果显示,有10个预测靶基因的结果与预期相符。通过以上结果,我们可以得出结论,我们开发的整合算法可以有效地提高现有microRNA靶基因预测算法的准确率。
     近年来,基因芯片技术被用来研究microRNA基因的调节功能。然而如何将基因的表达谱和microRNA的表达谱合并在一起进行分析,依然没有被很好地解决。本文第二部分提出了一个新的概念,即in-silico MRPs(in-silico MicroRNA RegulatoryProfiles),将两者结合在一起,首次用来从基因组水平上描述microRNA的调节功能。我们首先为三个物种,即人(157 microRNAs×13041 mRNAs),大鼠(152microRNAs×5108 mRNAs)与小鼠(72 microRNAs×10729),分别构建了各自的in-silicoMRPs矩阵。通过验证,构建的in-silico MRP确实能够真实、有效地反映一个microRNA基因的调控作用。我们进一步以in-silico MRP为基础,从基因组水平上获得了两组新的数据:在人中有约36%的microRNA倾向于降解其靶基因,及三个物种间有大约42%的microRNA其调控靶基因的能力保守。为了方便其他的研究者使用in-silico MRP,我们建立了一个网站,提供已经计算好的in-silico MRP下载,并提供在线计算in-silico MRP的能力,为自己有数据而又不方便公布的研究者提供便利。
     目前,microRNA相关功能分析软件很多,然而这些软件和资源散布在各处,联系松散,不方便研究者使用。本文的第三部分描述了一个专门为microRNA功能分析设计的R语言程序包—miRE。miRE具有良好的图形化界面,可以辅助研究者进行microRNA相关功能分析,如浏览microRNA的生物学注释,预测靶基因,文献挖掘及microRNA基因邻近特征分析等。
     综上所述,本文提供了一种改良的整合机器算法来提高预测靶基因的准确率,提供一种整合miRNA/mRNA表达谱的方法,并开发了一种平台性软件miRE,为microRNA相关的功能分析提供了有力的工具。
MicroRNAs are a class of small endogenous non-coding RNAs which play important regulatory roles mainly by posttranscriptional depression. To date, there are 678 human microRNA sequences, according to the miRBase sequence database (Release 11, released April, 2008), have been identified. Moreover, there exists a hypothesis that the total number of human microRNAs will be much larger. MicroRNAs have been thought to be involved in many biological processes, such as transcriptional gene regulatory network, developmental timing, neuronal synapses formation, cell proliferation, cell death, and differentiation.
     Although there are several computational programs served to predict miRNA targets in mammals (miRanda, TargetScan, PicTar), the fact is that there are many predictions while only few of them have been biologically validated. Finding miRNA target genes will help a lot to understand their biological functions. Unfortunately, the prediction of miRNA target genes is more challenging. In the first section of the dissertation, we developed an ensemble machine learning algorithm which helps to improve the prediction of miRNA targets. The performance was evaluated in the training set and in FMRP associated mRNAs. Moreover, using human mir-9 as a test case, our classification was validated in 10 of 16 transcripts tested. From the results we got, we could make the conclusion that our ensemble algorithm can improve the prediction of microRNA targets efficiently.
     Microarray-based studies have been used to investigate the regulatory properties of microRNAs. However, to integrate both microRNA and mRNA expression profiles to study sophisticated microRNA functions has not been well addressed. In the second section, we proposed a novel concept of in-silico MicroRNA Regulatory Profiles (in-silico MRPs) for quantifying the microRNA's regulatory properties. The in-silico MRPs were constructed for human (involving 157 microRNAs×13041 mRNAs), mouse (72 microRNAs×10729 mRNAs), and rat (152 microRNAs×5108 mRNAs). We proved that the in-silico MRPs are reliable by comparing our in-silico MRPs with the real gene expression profiles after over expressing or knocking down a specific microRNA. Given these in-silico MRPs, we have explored microRNAs that are likely to function through degrading their targets, the results showed about 36% of human microRNA fall into this category. 42% of shared miroRNAs across the three species were found to retain their regulatory ability through the evolution. A web server (http://www.biosino.org/VirtualOverExpressWebApp/) has been provided where our constructed in-silico MRPs can be downloaded for research use, and customerized in-silico MRPs can be generated if users load their real experimental data. A few other possible applications of the web service were suggested.
