稻壳资源的综合利用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质是地球上资源非常丰富的天然资源,稻壳是生物质中的一种,并且产量巨大。据统计,我国年产稻壳5600万吨以上,目前仍有增加的趋势。稻壳所含木质素和硅质较高,所以它不易吸水,直接施放到田间作肥料不易腐烂;大量的稻壳在农村或在粮米加工厂堆积如山,成了难以处理的废弃物。它们既污染环境,又容易引起火灾,已经成了社会的一大公害。为了充分利用秸秆资源,世界各国已经进行了几十年的努力,并取得了一定进展。其中利用稻壳发电,不仅解决了污染问题,而且开发了能源;但是,发电产生的大量废渣又成为二次污染源,为此人们开展了废渣的应用研究,取得了一些科研成果,但仍无法在工业化生产中应用,还有大量的基础研究工作要做。
     本文较详细的研究了稻壳灰中硅碳组分的分离,采用碱蒸煮的方法将稻壳灰中的硅碳组分分离。对于碳组分,利用磷酸和氢氧化钠活化法制备高比表面积活性炭;对于硅组分也即水玻璃溶液,利用改良的化学沉淀法即二氧化碳微晶法,制备了纯度高,白度及分散性好的纳米白炭黑。为了白炭黑更好的应用在橡胶,塑料等有机高分子中,采用温和的水相改性法,将十六醇接枝到白炭黑表面,使白炭黑具有疏水表面,以便其更有利于与高分子等有机物进行复合。通常,无定型二氧化硅转化为磷石英晶体都需要在870-1470oC的温度下进行,而本文针对稻壳生产的无定型白炭黑,采用溶剂热法在低温液相情况下对白炭黑进行晶化处理,合成了磷石英晶体。本文还根据根据稻壳组成和结构的特点,采用分步水解的方法,分别利用稀酸、高沸醇等对稻壳进行了层层剥离,制备木糖、HBS木质素、葡萄糖及纳米二氧化硅等多种化工产品,给出了一种稻壳综合利用的新途径。
Rice husk is a by-product of rice processing. According to statistics, there are more than 56million tons rice husks in our country. Rice husk is not very hygroscopic because it contains amount of lignin and silica, which lead to it hardly decay in fields. More and more rice husks packed and turned into wastes which were hardly to deal with. They were not only environmental pollutions but also easily to cause fire. All over the world have devoted to the comprehensive utilization of rice husk and gained statisfied effect. Rice husk power generation is not only helpful to solve pollution problems but also to the development of energy. Activated caobon and silica white could be obtained from rice husk ash and it is favorable to the development of our national economy. In this article, the preparation, characterization of high specific surface area activated carbon and nano-silica white were studied systematically. The obtained nano-silica white was modified by hexadecanol and became more affinitive to organic polymer materials. The nono-silica could be turned to tridymite by chemical process using solvent-thermal method at low temperature. Finally, according to the composition of rice husk, the rice husks were hydrolyzed step by step. Xylose, HBS lignin, glucose and nano-silica could be obtained by this method. This method developed a new way for the comprehensive utilization of rice husk.
     Taking rice husk as raw material and separating carbon and silica by treating rice husk ash with alkali liquor, the residue were activated by phosphoric acid and sodium hydroxide respectively, activated carbon with different properties were prepared. When phosphoric acid was used as the activated reagent, the best process condition is at 500oC, the specific surface area of activated carbon is about 1200m2/g, and the iodine number is about 850mg/g. By altering dose of activating agent, activating temperature, time and various activating process conditions, effective control of porous carbon’s specific surface area and pore distribution will be achieved, which paves the way for further development and utilization of rice husk ash. We also used sodium hydroxide as the activated reagent, By altering dose of activating agent, activating temperature, time and various activating process conditions, different properties activated carbon were obtained, the best process conditions is at 800oC, and according to the result of our experiments, a more reasonable mechanism of alkali activation.
     Taking rice husk ash as raw material and water glass is obtained by treating rice husk ash with alkali liquor. Firstly, amount of CO2 were pumped in water glass to formed microcrystalline seed at 80 oC water bath, and then sulfate were dropped into to form precipitation. Using improved chemical precipitation method, it could successfully prepare nano- silica particles in about 20-30nm diameter and each index could reach to national standard requirement. This simple and economic method has widened rice husk ash’s application range. Every factor should be considered in order to utilize biomass resources comprehensively. So a new route was designed for the treating of waste water in the silica white preparing process. The calcium sulfate dihydrate was obtained using the waster water and calcium chloride solution as the reagent. The calcium sulfate dihydrate was put into at autoclaves at 130oC, and the calcium sulfate whisker was obtained. This method solved the problems of waste water drainage, and prepared CaSO4 whisker which had higher application value. The whole process is cyclic and had any waste water drainage. this is a breakthrough in the biomss comprehensive utilization.
     The silica white obtained from rice husk ash were hydrophilic, so the silica white had bad compatibility with organic compounds when it was used in organic compounds. In this article, a new modified method was used to get hydrophobic surface. Debasing reaction was carried out at lower temperature in a mild system to modify silica that is obtained from rice husk ash by hexadecanol in situ and to prepare superhydrophobic silica particles. Surface wettability in inorgic materials can also be controlled by alkyl’s length. This simple experimental method can be further extended to other inorganic material’s surface modification. In order to study the mechanism of this modification, every reaction condition was studied systematically and a reasonable mechanism was proposed. This method is simple convenient and were very meaningful for other inorganica materials’surface modification.
     Usually, amorphous silica needs high temperature to change to tridymite or quartz. In this article, amorphous silica was treated in glycol at 196oC and it turned to tridymite by this chemical process. In order to study the mechanism of this phase transition, every reaction condition was studied systematically and a reasonable mechanism was proposed. Firstly, the amorphous silica went through a reversible process, and then the crystal seed formed as the pentacoordinate silica hydrolyzed. Secondly, when sufficient energy was supported, the crystal seed began growing and finally tridymite formed. This method is simple convenient and were very meaningful for other oxides’phase transition.
     The components of the rice hull were extracted and hydrolyzed in steps according to their characteristics. Firstly, the hemicellulose was hydrolyzed in dilute acid with refluxing under atmospheric pressure. High yield of xylose solution was obtained. Then the residue was cooked by 80 % of glycol under pressure. After 4 h of cooking at 200 oC, high boiling solvent lignin (HBSL) was extracted. The residue after HBSL extraction was subject to the third-step-hydrolysis in sulfuric acid (2mol/L). 90 % of cellulose was hydrolyzed after 6 h of pressure reaction at 130 oC. Glucose solution, the feedstock for fuel ethanol production, was obtained. Lastly, the final residue was calcined at 800 oC to produce nano-size silicon dioxide. The particle size was 30-90 nm, and the whiteness reached to 99%. The advantages of this study were as follow. By hydrolyzing the hemicellulose and lignin firstly, the fixation effect of lignin on the cellulose was eliminated, and the crystalline of the cellulose was destroyed. As a result, 90-100% of cellulose could be hydrolyzed. Additionally, by using the components of rice hull, such as hemicellulose, lignin and silicon, to produce furfural, surfactants and silicon dioxide, more than 90% of rice hull could be utilized.
     In conclusion, a new method was proposed for the comprehensive utilization of bio-resources like rice hull. Many good achievements with important social and economic significance were obtained.
引文
[1] Q FENG, Q LIN, F GONG, S SUGITA, M SHOYA. Adsorption of lead and mercury by rice husk [J]. J. Colloid. Interf. Sci., 2004,274:1-8.
    [2] TARUN KUMAR NAIYA, ASHIM KUMAR BHATTACHARYA, et al. The sorption of lead(II) ions on rice husk ash [J]. Journal of Hazardous Materials, 2009, 163(2-3): 1254-1264.
    [3] MEHTA PK. Rice Husk Ash--A Unique Supplementary Cementing Material [M]. Canada: Communication Group-Publish, 1992, 433-471.
    [4]欧阳东.超高强混凝土及其第六组分的研究[D].广州:华南理工大学,1997.
    [5] DEEPA G NAIR, ALEX FRAAIJ, et al. A structural investigation relating to the pozzolanic activity of rice husk ashes [J]. Cement and Concrete Research, 2008, 38(6):861-869.
    [6] QINGGE FENG, H. YAMAMICHI, M. SHOYA, S. SUGITA. Study on the pozzolanic properties of rice husk ash by hydrochloric acid pretreatment [J]. Cement and Concrete Research, 2004, 34(3): 521-526.
    [7]欧阳东.稻壳灰显微结构及其中纳米SiO2的电镜观察[J].电子显微学报,2003,22(5):390-394.
    [8]陈正行,李锡兴.铸锅材料稻壳灰的科学制作[J].五金科技, 1991, 3:13-14.
    [9] QINNGGE FENG, H.YAMAMICHI, M.SHOYA, ET AL. Study on the pozzolanic properties of rice husk ash by hudrochloric acid pretreatment [J]. Journal of Colloid and Interface Science, 2004, 34:521-526.
    [10] RV KRISHNARAO, J SUBRAHMANYAM, T JAGADISH KUMAR. Studies on the formation of black particles in rice husk silica ash [J]. Journal of the European Ceramic Sciety, 2001, 21: 99-104.
    [11] CHAO LUNG HWANG, SATISH CHANDRA. The use of rice husk ash in concrete [J]. Waste Materials Used in Concrete Manufacturing, 1996, 4:184-234.
    [12] RAFAT SIDDIQUE, JUVAS KLAUS. Influence of metakaolin on the properties of mortar and concrete: A review [J]. Applied Clay Science, 2009, 43(3-4):392-400.
    [13] GANESAN K, RAJAGOPAL K, THANGAVEL K. Rice husk ash blended cement: assessment of optimal level of replacement for strength and permeability properties of concrete [J]. Construction and Building Materials, 2008, 22 (8):1675-1683.
    [14] B CHATVEERA, P LERTWATTANARUK. Evaluation of sulfate resistance of cement mortars containing black rice husk ash [J]. Journal of Environmental Management, 2009, 90(3):1435-1441.
