Pt修饰TiO_2纳米管阵列薄膜的制备及其光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源以及污染问题的日趋严重,在众多可以利用太阳能光催化降解污染物的半导体氧化物中,TiO_2以其强氧化性、化学稳定性好、环境友好、无毒廉价等优势脱颖而出,吸引了研究人员的大量关注。然而TiO_2存在着两个制约其广泛应用的瓶颈因素:禁带较宽,约3.2eV,仅能受占太阳光4%~5%的紫外光激发;另一方面,光生载流子的高复合率也严重制约了其对于所吸收能量的利用,阻碍了TiO_2在实际中的广泛应用。
     贵金属沉积是一种有效改善半导体光生电子空穴对分离效率的一种传统方法。本文采用阳极氧化法制备得到了TiO_2纳米管阵列薄膜,并在其上修饰了贵金属Pt,研究了制备方法及后处理条件等对光催化活性和光电性能的影响。
     采用水热法和光还原法两种不同方法制备了Pt-TiO_2,经过表征发现Pt修饰可以很大程度地提高半导体催化剂TiO_2的光催化降解和光电响应能力;光还原法制备的Pt-TiO_2,由于Pt颗粒在半导体表面分散均匀,具有更高的光催化活性。考察了光照还原时间、贵金属沉积量、后处理退火温度和气氛等制备条件对Pt-TiO_2光催化活性的影响,发现Pt的沉积量及沉积形式是影响Pt-TiO_2光催化活性的重要因素。
     氢气气氛下不同温度处理Pt-TiO_2的光催化研究结果表明,沉积的Pt表现出不同的存在形式对光催化活性具有较大的影响。场发射扫描电镜(FE-SEM)显示TiO_2纳米管阵列薄膜在沉积Pt之后仍保持管状结构,从高分辨电镜(HR-TEM)以及FE-SEM所拍摄的侧面图中均可看到有Pt颗粒的存在且随温度的升高逐渐增大;XRD显示TiO_2晶型随处理温度的升高而趋于更加规整。XPS证实了确实有Pt沉积于TiO_2,但不同条件下处理后的Pt具有不同的价态。光催化降解甲基橙和光电化学响应的实验表明,经过氢气气氛中200oC处理之后以零价和(Ⅱ)价存在的Pt具有最佳的光催化效率和光电化学响应。氢气气氛下500oC处理之后的Pt颗粒仅以零价的单质形式存在;但Pt颗粒在高温下发生团聚,以至于比表面积减小,反应活性位减少,光催化活性有明显降低。
Rencently, pollution has been increasingly serious due to masses of home scrap and industrial waste.Among numbers of pollutant-degrading semiconductors, TiO_2array nanostructures, particularly TiO_2nanotube arrays fabricated by anode oxidation, have draw much attention owing to their strong oxidbillity,excellent mechanical and chemical stability, environmental innocuity and low cost. At the same time, as alarge-band-gap semiconductor, TiO_2can only be excited by UV irradiation wavelength under400nm, andthe recombination rate of photogenerated electron–hole pairs is high, which limit their further applicationto a great extent.
     For the aim of extending the photoresponse and reducing the recombination rate of TiO_2, many effortshave been put on modification. Nobel metal deposition is one of the most widespreaded method. In thiswork, we deposit nobel metal onto the catalysis, and the photocatalytic activities as well as photoelectricresponsibility were tested.
     Firstly, Pt-TiO_2were prepared respectively by hydrothermal method and photoassisted method. Theresult showed that Pt modification by photoassisted can largely enhance photodegradation rate andphotoresponsibility of semiconductor; comparing to that, modification by sol-gel distribute Ptnanoparticles less evenly than former method. So the activities of photoassisted is better than that ofsol-gel method. According to this, we take photoassisted as the deposition method in the follow-up tests.
     Secondly, series parameters such as photoassisted time, amount of deposition, heattreat temperature,and calcination atmosphere were generally investigated.