     Numerous computational tools have been developed for studying the function of this class of small nucleotides, and resources and tools are quite useful for studying the function of microRNA; however, they are distributed in different websites and loosely connected. So far, there is no tool to provide an open-source, user-friendly, integrated interface for microRNA related analysis. We have developed an R package, named miRE, which provides a graphical user interface for conducting microRNA related analysis.
引文
Ambros V. 2004. The functions of animal microRNAs. Nature 431(7006):350-5.
    
    Basso K, Margolin AA, Stolovitzky G, Klein U, Dalla-Favera R, Califano A. 2005. Reverse engineering of regulatory networks in human B cells. Nat Genet 37(4):382-90.
    Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A, Einat P, Einav U, Meiri E and others. 2005. Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37(7):766-70.
    Boehm M, Slack F. 2005. A developmental timing microRNA and its target regulate life span in C. elegans.Science 310(5756):1954-7.
    Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM. 2003. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113(1):25-36.
    Brown V, Jin P, Ceman S, Darnell JC, O'Donnell WT, Tenenbaum SA, Jin X, Feng Y, Wilkinson KD,Keene JD and others. 2001. Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome. Cell 107(4):477-87.
    Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR,Andersen MR and others. 2005. Real-time quantification of microRNAs by stem-loop RT-PCR.Nucleic Acids Res 33(20):e179.
    Chen K, Rajewsky N. 2006. Deep conservation of microRNA-target relationships and 3'UTR motifs in vertebrates, flies, and nematodes. Cold Spring Harb Symp Quant Biol 71:149-56.
    Chen L, Yun SW, Seto J, Liu W, Toth M. 2003. The fragile X mental retardation protein binds and regulates a novel class of mRNAs containing U rich target sequences. Neuroscience 120(4): 1005-17.
    Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S,Dono M and others. 2005. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 102(39): 13944-9.
    Debernardi S, Skoulakis S, Molloy G, Chaplin T, Dixon-Mclver A, Young BD. 2007. MicroRNA miR-181a correlates with morphological sub-class of acute myeloid leukaemia and the expression of its target genes in global genome-wide analysis. Leukemia.
    Denman RB. 2003. Deja vu all over again: FMRP binds U-rich target mRNAs. Biochem Biophys Res Commun310(1):1-7.
    Elbashir SM, Lendeckel W, Tuschl T. 2001. RNA interference is mediated by 21- and 22-nucleotide RNAs.Genes Dev 15(2): 188-200.
    Ernst J, Beg QK, Kay KA, Balazsi G, Oltvai ZN, Bar-Joseph Z. 2008. A semi-supervised method for predicting transcription factor-gene interactions in Escherichia coli. PLoS Comput Biol 4(3):el000044.
    Fontana W, Konings DA, Stadler PF, Schuster P. 1993. Statistics of RNA secondary structures.Biopolymers 33(9): 1389-404.
    Gabow AP, Leach SM, Baumgartner WA, Hunter LE, Goldberg DS. 2008. Improving protein function prediction methods with integrated literature data. BMC Bioinformatics 9:198.
    
    Garzon R, Pichiorri F, Palumbo T, Iuliano R, Cimmino A, Aqeilan R, Volinia S, Bhatt D, Alder H, Marcucci G and others. 2006. MicroRNA fingerprints during human megakaryocytopoiesis. Proc Natl Acad Sci U S A 103(13):5078-83.
    Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. 2006. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34(Database issue):D140-4.