    [15] CHINDAPRASIRT P, RUKZON S. Strength, porosity and corrosion resistance of ternary blend Portland cement, rice husk ash and fly ash mortar [J]. Construction and Building Materials, 2008, 22 (8):1601–1606.
    [16] CHINDAPRASIRT P, RUKZON S, SIRIVIVATNANON V. Effect of carbon dioxide on chloride penetration and chloride ion diffusion coefficient of blended Portland cement mortar [J]. Construction and Building Materials, 2008, 22 (8):1701–1707.
    [17] EJ SIQUEIRA, IVP YOSHIDA, LC PARDINI, MA SCHIAVON. Preparation and characterization of ceramic composites derived from rice husk ash and polysiloxane [J]. Ceramics International, 2009, 35(1):213-220.
    [18] A EL-DAKROURY, MS GASSER. Rice husk ash (RHA) as cement admixture for immobilization of liquid radioactive waste at different temperatures [J]. Journal of Nuclear Materials, 2008, 381(3): 271-277.
    [19] GEMMA RODRíGUEZ DE SENSALE, ANTóNIO B. RIBEIRO, ARLINDO GON?ALVES. Effects of RHA on autogenous shrinkage of Portland cement pastes [J]. Cement and Concrete Composites, 2008, 30(10): 892-897.
    [20]田彬.国外稻壳灰水泥研究的新进展[J].水泥, 1990, 5: 42-44.
    [21]高汉忠.稻壳水泥混凝土保温材料.新型建筑材料[J].1996, 12:18-20.
    [22] AJIWE, et al. A preliminary study of manufacture of cement from rice husk ash [J]. Bioresource Technology, 2000, 5: 37-39.
    [23] V I E AJIWE, C A OKEKE, S C EKWUOZOR AND I C UBA. A pilot plant for production of ceiling boards from rice husks [J]. Bioresource Technology, 1998, 66(1):41-43.
    [24] V GERARDI, F MINELLI AND D VIGGIANO. Steam treated rice industry residues as an alternative feedstock for the wood based particleboard industry in Italy [J]. Biomass and Bioenergy, 1998, 14(3): 295-299.
    [25] HAN-SEUNG YANG, DAE-JUN KIM AND HYUN-JOONG KIM. Rice straw–wood particle composite for sound absorbing wooden construction materials. Bioresource Technology, 2003, 86:117-121.
    [26] RAHMAN IA, SAAD B, SHAIDAN S, SYA RIZAL ES. Adsorption characteristics of malachite green on activated carbon derived from ricehusks produced by chemicalethermal process [J]. Bioresour. Technol., 2005, 96:1578-1583.
    [27] MANE V, MALL ID, SRIVASTAVA VC. Kinetic and equilibrium isotherm studies for the adsorptive removal of brilliant green dye from aqueous solution by rice husk ash [J]. J. Environ. Manag, 2007, 84:390-400.
    [28] UMA R LAKSHMI, VIMAL CHANDRA SRIVASTAVA, INDRA DEO MALL, DILIP H LATAYE. Rice husk ash as an effective adsorbent: Evaluation of adsorptive characteristics for Indigo Carmine dye [J]. Journal of Environmental Management, 2009, 90(2):710-720.
    [29] QINGGE FENG, QINGYU LIN, FUZHONG GONG, et al. Adsorption of lead and mercury by rice husk ash [J]. Journal of Colloid and Interface Science,2004, 278(1):1-8.
    [30] KHALID N, AHMAD S, TOHEED A, AHMED J. Potential of rice husks for antimony removal [J]. Appl. Radiat. Isot. 2000, 52: 31-38.
    [31] KUMAR U, BANDYOPADHYAY M. Fixed bed column study for Cd(II) removal from wastewater using treated rice husk [J]. J. Hazard. Mater.B, 2006, 129:253-259.
    [32] NAKBANPOTE W, THIRAVEETYAN P, KALAMBAHETI C. Preconcentration of gold by rice husk ash [J]. Miner. Eng., 2000.13 (4):391-400.
    [33] SRIVASTAVA VC, MALL ID, MISHRA IM. Adsorption thermodynamics and isosteric heat of adsorption of toxic metal ions onto bagasse fly ash(BFA) and rice husk ash (RHA) [J]. Chem. Eng. J., 2007. 132: 267-278.
    [34] IMAGAWA A, SETO R, NAGAOSA Y. Adsorption of chlorinated hydrocarbons from air and aqueous solutions by carbonized rice husk [J]. Carbon, 2000, 38: 623-641.
    [35] ADAM F, CHUA JOO-HANN. The adsorption of palmytic acid on rice husk ash chemically modified with Al(III) ion using the solegel technique [J]. J. Colloid Interface Sci., 2004, 280:55-61.
    [36] ANDREW PROCTOR. X-ray diffraction and scanning electron micro-scope studies of processed rice hull silica [J]. JAOCS, 1990, 67 (9):576-583.
    [37] ANDREW PROCTOR. Soy oil mutein adsorption by rice hull ash [J]. J. Am. Oil Chem. Soc., 1989, 1:437-440.
    [38] FAROOK-ADAM. Saturated fatty acid adsorption by acidified rice hull ash [J]. J. Am. Oil Chem. Soc., 2000, 4:437-440.
    [39] KALAPATHY. New method for free fatty acid reduction in flying oil using silicate films produced from rice hull ash [J]. J. Am. Oil.Chem. Soc., 2000, 6:593-598.
    [40]王万森,姚学仁.农业废弃物稻壳生产活性碳及水玻璃的研究[J].再生资源研究, 2003, 1:34- 36.
    [41]张世润,刘曙辉.稻壳活性炭的研制[J].林业科技, 2001,26(1): 36-38.
    [42]杨兴存.利用稻壳生产水玻璃的研究[J].山东建材, 1997, 5: 14-15.
    [43]吴鹰.稻壳制水玻璃和玻璃[J].建材工业信息, 1994, 5:13-14.
    [44]袁福龙,刘宏.以稻壳为原料生产高模数水玻璃及活性炭的一种新工艺[J].黑龙江大学自然科学学报, 1994, 11 (3):101-104.
    [45] YMZ AHMED, EM EWAIS, ZI ZAKI. Production of porous silica by the combustion of rice husk ash for tundish lining. Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material, 2008, 15:307-313.
    [46] T WITOON, M CHAREONPANICH, J LIMTRAKUL. Synthesis of bimodal porous silica from rice husk ash via sol–gel process using chitosan as template [J]. Materials Letters, 2008, 62(10-11):1476-1479.
    [47] ADIL ELHAG AHMED, FAROOK ADAm. Indium incorporated silica from rice husk and its catalytic activity [J]. Microporous and Mesoporous Materials, 2007, 103(1-3):284-295.
    [48] S CHIARAKORN, T AREEROB, N GRISDANURAK. Influence of functional silanes on hydrophobicity of MCM-41 synthesized from rice husk [J]. Science and Technology of Advanced Materials, 2007, 8(1-2):110-115.
    [49] MINATI CHATTERJEE, MILAN KANTI NASKAR. Sol–gel synthesis of lithium aluminum silicate powders: The effect of silica source [J]. Ceramics International, 2006, 32(6): 623-632.
    [50] V P DELLA, I KüHN, D HOTZA. Rice husk ash as an alternate source for active silica production [J]. Materials Letters, 2002, 57(4):818-821.
    [51] SHENG HUANG, SHAN JING, JINFU WANG, et al. Silica white obtained from rice husk in a fluidized bed [J]. Powder Technology, 2001, 117(3): 232-238.
    [52] LIEW K Y, et al. Adsorption of carotene from palm oil by acid-treated rice hull ash [J]. Journal of the American Oil Chemists' Society, 1993(5): 539-541.
    [53] KALAPATHY U, et al. A simple method for production of pure silica from ricehull ash [J]. Bioresource Technology, 2000(7): 257-262.
    [54] AMPHOL AWORN, PAITIP THIRAVETYAN, WORANAN NAKBANPOTE. Preparation and characteristics of agricultural waste activated carbon by physical activation having micro- and mesopores [J]. Journal of Analytical and Applied Pyrolysis, 2008, 82(2):279-285.
    [55] Y SATYAWALI, M BALAKRISHNAN. Removal of color from biomethanated distillery spentwash by treatment with activated carbons [J]. Bioresource Technology, 2007, 98(14):2629-2635.
    [56] TANZIL HAIDER USMANI, TAMOOR WAHAB AHMAD. Preparation and liquid-phase characterization of granular activated-carbon from rice husk [J]. Bioresource Technology, 1994, 48(1):31-35.
    [57]卢芳仪,任宇红.稻壳灰制白炭黑和活性炭的研究[J].化学工程师, 1997, (4):4-6.
    [58]卫延安,朱永义.由稻壳灰制备活性炭的研究[J].粮食与饲料工业, 2000, (3):34-36.
    [59]卫延安,朱永义等.提高稻壳灰制备活性炭、白炭黑质量的方法研究[J].郑州工程学院学报, 2003, 24(1):61-63, 67.
    [60]周广德.超轻硅酸钙保温绝热材料[J].四川建材, 1985, 1:6-9.
    [61]王元纲,章春梅.用稻壳灰水热合成硬硅钙石的研究[J].硅酸盐通报, 1995, 5:60-64.
    [62] CUTLER I B. Production of SiC from rice hulls [P]. US patent: 3754076, 1973-08-21.
    [63] KRISHNARAO RV, MAHAJAN YR. Formation of SiC whiskers from raw rice husks in argon atmorphere [J]. Ceramics International, 1996, 22(5): 353-358.
    [64] NAIR N C. Synthesis of silicon carbide whiskers from rice husk and coconut shell [J]. Metal Powder Report, 1999, 54(3):39- 42.
    [65] RAGHAVARAPU VENKATA KRISHNARAO, MAHADEV MALHAR GODKHINDI. Studies on the formation of SiC whiskers from pulverized ricehusk ashes [J]. Ceramics International, 1992, 18(1):35-42.
    [66] RV KRISHNARAO, MM GODKHINDI. Effect of Si3N4 additions on the formation of SiC whiskers from rice husks [J]. Ceramics International, 1992, 18(3)185-191.