     Nevertheless, after annealed under different atmospheres at different temperatures, Pt nanoparticlesdeposited on TiO_2exhibited distinct form of existences which played an important role of catalyticactivities of TiO_2. Viewed from SEM, FE-SEM and HR-TEM, TiO_2still maintained tube-structure after Ptdeposition; on the HR-TEM and the sideview of FE-SEM it can be seen that Pt nanoparticles graduallygrowed along with calcination temperature arises; and XRD tests displayed that crystal form also tend tobecome more regular. XPS confirmed that Pt was indeed deposited onto TiO_2and existed in variousvalence states after annealed under hydrogen at different temperatures, yet the existence form of Pt varies with different treatments. Experiments of photocatalytic methyl orange (MO) degradation andphotoelectric responsibility further improved XPS analysis and indicated that sample with nulvalent anddivalent Pt formed by hydrogen heattreat under200oC presented the best catalytic activities. After heatedat500oC under hydrogen Pt nanoparticles existed by nulvalent and aggregated together, resulting specificsurface decreased and so did the active spot; thereby, photocatalytic activities lowered down significantly.
引文
[1]. Fujishima, A,; Honda, K. Nature.1972,37,238
    [2]. Zarkour. P. D, Gaterall. M. R, Griffin. P. et al, Water. Researeh,2001.35.4137-4149
    [3]. Hyett, G.; Darr, J. A.; Mills, A.; Parkin, I. P. Chem.-Eur. J.2010,16,10546
    [4]. Torrente-Murciano, L.; Lapkin, A. A.; Bavykin, D. V.; Walsh, F. C.; Wilson, K. J. Catal.2007,245,272
    [5]. Foong, T. R. B.; Shen, Y. D.; Hu, X.; Sellinger, A. Adv. Funct. Mater.2010,20,1390
    [6]. Coakley, K. M.; Liu, Y.; McGehee, M. D.; Frindell, K. L.; Stucky, G. D. Adv. Funct. Mater.2003,13,301
    [7]. Ding, S.; Chen, J. S.; Wang, Z.; Cheah, Y. L.; Madhavi, S.; Hu, X.; Lou, X. W. J. Mater. Chem.2011,21,1677
    [8]. H. Zhang, J.F. Banfield, J. Phys. Chem. B104(2000)3481–3487
    [9]. M. R. Ranade, A. Navrotsky, H. Z. Zhang, J.F. Banfield, S.H. Elder, A. Zaban, P. H. Borse, S.K.Kulkarni, G.S. Doran, H.J. Whitfield, Proc. Nat. Acad. Sciences99(2002)6476–6481
    [10]. S.D. Burnside, V. Shklover, C. Barbe, P. Comte, F. Arendse, K. Brooks, M. Gr tzel, Chem. Mater.10(1998)2419–2425
    [11]. A.L., Lu.G., Yates, J.T.Jr. Chem. ReV.1995,95,735. Copyright1995American Chemical Society
    [12]. M. Ramamoorthy, D. Vanderbilt, R.D. King-Smith, Phys. Rev. B49(1994)16721
    [13]. Y. Liang, S. Gan, S.A. Chambers, E.I. Altman, Phys. Rev. B63(2001)235402
    [14]. N. Ruzycki, G.S. Herman, L.A. Boatner, U. Diebold, Surf. Sci.529(2003) L239–L244
    [15]. Gerischer, H. In Photocatalytic Treatment of Water and Air: Ollis, D. F., Al-Ekabi, H., Eds., Elsevier:Amsterdam,1993
    [16]. A.L.Linsebigler, G.Q.Lu, J.T.Yates, Photocatalysis on TiO2surfaces: principles, mechanisms, andselected results, Chem. Rev.,1995,95:735-758.
    [17].张彭义,余刚,蒋展鹏.环境科学进展.1997,5(3):1
    [18]. D.Gong, C.A.Grimes, O.K.Varghese, W.Hu, R.S.Singh, Z.Chen and E.C.Dickey, J. Mater. Res.,2001,16,3331–3334
    [19]. G K.Mor, O.K.Varghese, M.Paulose, N.Mukherjee and C.A.Grimes, J.Mater. Res.,2003,18,2588–2593
    [20]. E.Balaur, J. M. Macak, H. Tsuchiya and P. Schmuki, J. Mater. Chem.,2006,15,4488–4891
    [21]. O. K. Varghese, D. Gong, M. Paulose, K. G. Ong, E. G. Dickey and C. A. Grimes, Adv. Mater.,2003,15,624–627
    [22]. G. E. Thompson, R. C. Furneaux, G. C. Wood, J. A. Richardson and J. S. Goode, Nature,1978,272,433–435
    [23]. Q.Cai, M.Paulose, O.K.Varghese and C.A.Grimes, J.Mater.Res.,2005,20,230–236.