    Hendrickson DG, Hogan DJ, Herschlag D, Ferrell JE, Brown PO. 2008. Systematic identification of mRNAs recruited to argonaute 2 by specific microRNAs and corresponding changes in transcript abundance. PLoS ONE 3(5):e2126.
    Hu X, Li Q. 2008. Using support vector machine to predict beta- and gamma-turns in proteins. J Comput Chem.
    Huang JC, Babak T, Corson TW, Chua G, Khan S, Gallie BL, Hughes TR, Blencowe BJ, Frey BJ, Morris QD. 2007a. Using expression profiling data to identify human microRNA targets. Nat Methods 4(12):1045-9.
    Huang TH, Fan B, Rothschild MF, Hu ZL, Li K, Zhao SH. 2007b. MiRFinder: an improved approach and software implementation for genome-wide fast microRNA precursor scans. BMC Bioinformatics 8:341.
    Hutvagner G, Zamore PD. 2002. A microRNA in a multiple-turnover RNAi enzyme complex. Science 297(5589):2056-60.
    Hwang HW, Mendell JT. 2006. MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 94(6):776-80.
    Ishizuka A, Siomi MC, Siomi H. 2002. A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. Genes Dev 16(19):2497-508.
    Jiang P, Wu H, Wang W, Ma W, Sun X, Lu Z. 2007. MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features. Nucleic Acids Res 35(Web Server issue):W339-44.
    Jin P, Zarnescu DC, Ceman S, Nakamoto M, Mowrey J, Jongens TA, Nelson DL, Moses K, Warren ST.2004. Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway. Nat Neurosci 7(2): 113-7.
    John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS. 2004. Human MicroRNA targets. PLoS Biol 2(11):e363.
    Kim VN. 2005. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6(5):376-85.
    Kosik KS, Krichevsky AM. 2005. The Elegance of the MicroRNAs: A Neuronal Perspective. Neuron 47(6):779-82.
    Krek A, Gran D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC,Stoffel M and others. 2005. Combinatorial microRNA target predictions. Nat Genet 37(5):495-500.
    Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M. 2005. Silencing of microRNAs in vivo with 'antagomirs'. Nature 438(7068):685-9.
    Lagos-Quintana M, Rauhut R, Meyer J, Borkhardt A, Tuschl T. 2003. New microRNAs from mouse and human. Rna 9(2): 175-9.
    Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S and others. 2003. The nuclear RNase III Drosha initiates microRNA processing. Nature 425(6956):415-9.
    
    Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. 2003. Prediction of mammalian microRNA targets. Cell 115(7):787-98.
    Li ZC, Zhou XB, Lin YR, Zou XY. 2008. Prediction of protein structure class by coupling improved genetic algorithm and support vector machine. Amino Acids.
    Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM.2005. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433(7027):769-73.
    Linghu B, Snitkin ES, Holloway DT, Gustafson AM, Xia Y, DeLisi C. 2008. High-precision high-coverage functional inference from integrated data sources. BMC Bioinformatics 9:119.
    Linsley PS, Schelter J, Burchard J, Kibukawa M, Martin MM, Bartz SR, Johnson JM, Cummins JM, Raymond CK, Dai H and others. 2007. Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Mol Cell Biol.
    Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Dalla Favera R, Califano A. 2006a.ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7 Suppl 1:S7.
    Margolin AA, Wang K, Lim WK, Kustagi M, Nemenman I, Califano A. 2006b. Reverse engineering cellular networks. Nat Protoc 1(2):662-71.
    Mitchell KO, El-Deiry WS. 1999. Overexpression of c-Myc inhibits p21WAFl/CIPl expression and induces S-phase entry in 12-O-tetradecanoylphorbol-13-acetate (TPA)-sensitive human cancer cells. Cell Growth Differ 10(4):223-30.