    [67] KALAPATHY et al. New method for free fatty acid reduction in frying oil using silicate films produced from rice hull ash [J]. Journal of the American Oil Chemists' Society, 2000, 6:593-598.
    [68]戴志成.硅化合物的生产与应用[M].成都:成都科技大学出版社, 1994.
    [69]王象民.稻壳灰在硅橡胶中的应用[J] .橡胶参考资料, 2002, 32 (1):21-23.
    [70]邵洪东.关于稻壳炭用作橡胶补强材料的研究[J].世界橡胶工业, 2002, 29(1):12-16; 41.
    [71]延国宁,马登民.以稻壳为原料制取氟硅酸钠[J].沈阳化工学院学报, 1997, 11(3):173-177.
    [72]张若愚.用硅藻土制取四氯化硅[J].云南化工, 1994, 4:44-46.
    [73]蒋卉.微波-ZnCl2法制备农业废弃物活性炭及吸附甲醛的研究[D].四川:四川大学, 2005.
    [74]吴娟.城市污水处理厂污泥制备活性炭的研究[D].山东:山东大学, 2004.
    [75]杨全红,郑经堂,王茂掌.微孔炭的纳米结构和表面结构[J].材料研究学报, 2004, 14 (2):114-122.
    [76]刘洪波,张红波等.竹节制备高比表面积活性炭的研究[J].林产化学与工业, 2001, 21(4):11-15.
    [77] GUOYP,ROCKSTRAW DA. Activated carbons prepared from rice hull by one-step phosphoric acid activation [J]. Microporous and MesoPorous Materials, 2007, 100(l-3):12-19.
    [78]彭金辉,张利波,张世敏等.综合利用烟杆废料制取优质活性炭[J].林产化学与工业, 2002, 22(3): 85-87.
    [79]姚伯元,黄广民,窦智峰等.海南椰壳与椰壳渣制备高比表面积活性炭原料脱灰工艺[J].化工学报, 2006, 57(6):1458-1463.
    [80] HU ZH,VANSANT EF. Synthesis and characterization of a controlled-micropore-size carbonaceous adsorbent produced from walnut shell [J]. Microporous Materials, 1995, 3(6): 603-612.
    [81] HU ZH, SRINIVASAN MP. Preparation of high-surfaee-area activated carbons from coconut shell [J]. Microporous and Mesoporous Materials, 1999, 27(l):11-18.
    [82] AHMADPOUR A, DO DD. The preparation of activated carbon from macasamia nutshell by chemical activation [J]. Carbon, 1997, 35(12):1723-1732.
    [83] CHANDRA TC, MIRNA MM, SUDARYANTO Y et al. Adsorption of basic dye onto activated carbon prepared from durian shell: Studies of adsorption equilibrium and kinetics [J]. Chemical Engineering Journal, 2007, 127(1-3):121-129.
    [84] GIRGIS BS, YUNIS SS, SOLIMAN AM. Characteristics of activated carbon from peanut hulls in relation to conditions of preparation [J]. Materials Letters, 2002, 57(1):164-172.
    [85] GUO J, LUA AC. Textural and chemical characterizations of adsorbent prepared from palm shell by potassium hydroxide impregnation at different stages [J]. Journal of Colloid and Interface Science, 2002, 254 (2): 227-233.
    [86] VERHEYEN V, RATHBONE R, JAGTOYEN M et al. Activated extrudates by oxidation and KOH activation of bituminous coal [J]. Carbon, 1995, 33(6):763-772.
    [87] HSU LY, TENG HS. Influence of different chemical reagents on the preparation of activated carbons from bituminous coal [J]. Fuel Processing Technology, 2000, 64(1-3):155-166.
    [88] PARRA JB, DE SOUSA JC, PIS JJ et al. Effect of gasification on the porous characteristics of activated carbons from semianthracite [J]. Carbon, 1995, 33(6): 801-807.
    [89] LOZANO-CASTELLO D, LILLO-RODENAS MA, et al. Preparation of activated carbons from Spanish anthracite: I. Activation by KOH [J]. Carbon,2001, 39(5):741-749.
    [90] MACIG-AGULLB JA, MOORE BC, et al. Activation of coal tar pitch carbon fibres: Physical activation vs chemical activation [J]. Carbon, 2004, 42(7):1367-1370.
    [91] PARK SJ, JANG YS, SHIM JW et al. Studies on pore structures and surface functional groups of pitch-based activated carbon fibers [J]. Journal of Colloid and Interface Science, 2003, 260 (2):259-264.
    [92] RUIZ B, PARRA JB, PAJARES JA et al. Study of porous development in pyrolysis chars obtained from a low-volatile coal [J]. Journal of Analytical and Applied Pyrolysis, 2001, 58-59:873-886.
    [93] DIPANFILO R, EGIEBOR NO. Activated carbon production from synthetic crude coke [J]. Fuel Processing Technology, 1996, 46(3):157-169.
    [94] TENG HS, WANG SC. Preparation of porous carbons from phenol-formaldehyde resins with chemical and physical activation [J]. Carbon, 2000, 38(6):817-824.
    [95] TENG HS, WANG SC. Influence of oxidation on the preparation of porous carbons from phenol-formaldehyde resins With KOH activation [J]. Ind. Eng. Res.,2000, 39 (3):673-678.
    [96] OKADA K, YAMAMOTO N, KAMESHIMA Y et al. Adsorption properties of activated carbon from waste newspaper prepared by chemical and physical activation [J]. Journal of Colloid and Interface Science, 2003, 262(1):194-199.
    [97] ARIYADEJWANICH P, TANTHAPANICHAKOON V, et al. Preparation and characterization of mesoporous activated carbon from waste tires [J]. Carbon, 2003, 41(1):157-164.
    [98] AM PUZIY, OI PODDUBNAYA, et al. Synthetic carbons activated with phosphoric acid III. Carbons prepared in air [J]. Carbon, 2003, 41(6):1181-1191.
    [99] M JAGTOYEN, F DERBYSHIRE. Activated carbons from yellow polar and white oak by H3PO4 activation [J]. Carbon, 1998, 36(7-8):1085-1097.
    [100] A. AHMADPOUR, D D DO. The preparation of activated carbon from macadamia nutshell by chemical activation [J]. Carbon, 1997, 35(12): 1723-1732.
    [101] A AHMADPOUR, D D DO. The preparation of activated carbon from coal by chemical and physical activation [J]. Carbon, 1996, 34(4): 471-479.
    [102] D LOZANO-CASTELLó, M A LILLO-RóDENAS, et al. Preparation of activated carbon from Spanish anthracite I. Activation by KOH [J]. Carbon, 2001, 39(5):741-749.
    [103] Y GUO, K YU, Z WANG, H XU. Effects of activation conditions on preparation of porous carbon from rice husk [J] Carbon, 2003, 41(8):1645-1648.
    [104] J HAYASHI, M UCHIBAYASHI, et al. Synthesizing activated carbons from resins by chemical activation with K2CO3 [J]. Carbon, 2002, 40(15): 2747-2752.
    [105] H BENADDI, TJ BANDOSZ, J JAGIELLO, et al. Surface functionality and porosity of activated carbons obtained from chemical activation of wood [J]. Carbon, 2000, 38(5): 669-674.
    [106] SV MIKHALOVSKY, YU P ZAITSEV. Catalytic properties of activated carbons I: gas-phase oxidation of hydrogen sulphide [J]. Carbon, 1997, 35 (9): 1367-1374.
    [107] A LISOVSKI, R SEMIAT, C AHARONI. Adsorption of sulphur dioxide by activated carbon treated by nitric acid I: effect of the treatment on adsorption of SO2 and extractability of acid formed [J].Carbon, 1997, 35(10-11): 1639-1643.
    [108] A LISOVSKII, GE SHTER, R SEMIAT, C AHARONI. Adsorption of sulphur dioxide by activated carbon treated by nitric acidⅡ: effect of preheating adsorption properities [J]. Carbon, 1997, 35(10-11): 1645-1648.
    [109] JK NEATHERY, AM RUBEL, JM STENCEL. Uptake of NOx by activated carbons: Bench-scale and pilotscale testing [J]. Carbon, 1997, 35(9):1321-1327.
    [110] EC BEMARDO, R EGASHIRA, J KAWASAKI. Decolorization of molasses wastewater using activated carbon prepared from cane bgasse [J]. Carbon, 1997, 35(9): 1217-1221.
    [111] JAF MACDONALD, DF QUINN. Carbon adsorbents for natural gas storage [J]. Fuel, 1998, 77(1-2): 61-64.
    [112] A QUINTANILLA, JA CASAS, JA ZAZO, et al. Wet air oxidation of phenol at mild conditions with a Fe/activated carbon catalyst [J]. Appl. Catal. B: Env, 2006, 62(1-2): 115-120.
    [113] C SUBRAHMANYAM, DA BULUSHEV, L KIWI-MINSKER. Dynamic behaviour of activated carbon catalysts during ozone decomposition at room temperature [J]. Appl. Catal. B: Env, 2005, 61(1-2): 98-106.
    [114] M KANG, YS BAE, CH LEE. Effect of heat treatment of activated carbon supports on the loading and activity of Pt catalyst [J]. Carbon, 2005, 43(7): 1512-1516.
    [115] ZH HOU, XH LI, EH LIU. New mesoporous carbons prepared by a stimultaneous synthetic template carbonization method for electric double layer capacitors [J]. New Carbon Mater, 2004, 19(1):11-15.
    [116]孟庆函,刘玲,宋怀河.金属Mn/活性炭电极材料电化学性能的研究[J].功能材料, 2004, 35(2): 209-211.
    [117] CS LI, DS WANG, TX LIANG, L JI. A study of activated carbon nanotubes as double-layer capacitors electrode materials [J]. Mater. Lett, 2004, 58(29): 3774-3777.
    [118] S TAKAYA, M GEN, T KENTARO. Eletrochemical properties of novel ionic liquids for electric double layer capacitor allications [J]. Eletrochim. Acta, 2004, 49(21):3603-3611.
    [119]宋凤珠,涂学忠,曾泽新等.白炭黑及其改性产品在轮胎工业中的应用[J].轮胎工业, 1997, 17(4):195-200.