    [24]. M. Paulose, K. Shankar, S. Yoriya, H. E. Prakasam, O. K. Varghese, G. K. Mor, T. J. Latempa, A.Fitzgerald and C.A.Grimes, J.Phys.Chem.B,2006,110,16179–16184
    [25]. S. Yoriya, H. E. Prakasam, O. K. Varghese, K.Shankar, M. Paulose, G. K. Mor, T. J. Latempa and C.A. Grimes, Sens. Lett.,2006,4,334–339
    [26]. K. Shankar, G. K. Mor, A. Fitzgerald and C. A. Grimes, J. Phys. Chem. C,2007,111,21–26
    [27]. H. E. Prakasam, K. Shankar, M. Paulose and C. A. Grimes, J. Phys. Chem. C,2007,111,7235–7241
    [28]. M. Christophersen, J. Carstensen, K. Voigt and H. Foll, Phys. Status Solidi A,2003,197,34–37
    [29]. Z. Liu, X. Zhang, S.Nishimoto, M. Jim, D. A.Tryk, T. Murakami and A. Fujishima, J. Phys. Chem. C,2008,112,253–259
    [30]. C. Ruan, M. Paulose, O. K. Varghese, G.K.Mor and C.A.Grimes, J. Phys. Chem. B,2005,109,15754–15759
    [31]. S. Yoriya, M. Paulose, O. K. Varghese, G. K. Mor and C.A.Grimes, J. Phys. Chem. C,2007,111,13770–13776
    [32]. K. Shankar, G. K. Mor, H. E. Prakasam, S. Yoriya, M. Paulose, O. K. Varghese and C. A. Grimes,Nanotechnology,2007,18,065707
    [33]. Jan. M, Hiroaki. T, Patrik. S, et al. angew. Chem. Int. Ed.2005.44.2100-2102
    [34]. Busch. K, Wehrspohn. R. Phys. Status. Solidi. A.2003.197.593-594
    [35]. Lee. J. S, Reed. M. I, Kelly. R. G. J. Electrochem. Soc.2004.151. B423-B433
    [36]. Nageh. K. A, Grimes. C. A. J. Phys. Chem. C.2007.111.13028-13032
    [37]. N. K. Allam and C. A. Grimes, J. Phys. Chem. C,2007,111,13028–13032
    [38]. N. K. Allam, K. Shankar and C.A.Grimes, J. Mater. Chem.,2008,18,341–2346
    [39]. X.Chen, M.Schriver, T.Suen and S.S.Mao, Thin Solid Films,2007,515,511–8514
    [40]. J. P. Frayret, R. Pointeau and A. Caprani, Electrochim. Acta,1981,26,1783–1788
    [41]. YuChuan Liang, ChihChieh Wang, ChiChung Kei, et al. Photocatalysis of Ag-Loaded TiO2NanotubeArrays Formed by Atomic Layer Deposition. J. Phys. Chem. C2011,115,9498–9502
    [42]. Jun Wang, Zhiqun Lin. Dye-Sensitized TiO2Nanotube Solar Cells with Markedly EnhancedPerformance via Rational Surface Engineering. Chem. Mater.2010,22,579–584579
    [43]. Filippo De Angelis, Simona Fantacci, Annabella Selloni, et al. Influence of the Sensitizer AdsorptionMode on the Open-Circuit Potential of Dye-Sensitized Solar Cells. Nano Lett.2007, Vol.7, No.10,3189-3195
    [44].唐培松,王民权,王智宇,等.半导体TiO2光催化剂及其有机光敏化研究进展[J].材料导报,2003,17(10):33-36
    [45]. R.Vogel, Quantum-sized PbS, CdS, Ag2S, Sb2S3and Bi2S3particles as sensitizers for variousnanoporous wide-bandgap semiconductors. Journal of Physical Chemistry,1994,98(12):3183-3191
    [46]. Tsutomu Hirakawa. J.Am. Chem. Soc.,2005,127(9):11588
    [47].唐建文,吴平宵,曾少雁,刘云.二氧化钛可见光光催化剂研究进展.现代化工,2005,25(2):25-28
    [48].孙晓君,蔡伟民,井立强,周德瑞,沈雄飞,王志平.二氧化钛半导体光催化技术研究进展.哈尔滨工业大学学报,2001,33(4):534-541
    [49]. Jina Choi, Hyunwoong Park, Michael R. Hoffmann. J. Phys. Chem. C.2010.114:783-792
    [50]. M. R. Dhananjeyan, V. Kandavel, R. Renganathan. A study on the photocatalytic reactions of TiO2with certain pyrimidine bases: effects of dopant (Fe3+) and calcinations. Journal of MolecularCatalysis A: Chemical,2000,151(1-2):217-223
    [51]. K. Wilkes, H. D. Breuer. The influence of transition metal doping on the physical and photocatalytieproperties of titania. Joumal of Photochemistry and Photobiology A: Chemistry,1999,121(l):49-53