    Miyashiro KY, Beckel-Mitchener A, Purk TP, Becker KG, Barret T, Liu L, Carbonetto S, Weiler IJ,Greenough WT, Eberwine J. 2003. RNA cargoes associating with FMRP reveal deficits in cellular functioning in Fmr1 null mice. Neuron 37(3):417-31.
    Nagamine N, Sakakibara Y. 2007. Statistical prediction of protein chemical interactions based on chemical structure and mass spectrometry data. Bioinformatics 23(15):2004-12.
    Nakamoto M, Jin P, O'Donnell WT, Warren ST. 2005. Physiological identification of human transcripts translationally regulated by a specific microRNA. Hum Mol Genet 14(24):3813-21.
    Nelson PT, Hatzigeorgiou AG, Mourelatos Z. 2004. miRNP:mRNA association in polyribosomes in a human neuronal cell line. Rna 10(3):387-94.
    Robins H, Li Y, Padgett RW. 2005. Incorporating structure to predict microRNA targets. Proc Natl Acad Sci U S A 102(11):4006-9.
    Robins H, Press WH. 2005. Human microRNAs target a functionally distinct population of genes with AT-rich 3' UTRs. Proc Natl Acad Sci U S A 102(43):15557-62.
    Sampson VB, Rong NH, Han J, Yang Q, Aris V, Soteropoulos P, Petrelli NJ, Dunn SP, Krueger LJ. 2007.MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res 67(20):9762-70.
    Sethupathy P, Corda B, Hatzigeorgiou AG. 2006. TarBase: A comprehensive database of experimentally supported animal microRNA targets. Rna 12(2):192-7.
    Sewer A, Paul N, Landgraf P, Aravin A, Pfeffer S, Brownstein MJ, Tuschl T, van Nimwegen E, Zavolan M.2005. Identification of clustered microRNAs using an ab initio prediction method. BMC Bioinformatics 6(1):267.
    Shapiro BA. 1988. An algorithm for comparing multiple RNA secondary structures. Comput Appl Biosci 4(3):387-93.
    
    Stark A, Brennecke J, Russell RB, Cohen SM. 2003. Identification of Drosophila MicroRNA targets. PLoS Biol l(3):E60.
    Sun L, Ji S, Ye J. 2008. Adaptive diffusion kernel learning from biological networks for protein function prediction. BMC Bioinformatics 9:162.
    Vo N, Klein ME, Varlamova O, Keller DM, Yamamoto T, Goodman RH, Impey S. 2005. A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci U S A 102(45): 16426-31.
    Waggoner SA, Liebhaber SA. 2003. Identification of mRNAs associated with alphaCP2-containing RNP complexes. Mol Cell Biol 23(19):7055-67.
    Wang X, Wang X. 2006. Systematic identification of microRNA functions by combining target prediction and expression profiling. Nucleic Acids Res 34(5): 1646-52.
    Watanabe Y, Yachie N, Numata K, Saito R, Kanai A, Tomita M. 2006. Computational analysis of microRNA targets in Caenorhabditis elegans. Gene 365:2-10.
    Witten IH, Frank E. 2005. Data Mining: Practical machine learning tools and techniques. San Francisco:Morgan Kaufmann.
    Wu L, Belasco JG. 2005. Micro-RNA regulation of the mammalian lin-28 gene during neuronal differentiation of embryonal carcinoma cells. Mol Cell Biol 25(21):9198-208.
    Wu L, Fan J, Belasco JG. 2006. MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci U S A103(11):4034-9.
    Xue C, Li F, He T, Liu GP, Li Y, Zhang X. 2005. Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine. BMC Bioinformatics 6:310.
    Yousef M, Jung S, Kossenkov AV, Showe LC, Showe MK. 2007. Naive Bayes for microRNA target predictions-machine learning for microRNA targets. Bioinformatics 23(22):2987-92.
    Zhang SW, Chen W, Yang F, Pan Q. 2008. Using Chou's pseudo amino acid composition to predict protein quaternary structure: a sequence-segmented PseAAC approach. Amino Acids.