    [120] EL-HALWAGI MM,V MANOUSIOUTHAKIS. Synthesis of Mass ExchangeNetworks [J]. Al ChEJ, 1989,35(8):1233-1244.
    [121] EL-HALWAGI MM, BK SRINIVAS. Synthesis of Rective Mass Exchange Networks [J]. Chem.Eng.Sci, 1992, 47(8):2113-2119.
    [122] DOUGLAS JM. A hierachical decision procedure for process synthesis [J]. Al ChE J, 1985, 31:353-362.
    [123] EL-HALWAGI MM, AA HAMAD, G.W GARRISON. Synthesis of Waste Interception and Al location Networks [J]. AlChEJ, 1996, 42(11):3087-3101.
    [124] M R NOUREDIN AND EL-HALWAGI M M. Internal-analysis for pollution prevention via mass integration [J]. Computers and chemical engineerin,1999,23(10):1527-1543.
    [125] YONGHONG NI, XUEWU GE, ZHICHENG ZHANG AND QIANG YE. Fabrication and Characterization of the Plate-Shapedγ-Fe2O3 Nanocrystals [J]. Chem.Mater, 2002, 14:1048-1052.
    [126]郭晓研.气相法白炭黑的生产与应用[J].科技成果纵横,2004, 4:48.
    [127]杨波,何慧,周扬波等.气相法白炭黑研究进展[J].无机硅化合物,2006, l:3-9.
    [128]黄永炎.气相法白炭黑的制法、特性和硅橡胶制品中的应用[J].甘肃化工, 1996, 4:8-13.
    [129]吴雪文,张海波,韩团辉等.传统沉淀法制白炭黑的研究进展[J].无机盐工业, 2006, 38(4):9-10, 45.
    [130]云泽拥,宁延生,朱春雨等.影响白炭黑产品稳定性控制因素分析[J].硅铝化合物, 2005, 3:12-15.
    [131]陈荣,陈奇.沉淀法白炭黑合成工艺研究[J].硅铝化合物, 2005, 3:16-18.
    [132]雷清如,游波.水玻璃制备活性白炭黑[J].硅铝化合物,2002, 2:11-14.
    [133]许莹,沈毅.盐酸沉淀法制备纳米白炭黑[J].应用化工, 2004, 33(4):30-31.
    [134]许莹,沈毅.制备纳米白炭黑工艺参数控制[J].无机硅化合物,2006, 1: 18-20.
    [135]荣天铎,梁国法,李留虎等.以氯化按和水玻璃生产白炭黑的研究[J].河南化工,2003, 3:18-19.
    [136]卢芳仪,卢爱军.由硫酸铵制白炭黑的研究[J].化学工程师, 1994, 1:10-12.
    [137]王志成,平琳,张慧勤.沉淀法纳米白炭黑的研制[J].现代塑料加工应用,2005, 17(2):44-45.
    [138]张庆军,莫文玲,王占乐.沉淀法制备纳米白炭黑的结构及性质的研究[J].硅酸盐通报, 2005, 4:118-121.
    [139]姚英,何凯.利用石灰窑气生产白炭黑[J].硅铝化合物, 2004, 4:12-15.
    [140]张其春,叶巧明.高岭土缎烧制白炭黑[J].应用化学, 1999, 16(5):91-93.
    [141]刘欣梅,潘正鸿,李国等.用煤系高岭土制取白炭黑的研究[J].石油大学学报(自然科学版), 2005, 29(2):121-124.
    [142]冯臻.以煤研石为原料制备铝盐和白炭黑[J].煤炭加工与综合利用, 2005, 5:32-33.
    [143]张德祥,陈秀,陈晓玲等.用淮南煤研石制取白炭黑的初步研究[J].燃料流通科技, 1995, 4:22-25.
    [144]孙育成.膨润土制备白炭黑[J].硅铝化合物, 2005, 4:12-13.
    [145]李珍,陈克勤.大箕铺硅灰石酸法制备白炭黑工艺研究[J].矿产保护与利用, 1999, l:18-20.
    [146]胡志刚,代淑娟.利用硅灰石制取白炭黑实验研究[J].有色矿冶, 2004, 20(5):18-21.
    [147]徐旺生.由天然硅灰石制备白炭黑的工艺研究[J].湖北化工, 1994, 3:31-32.
    [148]刘志芳等.利用硅灰石制备超细白炭黑工艺实践[J].中国非金属矿工业导刊, 2004, 6:25-26, 29.
    [149]陈种菊,杨昆山等.从硅藻土制取白炭黑的研究[J].四川化工, 1997, l:8-9.
    [150]赵华文等.酸浸硅藻土制取白炭黑的研究[J].化学世界, 1997, 7:348-351.
    [151]沙兆林,姚红.高炉废渣制备白炭黑工艺探究[J].南通工学院学报, 1997, 13(2):34-37, 33.
    [152]陈文利等.工业废弃物锆硅渣生产白炭黑[J].武汉化工学院学报, 2002, 24(4):25-26.
    [153]潘群雄等.锆硅渣制备白炭黑研究[J].非金属矿, 2005, 28(l):37-39.
    [154]金鹏等.酸法锂渣制取白炭黑研究[J].四川环境, 1995, 14(4):l-6.
    [155]张琴芳等.从酸锂渣中制取活性白炭黑[J].新疆有色金属, 1995, 3:22-24.
    [156]黄文足等.硫酸铝渣制备纳米白炭黑的研究[J].矿产保护与利用, 2004, 2:17-21.
    [157] KAYAMA, T KAGEYAMA, H AONO, Y SADAOKA. Ionic conductivity of Lanthanoid silicates,Ln10(SiO4)6O3(Ln=La,Nd,Sm,Gd,Dy,Y,Er and Yb)[J]. J.Mater.Chem, 1995, 5: 1801-1805.
    [158] WV MORESHEAD, JR NOGUES, RH KRABILL. Preparation, processing, and fluorescence characteristics of neodymium-doped silica glass prepared by the sol-gel process [J]. J.Non-crysta.Solids, 1990, 121:267-272.
    [159] EJA POPE AND JD MACHENZIE. Sol-gel processing of Neodymia-silica glass [J]. J.Am.Ceram.Soc, 1993, 76:1325-1328.
    [160] MJ LOCHHEAD AND KL BRAY. Spectroscopic characterization of doped sol-gel silica gels andglasses: evidence of inner-sphere complexation of europium(III) [J]. J.Non-Cryst.Solids, 1994, 170:143-154.
    [161]郑舒文等.白炭黑生产工艺的研究进展[J].辽宁化工, 1999, 11:340-342.
    [162] PK JAL, RK DUTTA, M SUDERSHAN, et al. Extraction of metal ions using chemically modified silica gel: a PIXE analysis. Talanta. 2001, 55(2), 233-240.
    [163] EZZAT M SOLIMAN, MOHAMED E MAHMOUD, SALWA A AHMED. Synthesis, characterization and structure effects on selectivity properties of silica gel covalently bonded diethylenetriamine mono- and bis-salicyaldehyde and naphthaldehyde Schiff, s bases towards some heavy metal ions [J]. Talanta, 2001, 54(2):243-253.
    [164] ALEXANDRE GS PRADO, CLAUDIO AIROLDI. Adsorption, preconcentration and separation of cations on silica gel chemically modified with the herbicide 2, 4-dichlorophenoxyacetic acid [J]. Analytica Chimica Acta, 2001, 432(2):201-211.
    [165] M SHAMSIPUR AND MH MASHHADIZADEH. Preconcentration of trace amounts of silver ion in aqueous samples on octadecyl silica membrane disks modified with hexathia-18-crown-6 and its determination by atomic absorption spectrometry. Fresenius J. Anal. Chem, 2000, 367:246–249.
    [166] MARZIEH BAGHERI, MOHAMMAD HOSSEIN MASHHADIZADEH, SAEID RAZEE. Solid phase extraction of gold by sorption on octadecyl silica membrane disks modified with pentathia-15-crown-5 and determination by AAS [J]. Talanta, 2003, 60(4):839-844.
    [167] OR HASHEMI, F RAOUFI, et al. Surface Modification of Silica Core-Shell anocapsules: Biomedical Implications [J]. Biomacromolecules, 2006, 7:945-949.
    [168] WEI XING MA, FENG LIU, KE AN LI, et al. Preconcentration, separation and determination of trace Hg(II) in environmental samples with aminopropylbenzoylazo-2-mercaptobenzothiazole bonded to silica gel [J]. Analytica Chimica Acta, 2000, 416(2):191-196.
    [169] ANUPAMA GOSWAMI, AJAI K SINGH, B VENKATARAMANI. 8-Hydroxyquinoline anchored to silica gel via new moderate size linker: synthesis and applications as a metal ion collector for their flame atomic absorption spectrometric determination [J]. Talanta, 2003, 60(6):1141-1154.
    [170] FUJIWARA M, KITABAYASHI T, SHIOKAWA K, et al. Surface modification of zeolites using benzene-1, 4-diboronic acid to form gated micropores with mild and photo responsive pore reopening [J]. Chemical Enginering Journal, 2009, 146(3):520-526.
    [171] CE KINCI, U K?KLü. Determination of vanadium, manganese, silver and lead by graphite furnace atomic absorption spectrometry after preconcentration on silica-gel modified with 3-aminopropyltriethoxysilane [J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2000, 55(9):1491-1495.
    [172] JOSéG. P ESPINOLA, SEVERINO F OLIVEIRA, et al. Chemisorption of CuII and CoII chlorides andβ-diketonates on silica gel functionalized with 3-aminopropyltrimethoxysilane [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 166(1-3):45-50.
    [173] CLAUDIO AIROLDI, YOSHITAKA GUSHIKEM, JOSéG P ESPíNOLA. Adsorption of divalent cations on the silica-gel surface modified withN-(2-aminoethyl-3-aminopropyl) groups [J]. Colloids and Surfaces, 1986, 17(4): 317-323.
    [174] MIYOSHI H, MATSUO Y, LIU YY, et al. Behavior of fluorescent molecules bound to the interior of silica nanocapsules in various solvents [J]. Journal of Colloid and Interface Science, 2009, 331(2):507-513.