    [52]. P. Salvador, M. L. G. Gonzaiez. Catalytic role of lattice defect in the photoassisted oxidation of waterat(001)n-TiO2rutile. Journal of Physical Chemistry,1992,96(25):10349-10353
    [53]. Y. Liu, H. Q. Wang, Z. B. Wu, The characterization of metal doped-titanium oxide and behaviors onphotocatalytic oxidation of nitrogenoxides, Journal of Environrnenial Seienee,2007,19(12):1505-150
    [54]. Yamashita H, Harada M, Misaka J et al. J. Photochem and Photobio A: Chem,2002,148:257
    [55]. S Sato, Chem. Phys.Lett.,1986,123:126
    [56]. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science,2001,293:269
    [57]. Ghicov. A, Macak. J. M, Tsuchiya. H., Kunze. J, Haeublein. V, Frey. L, Schmuki. P, Nano. Lett.2006.6.1080-1082
    [58]. Ghicov. A, Macak. J. M, Tsuchiya. H, Kunze. J, Haeublein. V, Schmuki. P, Chem. Phys. Lett.2006.419.426-429
    [59]. Vitiello. R. P, Macak. J. M, Ghicov. A, Tsuchiya. H, Dick. L. F. P, Schmuki. P, Electrochem. Commun.2006.8.544-548
    [60]. Hahn. R, Ghicov. A, Salonen. J, Lehto. V.-P, Schmuki. P, Nanotechnology.2007.18.105604
    [61]. Zhengpeng Wang, Weimin Cai, et al. Photocatalytic degradation of phenol in aqueous nitrogen-dopedTiO2suspensions with various light sources[J]. Applied Catalysis B,2005,57:223
    [62]. Hongqi Sun, Ruh Ullah, Siewhui Chong, et al. Room-light-induced indoor air purification using anefficient Pt/N-TiO2photocatalyst. Applied Catalysis B: Environmental108–109(2011)127–133
    [63].张敏, CO光催化氧化催化剂及催化作用的研究.博士毕业论文,甘肃:中国科学院兰州物化所,2005
    [64]. I. Paramasivam, J.M. Macak, P. Schmuki, Photocatalytic activity of TiO2nanotube layers loaded withAg and Au nanoparticles, Electrochemistry Communications10(2008)71–75
    [65]. Oomman K. Varghese, Maggie Paulose, Thomas J. LaTempa, Craig A. Grimes; High-Rate SolarPhotocatalytic Conversion of CO2and Water Vapor to Hydrocarbon Fuels, NanoLetters,2009, Vol.9,No.2,731-737
    [66]. Wooseok Nam, Gui Young Han; Preparation and Characterization of Anodized Pt-TiO2Arrays forWater Splitting; Journal of Chemical Engineering of Japan, Vol.40, No.3, pp.266-269,2007
    [67].倪守高,王玲,薛建军,孙海波,雷斌,金丹萍;载Pt-TiO2纳米管阵列制备及其光电催化性能;材料科学与工程学报, Vol.126, No.14,2008
    [68]. Lixia Yang, Dongmei He, Qingyun Cai; Fabrication and Catalytic Properties of Co-Ag-PtNanoparticle-Decorated Titania Nanotube Arrays; J. Phys. Chem. C2007,111,8214-8217
    [69].秦亮,陶杰,王玲,陶海军; Ti/TiO2-Pt修饰电极的制备及电催化性能研究;稀有金属材料与工程, Vol.36, No.10,2007
    [70].孙彦红,硕士毕业论文,开封:河南大学特种功能材料重点实验室.2009
    [71]. Choi.W, Termin.A, Hoffmann.MR. The role of metal ion dopants in quantum-sized TiO2: Correlationbetween photoreactivity and charge carrier recombination dynamics [J]. The Journal of PhysicalChemistry,1994,98(51):13669-13679
    [72]. H.Haick, Y.Paz, Long-range effects of nobel metals on the photocatalytic properties of titaniumdioxide, J. Phys. Chem. B,2003,107(10):2319-2326
    [73]. M.L.Litter, Heterogenerous photocatalysis, Transition metal ions in photocatalytic systems, ApplCatal.B,1999,23:89-114
    [74]. A. Yamakata, T. A. Ishibashi, H. Onishi, Effects of accumulated electrons on the decay kinetics ofphotogenerated electrons in Pt/TiO2photocatalyst studied by time-resolved infrared absorptionspectroscopy, J. Photochem. Photobiol. A: Chem.,2003,160:33-36