    Zhao Y, Samal E, Srivastava D. 2005. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436(7048):214-20.
    Zhou D, He Y, Kwoh CK. 2008. Extracting Protein-Protein Interactions from MEDLINE using the Hidden Vector State model. Int J Bioinform Res Appl 4(1):64-80.
    [1]D.P.Bartel.MicroRNAs:genomics,biogenesis,mechanism,and function[J].Cell,(2004),116,(2):281-97.
    [2]K.S.Kosik,and A.M.Krichevsky.The Elegance of the MicroRNAs:A Neuronal Perspective[J].Neuron,(2005),47,(6):779-82.
    [3]R.C.Lee,R.L.Feinbaum,and V.Ambros.The C.elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J].Cell,(1993),75,(5):843-54.
    [4]B.Wightman,I.Ha,and G Ruvkun.Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C.elegans[J].Cell,(1993),75,(5): 855-62.
    [5] B.J. Reinhart, F.J. Slack, M. Basson, A.E. Pasquinelli, J.C. Bettinger, A.E. Rougvie, H.R. Horvitz,and G Ruvkun. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans[J]. Nature, (2000), 403,(6772): 901-6.
    [6] J.E. Abrahante, A.L. Daul, M. Li, M.L. Volk, J.M. Tennessen, E.A. Miller, and A.E. Rougvie. The Caenorhabditis elegans hunchback-like gene lin-57/hbI-l controls developmental time and is regulated by microRNAs[J]. Dev Cell, (2003), 4,(5): 625-37.
    |7] B. Zhang, Q. Wang, and X. Pan. MicroRNAs and their regulatory roles in animals and plants[J].J Cell Physiol, (2007), 210,(2): 279-89.
    [8] E.G Moss, R.C. Lee, and V. Ambros. The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA[J]. Cell, (1997), 88,(5):637-46.
    [9] B. Rogelj, and K.P. Giese. Expression and function of brain specific small RNAs[J]. Rev Neurosci,(2004), 15,(3): 185-98.
    [10] M. Lagos-Quintana, R. Rauhut, A. Yalcin, J. Meyer, W. Lendeckel, and T. Tuschl. Identification of tissue-specific microRNAs from mouse[J]. Curr Biol, (2002), 12,(9): 735-9.
    [11] J.A. Chan, A.M. Krichevsky, and K.S. Kosik. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells[J]. Cancer Res, (2005), 65,(14): 6029-33.
    [12] S. Debernardi, S. Skoulakis, G Molloy, T. Chaplin, A. Dixon-McIver, and B.D. Young.MicroRNA miR-181a correlates with morphological sub-class of acute myeioid leukaemia and the expression of its target genes in global genome-wide analysis[J]. Leukemia, (2007).
    [13] E.C. Lai, P. Tomancak, R.W. Williams, and GM. Rubin. Computational identification of Drosophila microRNA genes[J]. Genome Biol, (2003), 4,(7): R42.
    [14] D.H. Mathews, J. Sabina, M. Zuker, and D.H. Turner. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure[J]. J Mol Biol,(1999), 288,(5): 911-40.
    [15] L.P. Lim, M.E. Glasner, S. Yekta, C.B. Burge, and D.P. Bartel. Vertebrate microRNA genes[J].Science, (2003), 299,(5612): 1540.
    [16] Y. Grad, J. Aach, G.D. Hayes, B.J. Reinhart, G.M. Church, G. Ruvkun, and J. Kim.Computational and experimental identification of C. elegans microRNAs[J]. Mol Cell,(2003), 11,(5): 1253-63.
    [17] E. Berezikov, V. Guryev, J. van de Belt, E. Wienholds, R.H. Plasterk, and E. Cuppen.Phylogenetic shadowing and computational identification of human microRNA genes[J].Cell, (2005), 120,(1): 21-4.