    [175] FEYIME SAHIN, MüRVET VOLKAN, et al. Selective pre-concentration of selenite from aqueous samples using mercapto-silica [J]. Talanta, 2003, 60(5):1003-1009.
    [1] YANPING GUO, DAVID A ROCKSTRAW. Physicochemical properties of carbons prepared from pecan shell by phosphoric acid activation [J]. Bioresource Technology, 2007, 98:1513-1521.
    [2] LAINE J, CALAFA A, LABADY M. Preparation and characterization of actived carbon from cocont shell impregnated with phosphoric acid [J]. Carbon, 1989, 27(2):191-195.
    [3] JAGTOYEN M, DERBYSHIRE F. Activated carbons from yellow polar and white oak by H3PO4 activation [J]. Carbon, 1998, 36(7-8):1085-1097.
    [4] AHMADPOUR A, DO D D. The preparation of activated carbon from macadamia mutshell by chemical activation [J]. Carbon, 1997, 35(12):1723-1732.
    [5] AHMADPOUR A, DO D D. The preparation of actived carbon from coal by chemical and physical activation [J]. Carbon, 1996, 34(4): 471-479.
    [6] LOZANO-CASTELLO D, LILIO-RODENAS M A, CAZORLA-AMOROS, et al. Preparation of activated carbons from Spanish anthracite I. activation by KOH [J]. Carbon, 2001, 39 (5):741-749.
    [7] HAYASHI J, UCHIBAYASHI M, HORIKAWAT, et al. Synthesizing cativated carbons from resins by chemical activation with K2CO3 [J]. Carbon, 2002, 40(15):2747-2752.
    [8] LAILA B K. Adsorption characteristics of activated carbon obtained from rice husk by treatment with phosphoric acid [J]. Adsorption Science & Technology, 1996, 14:317–325.
    [9] R ARAVINDHAN, J RAGHAVA RAO, B UNNI NAIR. Preparation and characterization of activated carbon from marine macro-algal biomass [J]. Journal of Hazardous Materials, 2009, 162(2-3): 688-694.
    [10] R BACCAR, J BOUZID, M FEKI, A MONTIEL. Preparation of activated carbon from Tunisian olive-waste cakes and its application for adsorption of heavy metal ions [J]. Journal of Hazardous Materials, 2009, (162):1522-1529.
    [11] M JAGTOYEN, F DERBYSHIRE. Activated carbons from yellow polar and white oak by H3PO4 activation [J]. Carbon, 1998, 36(7-8): 1085-1097.
    [12] LIN TL, LIN CI. Performances of peanut hull ashes in bleaching water-degummed and alkali-refined soy oil [J]. Journal of the Taiwan institute of chemical engineers, 2009, 40:168-173.
    [13] SUHAS, CARROTT PJM, CARROTT MMLR. Using alkali metals to control reactivity and porosity during physical activation of demineralised kraft lignin [J]. Carbon, 2009, 47:1012-1017.
    [14] D LOZANO-CASTELLó, M A LILLO-RóDENAS, et al. Preparation of activated carbon from Spanish anthracite I. Activation by KOH [J]. Carbon, 2001, 39(5):741-749.
    [15] Y GUO, K YU, Z WANG, H XU. Effects of activation conditions on preparation of porous carbon from rice husk [J]. Carbon, 2003, 41(8): 1645-1648.
    [16] IP AWM, BARFORD JP, MCKAY G. Production and comparison of high surface area bamboo derived active carbons [J]. Bioresource Technology, 2008, 99(18):8909-8916.
    [17] BANDOSZ R R, LOSSO J N, MARSHALL W E, et al. Pecan-shell based granular activated carbon for treatment of chemical oxygen demand (COD) in municipal wastewater [J]. Bioresource Technology, 2004, 94:129–135.
    [18] BOEHM H P. Some aspects of the surface chemistry of carbon blacks and other carbons [J]. Carbon, 1994, 32 (5):759–769.
    [19] CHEN J P, LIN M. Comprehensive Investigation of important factors governing metal-ion adsorption by an H-type granular activated carbon [J]. Separation Science and Technology, 2000, 35 (13):2063–2081.
    [20] DASTGHEIB S A, ROCKSTRAW D A. Pecan shell activated carbon: synthesis, characterization, and application for the removal of copper from aqueous solutions [J]. Carbon, 2001, (39):1849–1855.
    [21] Puizy A M., Poddubnaya O I, Martínez-Alonso, et al. Synthetic carbons activated with phosphoric acid I, Surface chemistry and ion bonding properties. Carbon, 2002, 40:1493–1505.
    [22] PARSONS J G, HEJAZ M, TIEMANN K J, et al. An XAS study of the binding of copper(II), zinc(II), chromium(III) and chromium(VI) to hops biomass [J]. Microchemical Journal, 2002, 71 (2–3): 211–219.
    [23] JIBRIL B, HOUACHE O, AL-MAAMARI R, et al. Effects of H3PO4 and KOH in carbonization of lignocellulosic material [J]. Journal of Analytical and applied pyrolysis, 2008, 83(2):151-156.
    [24] AHMADPOUR A, DO D D. The preparation of active carbons from coal by chemical and physical activation [J]. Carbon, 1996, 34 (4): 471-479.
    [25] DASTGHEIB S A, ROCKSTRAW D A. A model for the adsorption of single metal ion solutes in aqueous solution onto activated carbon produced from pecan shells [J]. Carbon, 2002, (40):1843–1851.
    [26] GIRGIS B S, EL-HENDAWY A A. Porosity development in activated carbonsobtained from date pits under chemical activation with phosphoric acid [J]. Microporous and Mesoporous Materials, 2002, 52:105-117.
    [27] HU Z, SRINIVASA M P, NI Y. Preparation of mesoporous high-surface-area activated carbon [J]. Advanced Material, 2000, 12 (1): 62–65
    [28] MUNOZ-GONZALEZ Y, ARRIAGADA-ACUNA R, SOTO-GARRIDO G, et al. Activated carbons from peach stones and pine sawdust by phosphoric acid activation used in clarification and decolorization processes [J]. Journal of chemical technology and biotechnology, 2009, 84:39-47.
    [29]黄碧中,胡淑宜.热分析法研究磷酸法活性炭生产过程——热分析法研究药品法活性炭生产机理之二[A].1996年全国活性炭学术交流会论文集[C].烟台,1996, 20-24.
    [30]武文洁,张淑萍,王万森等.以稻壳为原料制备活性炭研究[J].天津化工, 2006, (6):27-30.
    [31] Y GUO, D A. ROCKSTRAW. Physicochemical properties of carbons prepared from pecan shell by phosphoric acid activation [J]. Bioresource Technol, 2007, 98(8):1513-1521.
    [32] F SUáREZ-GARCíA, A MARTíNEZ-ALONSO, J M D TASCóN. Pyrolysis of apple pulp: chemical activation with phosphoric acid [J]. J. Anal. Appl. Pyrol, 2002, 63(2): 283-301.
    [33] AHMADPOUR A, DO D D. The preparation of activated carbon from Macadamia nutshell by chemical activation [J]. Carbon, 1997, 35:1723-1732.
    [34] LILLO RODENAS MA,CAZORLA AMOROS D,LINARES-SOLANO. Understanding chemieal Reactions between carbons and Na0H and KOH: An insight into the chemical activation mechanism [J]. Carbon , 2003 ,41(2):267-275.
    [35] YAMASHITA Y, OUCHI K. Influence of alkali on the carbonization process: I. Carbonization of 3, 5-dimethylphenol-formaldehyde resin with NaOH [J]. Carbon, 1982, 20(1):41-45.
    [36] EHRBURGER P, ADDOUN A, ADDOUN F, et al. Carbonization of coals inthe presence of alkaline hydroxides and carbonates: Formation of activated carbons [J]. Fuel, 1986, 65(10):1447-1449.
    [37] HUTTINGER K J, MINGES R. Catalytic water vapour gasification of carbon: importance of melting and wetting behaviour of the "catalyst”[J]. Fuel, 1985, 64(4):491-494.
    [38]郭玉鹏.稻壳基高比表面积多孔炭的制备及稻壳综合利用的研究[D].吉林:吉林大学化学学院,2003.
    [1]. ALAGAPPAN PALANIAPPANA, JIAN ZHANG, et al. Preparation of mesoporous silica films using sol–gel process and argon plasma treatment [J]. Chemical Physics Letters, 2004, 395:70-74.
    [2]. HU MZ, YU R, MACMANUS-DRISCOLL JL, et al. Large-area silica nanotubes with controllable geometry on silicon substrates [J]. Applied Surface Science, 2009, 255(6): 3563-3566.
    [3]. LIU Q, ZHANG J, LIU Q J, et al. Sol-gel synthesis and characterization of silica film with two opposite structures: Nano-porous and protuberant [J]. Materials Chemistry Physics, 2009, 114(1):309-312.
    [4]. ZHAO D Y, FENG J L. Hierarchically ordered oxides [J]. Science 1998, 279:548-552.
    [5]. LAINE R M, YOUNGDAHL B, ROBINSON T R. Synthesis of pentacoordinate silicon complexes from SiO2 [J]. Nature, 1991, 353, 642-644.
    [6]. PRASAD C S, MAITI K N, VENUGOPAL R. Effect of rice husk ash in whiteware composition [J]. Ceram. Int., 2001, 27: 629-635.
    [7]. DELLA V P., KUHN L, HOTZA D. Rice husk ash as an alternate source for active silica production [J]. Materials Letters, 2002, 57:818-821.
    [8]. HUANG S, JING S, WANG ZF, et al. Silica white obtained from rice husk in a fluidized bed [J]. Powder Technol. 2001, 117:232-238.
    [9]. LIOU T H, MAT. Preparation and characterization of nano-structured silica from rice husk [J]. Materials Science and Engineering A, 2004, 364, 313-323.
    [10]. SEO ESM., ANDREOLI M, CHIBA R. Silicon tetrachloride production by chlorination method using rice husk as raw material [J]. J. Mater. Process. Tech., 2003, 141,351-356.
    [11]. LIOU T H, CHANG F W, LO J J. Pyrolysis kinetics of acid-leached rice husk [J]. Ind. Eng. Chem. Res, 1997, 36:568-573.