    [75]. G. R. Bamwenda, J. Liu, D. W. Hand, D. L. Perram, Photocatalytic oxidation of chlorinatedhydrocarbons in the water, Water Research,1997,31:429-438
    [76]. C. M. Wang, A. Heller, H. Gerischer, Pd catalysis of O2reduction by electrons accumulated TiO2particles during photoassisted oxidation of organic compounds, J. Am. Chem. Soc.,1992,114(13):5230-5234
    [77]. T. Sano, S. Kutsuna, N. Negishi, K. Takeuchi, Effect of Pd-photodepositon over TiO2on productselectivity in photocatalytic degradation of vinyl chloride monomer, J. Mole. Catal. A: Chem.,2002,189:263-270
    [78]. O.C.Miner, Kinetic. Analysis of photoinduced reactions at the water semiconductor interface,Catalysis Today,1999,57(3):205-213
    [79]. H.M.Sung-Suh, J.R.Choi, H.J.Hah. et al, Comparison of Ag deposition effects on the photocatalyticactivity of nanoparticulate TiO2under visible and UV light irradiation, J. Photochem. Photobiol. A:Chem.,2004,163:37-44
    [80].章福祥,张绣,陈继新,刘智广,高文亮,金瑞彩,关乃佳, Ag/TiO2复合纳米催化剂的制备机器光催化活性,催化学报,2003,24(11):877-880
    [81]. M Schiaveuo, Some working principles of heterogeneous photocatalysis by semiconductors,Electrochemical Acta,1993,38(1):1056-1062
    [82]. Y M Gao, W Lee, R Trehan, R Kershaw, K Dwight, A world. Improvement of photocatalytic activityof titanium (Ⅳ) oxide by dispersion of Au on TiO2, Materials Research Bulletin,1991,26(12):1247-1254
    [83]. I M Arabatzis, T Stergioppoulos, D Andreeva, S Kitova, S G Neophytides, P Falaras, Characterizationand photocatalytic activity of Au/TiO2thin films for azo-dye degradation, J. Catal.,2003,220:127-135
    [84]. I B Rufus, V Ramakrishnan, J C Kuriacose, Rhodium and rhodium sulfide coated cadmium sulfide asa photocatalytic for photochemical decomposition of aqueous sulfide, Langmuir,1990,6(3):565-567
    [85]. T Sano, N Negishi, K Uchino, J Tanaka, S Matsuzawa, K Takeuchi, Photocatalytic degradation ofgaseous acetaldehyde on TiO2with photodeposited metals and metal oxides, J. Photochem. Photobiol.A: Chem.,2003,160:93-98
    [86]. S Sakthivel, M V Shankar, M Palanichamy, et al. Enhancement of photocatalytic activity by metaldeposition: characterization and photonic efficiency of Pt, Au and Pd deposition on TiO2catalyst,Water Research,2004,38:3001-3008
    [87]. I M Arabatzis, T Stergiopoulos, M C Bernard, et al., Silver modified titanium dioxide thin films forefficient photodegradation of methyl orange, Appl. Catal. B: Environmental,2003,42:187-201
    [88]. F B Li, X Z Li, The enchancement of photodegradation efficiency using Pt-TiO2catalyst,Chemosphere,2002,48,1103-1111
    [89]. M Harada, H Einaga, Photochemical deposition of platinum on TiO2by using poly (vinyl alcohol) asan electron donor and a protecting polymer, Catalysis Communications,2004,5:63-67
    [90]. S H Wang, M C Lee, W Choi, Highly enhanced photocatalytic oxidation of CO on titania depositedwith Pt nanoparticles: kinetics and mechanism, Appl. Catal. B: Environmental,2003,46-63
    [1]. Park, J. H.; Kim, S.; Bard, A. J. Novel Carbon-Doped TiO2Nanotube Arrays with High Aspect Ratiosfor Efficient Solar Water Splitting. Nano Lett.2006,6,24–28.