    [18] D. Boffelli, J. McAuliffe, D. Ovcharenko, K.D. Lewis, I. Ovcharenko, L. Pachter, and E.M.Rubin. Phylogenetic shadowing of primate sequences to find functional regions of the human genome[J]. Science, (2003), 299,(5611): 1391-4.
    [19] I. Bentwich, A. Avniel, Y. Karov, R. Aharonov, S. Gilad, O. Barad, A. Barzilai, P. Einat, U. Einav,E. Meiri, E. Sharon, Y. Spector, and Z. Bentwich. Identification of hundreds of conserved and nonconserved human microRNAs[J]. Nat Genet, (2005), 37,(7): 766-70.
    [20] O. Barad, E. Meiri, A. Avniel, R. Aharonov, A. Barzilai, I. Bentwich, U. Einav, S. Gilad, P.Hurban, Y. Karov, E.K. Lobenhofer, E. Sharon, Y.M. Shiboleth, M. Shtutman, Z. Bentwich,and P. Einat. MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues[J]. Genome Res, (2004), 14,(12):2486-94.
    [21] L.P. Lim, N.C. Lau, E.G. Weinstein, A. Abdelhakim, S. Yekta, M.W. Rhoades, C.B. Burge, and D.P. Bartel. The microRNAs of Caenorhabditis elegans[J]. Genes Dev, (2003), 17,(8):991-1008.
    [22] L.F. Sempere, S. Freemantle, I. Pitha-Rowe, E. Moss, E. Dmitrovsky, and V. Ambros. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation[J]. Genome Biol, (2004), 5,(3):R13.
    [23] J. Lu, G Getz, E.A. Miska, E. Alvarez-Saavedra, J. Lamb, D. Peck, A. Sweet-Cordero, B.L.Ebert, R.H. Mak, A.A. Ferrando, J.R. Downing, T. Jacks, H.R. Horvitz, and T.R. Golub.MicroRNA expression profiles classify human cancers[J]. Nature, (2005), 435,(7043):834-8.
    [24] B.P. Lewis, I.H. Shih, M.W. Jones-Rhoades, D.P. Bartel, and C.B. Burge. Prediction of mammalian microRNA targets[J]. Cell, (2003), 115,(7): 787-98.
    [25] P.S. Ivo Hofacker, Walter Fontana,Stefan Wuchty, VIENNA RNA PACKAGE, 2005.
    
    [26] T.F. Smith, and M.S. Waterman. Identification of common molecular subsequences[J]. J Mol Biol, (1981), 147,(1): 195-7.
    [27] A. Krek, D. Grun, M.N. Poy, R. Wolf, L. Rosenberg, E.J. Epstein, P. MacMenamin, I. da Piedade,K.C. Gunsalus, M. Stoffel, and N. Rajewsky. Combinatorial microRNA target predictions[J].Nat Genet, (2005), 37,(5): 495-500.
    [28] M. Rehmsmeier, P. Steffen, M. Hochsmann, and R. Giegerich. Fast and effective prediction of microRNA/target duplexes[J]. Rna, (2004), 10,(10): 1507-17.
    [29] V. Rusinov, V. Baev, I.N. Minkov, and M. Tabler. Microlnspector: a web tool for detection of miRNA binding sites in an RNA sequence[J]. Nucleic Acids Res, (2005), 33,(Web Server issue): W696-700.
    [30] A. Stark, J. Brennecke, R.B. Russell, and S.M. Cohen. Identification of Drosophila MicroRNA targets[J]. PLoS Biol, (2003), 1,(3): E60.
    [31] P. Sethupathy, B. Corda, and A.G Hatzigeorgiou. TarBase: A comprehensive database of experimentally supported animal microRNA targets[J]. Rna, (2006), 12,(2): 192-7.