    [12]. KRISHNARAO R V, MAHAJAN Y R, KUMAR T J. Conversion of raw rice husks to SiC by pyrolysis in nitrogen atmosphere [J]. Journal of the European Ceramic Society, 1998, 18:147-152.
    [13]. YALCIN N, SEVINC V. Studies on silica obtained from rice husk [J]. Ceramics International, 2001, 27:219-224.
    [14]. TAO NN, XU HF, JIANG YQ, et al. High-purity nano silica obtained from rice husk. Abstract of Papers of the American Chemical Society. 2003, 226:U380-U380.
    [15].禹坤.纳米二氧化硅的生产及应用现状[J].现代技术陶瓷,2005, 4(106): 28-32.
    [16].王智,吴重.多孔纳米Si02粉末工艺研究[J].激光杂志, 1998,19(2):22-26.
    [17]. ANDREA B MAYER R. Palladium and platinum nanocatalysts protected by amphiphilic copolymers [J]. Poly J, 1998, 30 (3):197-205.
    [18].张密林,丁立国,景晓燕等.纳米二氧化硅的制备、改性与应用研究进展[J].应用科技,2004, 31(6):64-67.
    [19]. ALVAREZ GS, FOGLIA ML, COPELLO GJ, et al. Effect of various parameters on viability and growth of bacteria immobilized in sol-gel-derived silica matrices [J]. Applied Microbiol and Biotechnology. 2009, 82:639-646.
    [20]. HENCH LL, WEST J K. The sol-gel process [J]. Chem. Rev., 1990, 90:33-72.
    [21]. BECK J S, VARTULI J C, ROTH W J, et al. A new family of mes oporous molecular sieves prepared with liquid crystal templates [J]. Am Chem Soc, 1992, 114:10834-10843.
    [22].郑舒文等.白炭黑生产工艺的研究进展[J].辽宁化工, 1999, 11:340-342.
    [23].植村益次等,贾丽霞译.高性能复合材料最新技术[M] .北京:中国建筑工业出版社,1989, 23-31.
    [24]. LEE J K, LEE K H, KIM H. Microstructural evolution of potassium titanate whiskers during the synthesis by the calcinations and slow-cooling method [J] . J Master Sci, 1996, 31(20):5493 -5498.
    [25]. SCHRAMM D E, DONALD W, BIRTELL D W. Process for producing silicon carbide whiskers[p], US: 4789536, 1988-12-06.
    [26]. TANAKA MINORU, KAWABE TADASHI. Method of manufacturing crystalline silicon carbide employing acid pretreated rice husks [P]. US : 4591492,1986-05-27
    [27].曾汉民.高技术新材料要览[M].北京:中国科学技术出版社,1993. 529- 531.
    [28].李惠青,张旖,孙旖等.若干无机盐晶须的研究状况与展望[J].无机盐工艺, 2002, 34(2):17 -19.
    [29].张立群,耿海萍,刘月星等. CaSO4晶须与EPDM/PP共混型热塑性弹性体复合材料的研究[J].合成橡胶工业, 1998, 21(2):80-83.
    [30].徐景明.硫酸钙晶须增强填充的保险杠专用料.中国专利,01128105, 2003-04- 02.
    [31].沈惠玲,赵梓年,倪丽琴.界面改性剂及硫酸钙晶须对PP复合材料结晶性能的影响[J].塑料, 2001, 30( 4) : 59-62.
    [32].邱孜学,贺飞峰.晶须增强聚酰亚胺塑料研究[J].工程塑料应用, 2002, 28(8):1- 3.
    [33].刘玲,张军营等. CaSO4晶须/聚氨酝弹性体复合材料性能的研究[J].弹性体,2003, 13( 4):22- 25.
    [34].刘玲,杨双春,张洪林.硫酸钙晶须去除废水中乳化油的研究[J].工业水处理,2005,26(11):34-36,54.
    [35].杨双春,刘玲,张洪林.硫酸钙晶须对铅镍铅离子的吸附性能[J],水处理技术, 2005,31(10):8-10
    [36].马继红,冯传清.硫酸钙晶须在道路改性沥青中的应用研究(I)[J].石油沥青,2005, 19(6):21-25.
    [37].张良均,童身毅等. i-PP-g-MAH对i-PP/ CaSO4复合材料的影响[J].武汉化工学院学报,2004,26(2):18-20.
    [38]. NAKABAYASHI AKIRA, HAYASHI TOSHIHARU, et al. Conductive Metal-Coated Anhydrous Calcium Sulfate Whiskers[P]. Jpn Kokai Tokkyo Koho, JP 63 103 900, 1988.
    [39].冯威,张立群等.硫酸钙晶须EPDM复合材料力学性能研究[J].工程塑料应用,1997,25(4):31-35.
    [40].冯威,杨洪毅等.硫酸钙晶须EPDM复合材料的流变行为[J].工程塑料应用.1998,26(7):21-24
    [41].李爱玲.天然石膏及其开发利用研究进展[J].矿产与地质, 2004, l8(5):498-501.
    [42].韩跃新.石膏的应用及其深加工研究[J].矿产保护与利用, 1998,(1):10-13.
    [43].袁致涛,韩跃新等.用石膏合成超细硫酸钙晶须的研究[J].中国矿业, 2005, 11:30-33.
    [44].周海成,徐建等. CaSO4纳米棒(线)微乳法制各与表征[J].无机化学学报,2002, 18(8):815-818.
    [45].厉伟光,徐玲玲,戴俊.柠檬酸废渣制备硫酸钙晶须的研究[J].人工晶体学报,2005,18(8):815-818.
    [46].肖楚民,张永祺,张环华.用卤渣制取硫酸钙晶须纤维的研究[J].湖南冶金,1998, 4: 7-9.
    [47].徐贵义,吴芳.氨碱厂废液与卤水制造纤维硫酸钙的方法.中国专利,89102369, 1989-12- 20.
    [48].魏钟睛,马培华.溶液系统中的晶须生长机理[J].盐湖研究, 1995,13(4):57- 65.
    [1] FAROOK ADAM, HASNAH OSMAN, KASIM MOHAMMED HELLO. The immobilization of 3-(chloropropyl) triethoxysilane onto silica by a simple one-pot synthesis [J]. Journal of Colloid and Interface Science, 2009, 331:143-147.
    [2] VENKATATHRI N, NANJUNDAN S. Synthesis and characterization of a mesoporous silica microsphere from polystyrene [J]. Materials Chemistry and Physics, 2009, 113(2-3): 933-936.
    [3] CHU CC, UENO N, IMAE T. Solid-phase synthesis of amphiphilic dendron-surface-modified silica particles and their application toward water purification [J]. Chemistry of Materials, 2008, 20(8): 2669-2676.
    [4] SL CHEN. Preparation of monosize silica spheres and their crystalline stack [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 142, 59-63.
    [5] GY.TOLNAI, F. CSEMPESZ, M.KABAI-FAIX, et al. Preparation and Characterization of Surface Modified Silica-Nanoparticles [J]. Langmuir, 2001, 17(9):2683-2687.
    [6] SUKALYAN DASH, SOUMYASHRI MISHRA, et al. Organically modified silica: Synthesis and applications due to its surface interaction with organic molecules [J]. Advances in Colloid and Interface Science, 2008, 140(2):77-94.
    [7] PK JAL, RK DUTTA, M. SUDERSHAN, et al. Extraction of metal ions using chemically modified silica gel: a PIXE analysis [J]. Talanta. 2001,55(2):233-240.
    [8] EZZAT M. SOLIMAN, MOHAMED E. MAHMOUD, SALWA A. AHMED. Synthesis, characterization and structure effects on selectivity properties of silica gel covalently bonded diethylenetriamine mono- and bis-salicyaldehyde and naphthaldehyde Schiff’s bases towards some heavy metal ions [J]. Talanta, 2001, 54(2), 243-253.
    [9] ALEXANDRE G. S. PRADO, CLAUDIO AIROLDI. Adsorption, preconcentration and separation of cations on silica gel chemically modified with the herbicide 2, 4-dichlorophenoxyacetic acid [J]. Analytica Chimica Acta, 2001, 432(2):201-211.
    [10] M. SHAMSIPUR AND M.H. MASHHADIZADEH. Preconcentration of trace amounts of silver ion in aqueous samples on octadecyl silica membrane disks modified with hexathia-18-crown-6 and its determination by atomic absorption spectrometry [J]. Fresenius J. Anal. Chem., 2000, 367:246–249.
    [11] MARZIEH BAGHERI, MOHAMMAD HOSSEIN MASHHADIZADEH, SAEID RAZEE. Solid phase extraction of gold by sorption on octadecyl silica membrane disks modified with pentathia-15-crown-5 and determination by AAS [J]. Talanta, 2003, 60:839-844.
    [12] OR HASHEMI, F RAOUFI, MR GANJALI, et al. Surface Modification of Silica Core?Shell Nanocapsules: Biomedical Implications [J]. Biomacromolecules, 2006, 7(3):945-949.
    [13] WEI XING MA, FENG LIU, KE AN LI, et al. Preconcentration, separation and determination of trace Hg(II) in environmental samples with aminopropylbenzoylazo-2-mercaptobenzothiazole bonded to silica gel [J]. Analytica chimica acta, 2000, 416(2):191-196.
    [14] ANUPAMA GOSWAMI, AJAI K SINGH, B VENKATARAMANI. 8-Hydroxyquinoline anchored to silica gel via new moderate size linker: synthesis and applications as a metal ion collector for their flame atomic absorption spectrometric determination [J]. Talanta, 2003, 60(6):1141-1154.
    [15] FUJIWARA M, KITABAYASHI T, SHIOKAWA K, et al. Surface modification of zeolites using benzene-1, 4-diboronic acid to form gated micropores with mild and photo responsive pore reopening [J]. Chemical Enginering Journal, 2009, 146(3): 520-526.
    [16] CE KINCI, U K?KLü. Determination of vanadium, manganese, silver and lead by graphite furnace atomic absorption spectrometry after preconcentration on silica-gel modified with 3-aminopropyltriethoxysilane [J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2000, 55(9):1491-1495.