    [2]. Paulose, M.; Shankar, K.; Varghese, O. K.; Mor, G. K.; Grimes, C. A. Application of Highly-OrderedTiO2Nanotube-Arrays in Heterojunction Dye-Sensitized Solar Cells. J. Phys. D: Appl. Phys.2006,39,2498–2503.
    [3]. Macak, J. M.; Tsuchiya, H.; Ghicov, A.; Yasuda, K.; Hahn, R.; Bauer, S.; Schmuki, P. TiO2Nanotubes:Self-Organized Electrochemical Formation, Properties and Applications. Curr. Opin. Solid State Mater.Sci.2007,11,3–18.
    [4]. GL Zhao, Hiromitsu Kozuka,Toshinobu Yoko. The Solid Films,1996,277:147-154.
    [5]. Shahed U.M.Khan,Mofareh Al-Shahry,William B.Ingler Jr. Science,2002,297:2243-2245.
    [6]. Anpo M, Takeuchi M. The design and development of highly reactive titanium oxide photocatalystsoperating under visible light irradiation[J]. J Catal,2003,216:505-516.
    [7].焦玉珠,杨晓,邓子峰等.沉积贵金属Pt的Pt/TiO2膜利用可见光催化降解苯酚,环境化学,2011年5月,第30卷,第五期,970-975.
    [8].Ekaterina A. Kozlova, Tatyana P. Lyubina, Maxim A. Nasalevich, et al. Influence of the method ofplatinum deposition on activity and stability of Pt/TiO2photocatalysts in the photocatalytic oxidationof dimethyl methylphosphonate, Catalysis Communications,12(2011)597–601.
    [9]. Guotian Yan, Min Zhang, Jian Hou, et al. Photoelectrochemical and photocatalytic properties of N+Sco-doped TiO2nanotube array films under visible light irradiation[J]. Materials Chemistry and Physics129(2011)553–557
    [10]. Ohtani B,Zhang S W,Ogita T,Nishimoto S,Kagiya T, J Photochem Photobiol A,1993,71(2):195
    [11].贺攀科,杨建军,杨冬梅,王晓辉,张敏,催化学报,2006,27(1):71
    [12].杨冬梅,贺攀科,董芳,张敏,杨建军,催化学报,2006,27(12):1122
    [13].董芳,杨冬梅,张敏,杨建军,催化学报,2007,28(11):958
    [14]. He P K,Zhang M,Yang D M,Yang J J. Surf Rev Lett,2006,13(1):51
    [15].国家环境保护局.环境空气臭氧的测定靛蓝二黄酸钠分光光度法(State EnvironmentalProtection Administration of China. Ambient Air/Determination of Ozone/Indigo DisulphonateSpectrophotometry). GB/T15437-1995
    [16]. D. Gong, C. A. Grimes, O. K. Varghese, W. Hu, R. S. Singh, Z. Chen, et al. Titanium Oxide NanotubeArrays Prepared by Anodic Oxidation, J. Mater. Res.,16,3331–4(2001).