    [32] S.K. Kim, J.W. Nam, J.K. Rhee, W.J. Lee, and B.T. Zhang. miTarget: microRNA target-gene prediction using a Support Vector Machine[J]. BMC Bioinformatics, (2006), 7,(1): 411.
    [33] T. Joachims. Making large-scale support vector machine learning practical[M].MIT Press, 1998:
    [34] X. Yan, T. Chao, K. Tu, Y. Zhang, L. Xie, Y. Gong, J. Yuan, B. Qiang, and X. Peng. Improving the prediction of human microRNA target genes by using ensemble algorithm[J). FEBS Lett,(2007), 581,(8): 1587-93.
    [35] M. Yousef, S. Jung, A.V. Kossenkov, L.C. Showe, and M.K. Showe. Naive Bayes for microRNA target predictions-machine learning for microRNA targets[J]. Bioinformatics, (2007),23,(22): 2987-92.
    [36] S.M. Johnson, H. Grosshans, J. Shingara, M. Byrom, R. Jarvis, A. Cheng, E. Labourier, K.L.Reinert, D. Brown, and F.J. Slack. RAS is regulated by the let-7 microRNA family[J]. Cell,(2005), 120,(5): 635-47.
    
    [37] M. Kiriakidou, P.T. Nelson, A. Kouranov, P. Fitziev, C. Bouyioukos, Z. Mourelatos, and A. Hatzigeorgiou. A combined computational-experimental approach predicts human microRNA targets[J]. Genes Dev, (2004), 18,(10): 1165-78.
    [38] W.P. Kloosterman, E. Wienholds, R.F. Ketting, and R.H. Plasterk. Substrate requirements for let-7 function in the developing zebrafish embryo[J]. Nucleic Acids Res, (2004), 32,(21):6284-91.
    [39] J- Brennecke, A. Stark, R.B. Russell, and S.M. Cohen. Principles of microRNA-target recognition[Jl. PLoS Biol, (2005), 3,(3): e85.
    [40] A. Boutla, C. Delidakis, and M. Tabler. Developmental defects by antisense-mediated inactivation of micro-RNAs 2 and 13 in Drosophila and the identification of putative target genes[J]. Nucleic Acids Res, (2003), 31,(17): 4973-80.
    [41] G Hutvagner, M.J. Simard, C.C. Mello, and P.D. Zamore. Sequence-specific inhibition of small RN A function[J]. PLoS Biol, (2004), 2,(4): E98.
    [42] S.P. Henry, R.S. Geary, R. Yu, and A.A. Levin. Drug properties of second-generation antisense oligonucleotides: how do they measure up to their predecessors?[J]. Curr Opin Investig Drugs, (2001), 2,(10): 1444-9.
    [43] K.J. Friedman, J. Kole, J.A. Cohn, M.R. Knowles, L.M. Silverman, and R. Kole. Correction of aberrant splicing of the cystic fibrosis transmembrane conductance regulator (CFTR) gene by antisense oligonucleotides[J]. J Biol Chem, (1999), 274,(51): 36193-9.
    [44] S. Mani, S. Goel, M. Nesterova, R.M. Martin, J.M. Grindel, M.L. Rothenberg, R. Zhang, G Tortora, and Y.S. Cho-Chung. Clinical studies in patients with solid tumors using a second-generation antisense oligonucleotide (GEM 231) targeted against protein kinase A type I[J]. Ann N Y Acad Sci, (2003), 1002 252-62.
    [45] B.F. Baker, S.S. Lot, T.P. Condon, S. Cheng-Flournoy, E.A. Lesnik, H.M. Sasmor, and C.F.Bennett. 2'-0-(2-Methoxy)ethyl-modified anti-intercellular adhesion molecule 1 (ICAM-1) oligonucleotides selectively increase the ICAM-1 mRNA level and inhibit formation of the ICAM-1 translation initiation complex in human umbilical vein endothelial cells[J]. J Biol Chem, (1997), 272,(18): 11994-2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700