    [17] JOSéG. P ESPINOLA, SEVERINO F OLIVEIRA, et al. Chemisorption of CuII and CoII chlorides andβ-diketonates on silica gel functionalized with 3-aminopropyltrimethoxysilane [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 166(1-3):45-50.
    [18] CLAUDIO AIROLDI, YOSHITAKA GUSHIKEM, JOSéG. P. ESPíNOLA. Adsorption of divalent cations on the silica-gel surface modified with N-(2-aminoethyl-3-aminopropyl) groups [J]. Colloids and Surfaces, 1986, 17(4):317-323.
    [19] FEYIME SAHIN, MüRVET VOLKAN, et al. Selective pre-concentration of selenite from aqueous samples using mercapto-silica [J]. Talanta, 2003, 60(5):1003-1009.
    [20] MIYOSHI H, MATSUO Y, LIU YY, et al. Behavior of fluorescent molecules bound to the interior of silica nanocapsules in various solvents [J]. Journal of Colloid and Interface Science, 2009, 331(2):507-513.
    [21]陈苏.反应型Si02充填的聚醚分散液合成高回弹聚氨酯泡沫塑料的研究[J].南京化工学院学报.1993, 15(3): 68-73.
    [22] HRACHOVA J, CHODAK I, KOMADEL P. Modification and characterization of montmorillonite fillers used in composites with vulcanized natural rubber [J]. Chemical Papers, 2009, 63(1):55-61.
    [23] MASAYOSHI FUJI, TAKASHI TAKEI, et al. Wettability of fine silica powder surfaces modified with several normal alcohols [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 1999, 154(1-2):13-24.
    [24] TEOFIL JESIONOWSKI, JOLANTA ZURAWSKA, et al. Physicochemical and morphological properties of hydrated silicas precipitated following alkoxysilane surface modification [J]. Applied Surface Science, 2003, 205(1-4):212-224.
    [25] YH Liu, HP Lin, CY Mou. Direct Method for Surface Silyl Functionalization of Mesoporous Silica [J]. Langmuir, 2004, 20(8):3231-3239.
    [26] E PéRé, H CARDY, V LATOUR, S LACOMBE. Low-temperature reaction of trialkoxysilanes on silica gel: a mild and controlled method for modifying silica surfaces [J]. Journal of Colloid and Interface Science, 2005, 281(2):410-416.
    [27] DIRK HOEGAERTS, BERT F SELS, et al. Catal. Heterogeneous tungsten-based catalysts for the epoxidation of bulky olefins [J]. Catalysis Today, 2000, 209:209-218.
    [28] XY SHI, JF WEI. Selective oxidation of sulfide catalyzed by peroxotungstate immobilized on ionic liquid-modified silica with aqueous hydrogen peroxide [J]. Journal of Molecular Catalysis A: Chemical, 2008, 280:142–147
    [29] LOUIS A CARPINO, E M E MANSOUR, JEROME KNAPCZYK. Iperazino-functionalized silica gel as a deblocking-scavenging agent for the 9-fluorenylmethyloxycarbonyl amino-protecting group [J]. The journal of organic chemistry, 1983, 48(5):666-669.
    [30] TAMIJSELVY SOUNDIRESSANE, et al. Ru- and Fe-based N′-bis(2-pyridylmethyl)-N-methyl-(1S,2S)-1,2-cyclohexanediamine complexes immobilised on mesoporous MCM-41: Synthesis, characterization and catalytic applications [J]. Journal of Molecular Catalysis A: Chemical. 2007 270:132–143.
    [31] L T ZHURAVLEV. The surface chemistry of amorphous silica [J]. Colloids and surfaces A: Physicochemical and Engineering Aspecets. 2000, 173, 1-38.
    [32] W WANG, BH GU. Self-Assembly of Two- and Three-Dimensional Particle Arrays by Manipulating the Hydrophobicity of Silica Nanospheres [J]. J.Phys.Chem.B., 2005, 109(47):22175-22180.
    [33] MASAYOSHI FUJI, TAKASHI TAKEI, TOHORU WATANABE, et al. Wettability of fine silica powder surfaces modified with several normal alcohols [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspecets, 1999, 154:13-24.
    [34] JF LIU, GILBERT MIN AND WILLIAM A DUCKER. AFM Study of Adsorption of Cationic Surfactants and Cationic Polyelectrolytes at the Silica-Water Interface [J]. Langmuir, 2001, 17(16): 4895-4903.
    [1]北京师范大学,华中师范大学,南京师范大学无机化学教研室编[M].无机化学(第二版).高等教育出版社,1998.
    [2]华南工学院无机化学教研组编[M].无机化学,人民教育出版社,1982.
    [3] MURATA K J, NAKATA J K. Cristobal iticstage in the diagenesis of diatomaceous shale [J]. Science, 1974, 184:567-568.
    [4] GRAETSCH H, GIES H, TOPALOVIC I. NMR, XRD and IR study on microcrystalline eopals [J]. Phys.Chem.Minerals, 1994, 21: 166-175.
    [5] CADY S L, WENK H R, DOWNING K H. HRTEM of microcrystalline opalinchertandp or celanite from the Monterey Formation, California [J]. Am.Mineral, 1996, 81: 1380-1395.
    [6] CALACAL E L, WHITTEMORE O J. The sintering of diatomite [J]. Am.Ceram.Soc.Bull, 1987, 66: 790-793.
    [7] FY WANG, HF ZHANG, H FENG, et al. A mineralogical study of diatomite in Leizhou Peninsula [J]. Chinese Journal of Geochemistry, 1995, 14: 140-151.
    [8]肖万生,彭文世,王冠鑫等.吉林长白山硅藻土的红外光谱研究[J].光谱学与光谱分析, 2003.
    [9] SANDERS J V. Microstructure and crystallinity of gem opals [J]. Am. Mineral, 1975, 60: 749-757.
    [10] DUBOIS J, MURAT M, AMROUNE A, et al. High-temperature transformation in kaolinite: the role of crystallinity and the firing atmosphere [J]. Applied Clay Science, 1995, 10: 187-198.
    [11] GU G, ONG P P, CHU C. Thermal stability of mesoporous silica molecularsieve [J]. Journal of Physics and Chemistry of Solids, 1999, 60: 943-947.
    [12] MORSE J W, CASEY W H. Ostwald processes and mineral paragenesis in sediments [J]. American Journal of Science, 1988, 288:537-560.
    [13] SEAN R SHIEH, THOMAS S DUFFY, GUOYIN SHEN. X-ray diffraction study of phase stability in SiO2 at deep mantle conditions [J]. Earth and planetary Science Letters, 2005, 235:273-282.
    [14] A ELGORESY, L S DUBROVINSKY, et al. A Monoclinic Post-Stishovite Polymorph of Silica in the Shergotty Meteorite [J]. Science, 2000 ,288:1632-1634.
    [15] P DERA, C T PREWITT, N Z BOCTOR, R J HEMLEY. Characterization of a high-pressure phase of silica from the Martian meteorite Shergotty [J]. Am. Mineral, 2002, 87:1018-1023.
    [16] T G. SHARP, A EL GORESY, B WOPENKA, M CHEN. A Post-Stishovite SiO2 Polymorph in the Meteorite Shergotty [J]. Implications for Impact Events Science, 1999,284:1511-1513.
    [17] D T GRIFFEN. The silica polymorphs, in inorganic Structural Chemistry [M]. Oxford University Press, Oxford, 1992.
    [18] DARLING R S, CHOU I M, BODNAR R J. An occurrence of metastable cristobalite in high-pressure garnet granulite [J]. Science, 1997, 276: 91-93.
    [19] MOLLAH M Y A, PROMREUK S, SCHENNACH R, et al. Cristobaliteformation from thermal treatment of Texas lignite fly ash [J]. Fuel, 1999, 78:1277-1282.
    [20] HATCH D M, GHOSE S. Theα-βphase transition in cristobalite, SiO2: symmetry analysis, domain structure, and the dynamical nature of theβ-phase [J]. Phys.Chem.Minerals, 1991, 17:554-562.
    [21] DOVE M T, HEINE V, HAMMOND K D. Rigid unit modes in framework silicates [J]. Mineral.Mag, 1995, 59:629-639.
    [22] GAMBHIR M, DOVE M T, HEINE V. Rigid unit modes and dynamic disorder: SiO2 cristobalite and quartz [J]. Phys.Chem.Minerals, 1999, 26:484-495.
    [23] SWAINSON I P, DOVE M T. Low-frequency floppy modes inβ-cristobalite [J]. Phys.Rev.Lett, 1993, 71: 193-196.
    [24] SWAINSON I P, DOVE M T. Molecular dynamics simulation ofα- andβ-cristobalite [J]. J.Phys:Condensed.Matter, 1995, 7: 1771-1788.
    [25] DOVE M T, KEEN D A, HANNON A C, et al. Direct measurement of the Si-O bond length and orientational disorder in the high-temperature phase of cristobalite [J]. Phys.Chem.Minerals, 1997, 24:311-317.
    [26] HAMMONDS K D, DOVE M T, GIDDY A P, et al. Rigid-unit phonon modes and structural phase transitions in framework silicates [J]. Am.Mineral, 1996, 81: 1057-1079;
    [27] WRIGHT A C. Neutron Scattering From Vitreous Silica.V. The Structure of Vitreous Silica: What Have We Learned From 60 Years of Diffraction Studies? [J]. J. Non-cryst. Solids, 1994, 179:84-115.
    [28] GASKELL P H. Medium-range or derandrandom networks [J]. J. Non-cryst Solids, 2001, 293-295:146-152.
    [29] KEEN D A, DOVE M T. Comparing the local structures of amorphous and crystalline polymorphs of silica [J]. J.Phys: Condensed. Matter, 1999, 11: 9263-9273.
    [30] KEEN D A, DOVE M T. Total scattering studies of silica polymorphs: similaritiesin glass and disordered crystalline local structure [J]. Mineral.Mag, 2000, 64:447-457.
    [31] DOVE M T, HAMMONDS K D, HARRIS M J, et al. Amorphous silica from the Rigid Unit Mode approach [J]. Mineral. Mag, 2000, 64:377-388.