    [17]. G. K. Mor, O. K. Varghese, M. Paulose,et al. Fabrication of Tapered, Conical-Shaped TitaniaNanotubes, J. Mater. Res.,18,2588–93(2003).
    [18]. Kaliyamoorthy Selvam, Bojja Sreedhar, Meenakshisundaram Swaminathan. Nano Pt–TiO2for anefficient one-pot photocatalytic synthesis of quinaldines from anilines and ethanol. Res ChemIntermed (2012)38:761–773.
    [19]. Shuang Song, ZhiWu Liu, ZhiQiao He, et al. Impacts of Morphology and Crystallite Phases ofTitanium Oxide on the Catalytic Ozonation of Phenol, Environ. Sci. Technol.
    [20]. A. Hagfeldt, H. Lindstrom, S. Sodergren, S. E. Lindquist, J. Electroanal. Chem.1995.381.39-46.
    [21]. J. G. Yu, B. Wang, Applied. Catalysis. B: Environmental.2010.94.295–302.
    [22]. Ki-Chul Cho, Kyung-Chul Hwang, Taizo Sano, Photocatalytic performance of Pt-loaded TiO2in thedecomposition of gaseous ozone, Journal of Photochemistry and Photobiology A: Chemistry,161,(2004):155–161
    [1] S.K. Lee, A. Mills, Platinum Met. Rev.47(2003)61.
    [2] Wooseok Nam, Gui Young Han; Preparation and Characterization of Anodized Pt-TiO2Arrays forWater Splitting; Journal of Chemical Engineering of Japan, Vol.40, No.3, pp.266-269,2007
    [3] C M Wang, A Heller, H Gerischer, Pd catalysis of O2reduction by electrons accumulated TiO2particlesduring photoassisted oxidation of organic compounds, J. Am. Chem. Soc.,1992,114(13):5230-5234
    [4] F B Li, X Z Li, The enchancement of photodegradation efficiency using Pt-TiO2catalyst,Chemosphere,2002,48,1103-1111
    [5] W Y Choi, A Termin, M R Hoffman, The role of metal ion dopants in quantum-sized TiO2: correlationbetween photoreactivity and charge carrier recombination dynamics, J. Phys. Chem.,1994,98(51):13669-13679
    [6] F B Li, X Z Li, The enchancement of photodegradation efficiency using Pt-TiO2catalyst,Chemosphere,2002,48,1103-1111
    [7] S X Liu, Z P Qu, X W Han, et al. A mechanism for enhanced photocatalytic activity of silver-loadedtitanium dioxide, Catal. Today,2004,93-95:877-884
    [8]刘守新,曲振平,韩秀文,等. Ag担载对TiO2光催化活性的影响,催化学报,2004,25(2):133-137
    [9] D.C. Hurum, A.G. Agrios, K.A. Gray, T. Rajh, M.C. Thurnauer, Journal of Physical Chemistry B107(2003)4545–4549.
    [10] T.Sumita, T.Yamaki, S.Yamamoto, A.Miyashita, Applied Surface Science200(2002)21–26.
    [11] G.Riegel, J.R.Bolton, Journal of Physical Chemistry99(1995)4215–4224.
    [12] Q.Shen, K.Katayama, T.Sawada, M.Yamaguchi, Y.Kumagai, T.Toyoda, Chemical Physics Letters419(2006)5.
    [13] G. Li, K.A.Gray, Chemical Physics339(2007)15.
    [14] T.Ohno, K.Tokieda, S.Higashida, M.Matsumura, Applied Catalysis A: General244(2003)383–391.
    [15] S.Bakardjieva, J.Subrt, V.Stengl, M.J.Dianez, M.J.Sayagues, Applied Catalysis B: Environmental58(2005)193–202.
    [16] L.Chen, Civil and Environmental Engineering, Northwestern University, Evanston, IL,2008.
    [17] G. Li, S. Ciston, Z.V. Saponjic, L. Chen, N.M. Dimitrijevic, T. Rajh, K.A. Gray, Journal of Catalysis253(2008)6.
    [18] Houas. A, Lachheb. H, Ksibi. M, Elaloui. E, Guillard. C. Herrmann, J.-M. Appl. Catal., B: Environ.2001,31,145.
    [19] M. R. Hofmann, S. T. Martin, W. Choi, D. W. Bahnemann, Chem. Rev.1995.95.69-96.
    [20] J. M. Macak, M. Zlamal, J. Krysa, P. Schmuki, small.2007.3.300–304.
    [1] Li F B, Li X Z. The enhancement of photodegradation efficiency using Pt-TiO2catalyst [J].Chemosphere,2002,48(10):1103-1111.
    [2] A.V. Vorontsov, E.N. Savinov, Z.S. Jin, J. Photochem. Photobiol. A125(1999)113
    [3] M.C. Hidalgo, M. Maicu, J.A. Navio, et al. Study of the synergic effect of sulphate pre-treatment andplatinisation on the highly improved photocatalytic activity of TiO2. Applied Catalysis B:Environmental81(2008)49–55
    [4] Y. Li, G. Lu, S. Li, Appl. Catal. A214(2001)179.
    [5] U.Siemon, D.Bahnemann, J.J.Testa, D.Rodriguez, M.I.Litter, N.Bruno, J.Photochem. Photobiol. A6002(2002)1.
    [6] May R A,Patel M N,Johnston K P, et al. Flow-based multiadsorbate ellipsometric porosimetry for thecharacterization of mesoporous Pt-TiO2and Au-TiO2nanocomposites[J]. Langmuir,2009,25(8):4498-4509
    [7] F B Li, X Z Li, The enchancement of photodegradation efficiency using Pt-TiO2catalyst,Chemosphere,2002,48,1103-1111
    [8] A V Vorontsov, E N Savinov, Z S Jin, Influence of the form of photodeposited Pt on titania upon itsphotocatalytic activity in CO and acetone over platinized titanium dioxide, J. Catal.,2000,189:360-369
    [9] T Sano, N Negishi, K Uchino, J Tanaka, S Matsuzawa, K Takeuchi, Photocatalytic degradation ofgaseous acetaldehyde on TiO2with photodeposited metals and metal oxides, J. Photochem. Photobiol. A:Chem.,2003,160:93-98
    [10] Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, J. W. P. Hsu, Nano. Lett.2008.8.1501-1505
    [11] Paulose. M, Mor. G. K, Varghese. O. K, Shankar. K, Grimes. C. A, J. Photochem. Photobiol. A: Chem.2006.178.8-15
    [12] B. Ohtani, K. Iwai, S. Nishimoto, S. Sato, J. Phys. Chem. B101(1997)3349.
    [13] T. Sasaki, N. Koshizaki, J.W. Yoon, K.M. Beck, J. Photochem. Photobiol. A145(2001)11.
    [14] M. Davidson, G. Hofiund, L. Niinisto,et al. J. Electroanal. Chem.228(1987)471.
    [15] G.M. Bancroft, I. Adams, L.L. Coatsworth, C.D. Bennewitz, J.D. Brown, W.D. Westwood, Anal.Chem.47(1975)586.
    [16] T.L. Barr, J. Phys. Chem.82(1978)1801.
    [17] L. Bornsten, in: Zahlenwerte and Funktionen aus Naturwis-senschaft und Technik, Springer, Berlin,1982
    [18] J.C. Yang, Y.C. Kim, Y.G. Shul, Characterization of photoreduced Pt/TiO2and decomposition ofdichloroacetic acid over photoreduced Pt/TiO2catalysts. Applied Surface Science.121/122.(1997):525-529
    [19] J. Lee, W. Choi, J. Phys. Chem. B109(2005)7399
    [20] I. Chorkendorff, J.W. Niemantsverdriet, Concepts of Modern Catalysis and Kinetics, Wiley–VCHVerlag, Weinheim,2003.
    [21] J. Yang, D. Li, Z. Zhang, Q. Li, H. Wang, J. Photochem. Photobiol. A137(2000)197
    [22] A. Sclafani, J.M. Herrmann, J. Photochem. Photobiol. A113(1998)181.
    [23] A. Hagfeldt, H. Lindstrom, S. Sodergren, S. E. Lindquist, J. Electroanal. Chem.1995.381.39-46
    [24] J. G. Yu, B. Wang, Applied. Catalysis. B: Environmental.2010.94.295–302

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700