    [32] SIGAEV V N, SMELYANSKAYA E N, et al. Low-frequency band at 50 cm-1intheRaman spectrums of cristobalite: identi-fication of similar structural motifs in glasses and crystals of similar composition [J]. J.Non-cryst.Solids, 1999, 248:141-146.
    [33] NAKAMURA M, ARAI M, OTOMO T, et al. Dispersive excitation in different forms of SiO2 [J]. J.Non-cryst.Solids, 2001,293:377-382.[27]
    [34] MULLIN J W. Crystallization (3rded.)[M].北京:世界图书出版公司北京公司(影印版),1997. 200-201.
    [35] BERMAN R G. Internally-consistent thermo dynamic data form inerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2 [J]. J.Petrol, 1988, 29:445-522.
    [36] WANG L Y, HON M H. The effect of cristobalite seed on the crystallization of fused silica based ceramic core-Akinetic study [J]. Ceram-ics International, 1995, 21:187-193.
    [37] LH WANG, TSAI BJ. The sintering and crystallization of colloidal silica gel [J]. Materials. Letters, 2000, 43:309-314.
    [38] NANRI H, TAKEUCH N, ISHIDA S, et al. Mineralizing action of iron in amorphous silica [J]. JNon-crystSolids, 1996, 203:375-379.
    [39] HAND RJ, STEVENS SJ, SHARP JH. Characterisation of fired silicas [J]. ThermochimicaActa, 1998, 318:115-123.
    [40] R M LANIE, K U BLOHOWIAK, T R ROBINSON, et al. Synthesis of pentacoordinate silicon complexes from SiO2. Nature, 1991, 353:642-644.
    [41] K Y BLOHOWIAK, D R TREADWELL, B L MUELLER, et al. SiO2 as a Starting Material for the Synthesis of Pentacoordinate Silicon Complexes. 1 [J]. Chem.Mater, 1994, 6:2177-2192.
    [42] DEEPA KHUSHALANI, GEOFFREY A.OZIN, ALEX KUPERMAN. Glycometallate surfactants. Part 1: non-aqueous synthesis of mesoporous silica [J]. J.Mater.Chem, 1999, 9:1483-1489.
    [43] HERREROS B, BARR TL, BARRIER PJ, et al. Spectroscopic Studies of 5-Coordinate Silicon Compounds [J]. J. Phyc. Chem, 1994, 98:4570-4574.
    [44] JUN-NAN NIAN, HSISHENG TENG. Hydrothermal Synthesis of Single-Crystalline Anatase TiO2 Nanorods with Nanotubes as the Precursor [J]. J.Phys.Chem.B, 2006, 110:4193-4198.
    [45]赵福麟.油田化学[M].石油大学出版社, 2000.
    [46] DOVE MT, HAMMONDS KD, HARRIS MJ, et al. Amorphous silica from the Rigid Unit Mode approach [J]. MineralMag, 2000, 64:377-388.
    [1]赵建军.稻谷精深加工及综合利用现状与前景的探讨[J].现代农业, 2004, (11):42-45.
    [2]李雄彪,吴崎著.植物细胞壁[M].北京大学出版社, 1991.
    [3]张惠荪译.采用微波辐照法提高木质素纤维素对酶的敏感性[J].发酵技术杂志, 1984, 62(4):377-384.
    [4]邬义明主编,植物纤维化学[M].中国轻工业出版社, 1997.
    [5] ASHITA DHILLON, J K GUPTA, ET AL. A cellulose-poor, thermostable, alkalitolerant xylanase produced by Bacillus criculans AB16 grow on rice straw and its application in biobleaching of eucalyptus pulp [J]. BioresourseTechnology, 2000, 73:273-277.
    [6]陈瑾.木糖的生产与推广前景[J].安徽化工,2001, 1: 13-14.
    [7] AGUIRRE-ZERO O,ZERO D T, PROSKIN H M. Effect of chewing xylitol chewing gum on salivary flow rate and the acidogenic potential of dental plaque [J]. Aries Research, 1993,27(6): 55-59.
    [8] G MARTON, J DENCS, L SZOKONYA. Handbook of Heat and Mass Transfer [M]. Gulf Publishing, Houston, TX, 1989, p. 609.
    [9] JOAO M TAVARES, LUIS C DUARTE, et al. The influence of hexoses addition on the fermentation of D-xylose in Debaryomyces hanseni under continunous cultivation [J]. Enzyme and Microbial Technology, 2000, 26:743-747.
    [10] OMID POURALI, FERIDOUN SALAK ASGHARI, HIROYUKI YOSHIDA. Sub-critical water treatment of rice bran to produce valuable materials [J]. Food Chemistry, 2009, 115:1-7.
    [11] SéRGIO LIMA, MARTYN PILLINGER, ANABELA A VALENTE. Dehydration of d-xylose into furfural catalysed by solid acids derived from the layered zeolite Nu-6(1) [J]. Catalysis Communications, 2008, 9:2144-2148.
    [12] MANUEL VáZQUEZ, MARTHA OLIVA, et al. Hydrolysis of sorghum straw using phosphoric acid: Evaluation of furfural production [J]. Bioresource Technology, 2007, 98:3053-3060.
    [13] C VILA, V SANTOS, J C PARAJó. Recovery of lignin and furfural from acetic acid-water-HCl pulping liquors [J]. Bioresource Technology, 2003, 90(3):339-344.
    [14]刘鹏先,肖力.木糖的制备研究[J].华西药学杂志,1995, 10(3): 185-186.
    [15] SILVIO S SILVA, MARIA G A FELIPE, et al. Acid Hydrolysis of Eucalyptus grandis chips for microbial production of xylutol [J]. 1998, 33(1): 63-67.
    [16]杜冬云,金传明,余大银.从玉米芯中提取木糖的实验研究[J].湖北师范学院学报(自然科学版), 1996, 16(3):104-106..
    [17]王丽丽,莫卫民,卢耀平等.从毛竹中提取木糖的研究[J].浙江化工,1995, 27(2): 27-31.
    [18] B P LAVARACK, G J GRIFFIN, D RODMAN. The acid Hydrolysis of sugarcane bagasse hemicellulose to produce xylose, arabinose, glucose and product [J]. Biomass and Bioenergy, 2002, 23: 367-380.
    [19]赵先芝.结晶木糖的研制[J].河南化工, 2001, 10: 8-9.
    [20]任凌波,章思规,任晓蕾.生物化工产品生产工艺[M].北京:化学工业出版社,2001.
    [21] W LIAO, Y LIU, CB LIU, SL CHEN. Optimizing dilute acid hydrolysis of hemicellulose in a nitrogen-rich cellulosic material-dairy manure [J]. Bioresourse Technology, 2004, 94: 33-41.
    [22]程贤甦,陈云平.高沸醇木质素的研究进展[J].化工进展, 2006, 25:147-151.
    [23]陈云平,程贤甦.高沸醇溶剂法制备松木纸浆和木质素[J].纤维素科学与技术, 2003, 11(1):19-22.
    [24] XS CHENG, WJ CHEN, YP CHEN, et al. Preparation and properties of HBS lignin from Masson Pine [J]. Chemical Reasearch in Chinese University, 2004, 20(2):225-228.
    [25]陈为健,程贤甦,陈云平等.高沸醇溶剂法提取花生壳中木质素的研究[J].花生学报, 2003, 32(2):7-11.
    [26]李勉钧,程贤甦,陈跃先等.高沸醇溶剂(HBS)法制备核桃壳中木质素[J].林产化工通讯, 2002, 36( 6): 22- 24.
    [27]程贤甦,许金仙,吴韶华等,新型橡胶助剂-高沸醇木质素的研制[J].精细化工, 2003, 20(5):296-299.
    [28]陈为健,程贤甦.高沸醇溶剂法制备竹子木质素[J].林产化学与工业, 2004, 24(1):34-38.
    [29]陈婷,程贤甦.高沸醇溶剂法制备稻壳木质素.亚热带农业研究,2006, 2(2):54-57.
    [30]王丽丽,刘汉成,王葵阳等. HPLC法测定半纤维素水解液中糖的研究.分析测试学报,1994,13(3), 51-53.
    [31]伍世文.天然纤维素类物质的糖化及转化为酒精的研究.西部粮油科技,2000, 25(3): 46-48.
    [32]袁传敏.纤维素废弃物稀酸水解制取还原性单糖的研究[D].上海:华东理工大学,2004.
    [33]基于稀酸水解法的纤维素糖化技术研究[D].中国农业科学院,2008.
    [34] ANTONIO R C, JOSE A R, GIL G., et al. Hydrolysis of sugar cane bagasse using nitric acid: A kinetic assessment [J]. Journal of Food Engineering, 2004, 61: 143-152.
    [35] AXEL F, RALF C. Effect of temperature on the rate limiting step in the methanogenic degradation pathway in rice field soil [J]. Biology and Biochemistry, 2003, 35: 1-8.
    [36] BANERJEE R., PANDEY A. Bio-industrial applications of sugarcane bagasse: A technological perspective [J]. International Sugar Journal, 2002, 104(1238): 64-67.
    [37] A HERRERAF, et al. Production of Xylose fromSorghum Straw Using Hydrochloric Acid [J]. Journal of Cereal Science, 2003, 37:267-274.
    [38] G MARTON, J DENCS, L SZOKONYA. Handbook of Heat and Mass Transfer [M].Gulf Publishing, Houston, TX, 1989,177.
    [39] G TSAO. Proceedings of the International Symposium on Alternative Sources [M].Sources of Energy for Agriculture, 1984,177.
    [40] HESPELL RB, O’BRYAN PJ, MONIRUZZAMAN M, et al. Hydrolysis by commercial enzyme mixtures of APEX-treated com fiber and isolated xylans. Appl Biochem Biotechnol., 1997, 62: 87-97.
    [41] NGUYEN QA, TUCKER MP, KELLER FA, Beaty DA, et al. Dilute acid hydrolysis of softwoods[J]. Appl Microbiol Biotechnol., 1999, 77-79: 133-142.
    [42] PARAJOA J C, ALONSO J L, VAAZQUEZ D. On the behaviour of lignin and hemicelluloses during the Acetosolv processing of wood. Bioresource Technology, 1993, 46: 233-240.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700