人工林尾巨桉生长应变与木材性质关系及高生长应变形成机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以我国南方大面积种植的人工林尾巨桉(Eucalyptus urophylla ×E. grandis)为研究对象,对其生长应变和主要木材性质进行了详尽的研究,揭示了生长应变与木材性质的相互关系以及正常木高生长应变的形成机理。研究结果对森林定向培育和木材加工利用具有重要的理论意义和实际应用价值。
    本研究采用应变片法测定了活立木的表面轴向生长应变,比较了该方法与法国轴向生长应变仪法之间的差异;研究了伐倒木表面轴向生长应变与木材物理力学性质间的关系;揭示了残余应变的径向分布规律及其与木材性质的关系,提出了根据残余应变径向分布曲线和树木直径划分幼龄材和成熟材的新思路;应用透射电子显微镜、可见光显微分光光度计、扫描电子显微镜结合X 射线能谱分析(SEM-EDXA)等先进设备,特别是结合木质素溴化等细胞和组织化学分析方法,得到了木质化过程中细胞壁各微区上的木质素含量的分布规律,探讨了正常木高生长应变产生与木质化过程的相互关系,提出了高生长应变正常木存在“欠木质化”现象的新观点。
    本文的主要研究结果如下:
    1. 用应变片法测试尾巨桉活立木胸高处表面轴向生长应变,测试过程一般需要3min左右;表面轴向生长应变一般分布在651×10~(-6)-1100×10~(-6) 之间。单因素方差分析表明,尾巨桉表面轴向生长应变在两家系间、南北向间、株内不同高度间差异不显著,胸高处表面轴向生长应变可以作为评估整株树生长应力水平的一个参考指标。
    2.法国轴向生长应变仪的结果要大于应变片法的结果,不共点测试时前者是后者的1.3 倍,共点测试时前者是后者的2.0 倍。
    3. 沿树高增加方向,尾巨桉木材径向、轴向、弦向和体积干缩率的变化趋势相似,基本密度变化甚小,抗弯强度没有明显的变化规律,抗弯弹性模量呈现出明显的增大趋势。单因素方差分析表明,轴向、弦向、体积干缩率、基本密度和抗弯强度在不同高度间没有显著差异,而径向干缩率和抗弯弹性模量差异显著。表面轴向生长应变只与轴向干缩率具有显著相关性。
    4. 尾巨桉原木内部轴向残余应变径向分布沿髓心的对称性较好,靠近树皮的位置为最大的拉应变,向髓心方向,拉应变在绝对值上呈下降趋势至某个半径处达到零值,随后转变为压应变,向髓心处呈现明显的增加趋势。尾巨桉内部轴向残余应变径向分布的回归方程为:y = -21.075x~2 + 4.5297x + 890.75(相关系数0.87),在0.01 水平下极显著相关;拉应变向压应变转变的树干半径为0.681R。尾巨桉内部轴向残余应变在不同高度上的径向分布模式相似,相关性随着树干高度的增加而降低。
    5. 尾巨桉木材的解剖性质(纤维长度、宽度、壁厚、纤维的长宽比、微纤丝角、
In this research, growth strain and main wood properties of Eucalyptus urophylla ×E. grandis plantation widely planted in south China were investigated, the relationship between growth strain and wood properties and high growth strain formation mechanism of normal wood were obtained. The results were provided with important theoretic and realistic values for forest oriented cultivation and wood processing utilizing.
    The paper adopted Strain Guage Method for the first time in China to measure surface longitudinal growth strain (SLGS) of standing trees, and the differences between Strain Guage Method and CIRAD-Foret method was compared. It and discussed The relationship between SLGS and wood physical and mechanical properties of fallen wood and between radial distribution of internal longitudinal residual strain (ILRS) and wood properties was analyzed, a new approach for classifying juvenile wood and mature wood was brought forward, according to radial distribution of ILRS and tree diameter. Using advanced transmission electronic microscope, visible light micro-spectrophotometer and scanning electron microscope and energy dispersive X-ray analysis(SEM-EDXA), especially using cell and histo-chemical method (lignin bromazition etc.), lignin distribution regulation in different micro-morphological regions of cell wall was opened out during lignification process.The relationship between high growth strain formation and lignification process was discussed, a new viewpoint that there was“deficient lignification ”phenomenon in wood fiber cell wall of high growth strain normal wood was brought forward.
    The results were as the followings,
    1. It took about three minutes using Strain Gauge Method to test SLGS at 1.3m height for standing trees. The value of SLGS was between 651×10~(-6) and 1100×10~(-6). Single factor variation analysis showed, there was no significant difference between two families, south and north and among different heights in tree; consequently, SLGS at 1.3m height should be
    as a reference criterion to evaluate the level of growth stress of the whole tree. 2. CIRAD-Foret Method and Strain Gauge Method were used to measure SLGS for fallen woods at the same point and at two points. The values obtained from the CIRAD-Foret method were bigger than those from strain gauge method. The former was 1.3 time as high as the latter for the measurement at two points, and it was 2.0 times as high as the latter for the measurement at the same point. 3. Along tree height increasing,there was similar changing tendency of volume shrinkage, longitudinal shrinkage, tangential shrinkage and radial shrinkage; Basic density showed little change while MOR displayed no obvious changing regulation and MOE increased obviously with tree height increasing. Single factor variation analysis showed, there was no distinct difference in volume, longitudinal and tangential shrinkage, basic density and MOR, while there was very significant difference in radial shrinkage and MOE at different heights. SLGR and longitudinal shrinkage was tightly related despite of single tree and different height. 4. The radial distribution of ILRS was symmetrical across the diameter.The largest tensile strain was near the bark, to the pith direction, tensile strain absolute value declined and turned zero at certain radius, after that tensile strain changed into compressive strain which presented obvious increasing tendency to the pith direction. The regression equation of radial distribution of ILRS was y = -21.075x2 + 4.5297x + 890.75, significantly correlated at 0.01level (correlation coefficient was 0.87). Tree radius of crossover point from tensile strain to compressive strain was 0.618R. Radial distribution pattern of ILRS at different heights was similar, but the correlation coefficient decreased with tree height increasing. 5. There was different changing tendency for wood anatomical properties(fiber length, fiber width, fiber wall thickness, ratio of length to width, microfibril angle, ratio of different tissue, cell wall percentage etc.), wood physical property(basic density) and wood chemical properties(alpha-cellulose content, Klason lignin content, hollocellulose content and degree of crystallinity) from the pith to bark. Single factor variation analysis showed, there were great differences among 5 radial positions in fiber length, fiber width, fiber wall thickness, distributing frequency of vessel, T-diameter of vessel element, alpha-cellulose content, hollocellulose content and basic density. However, there were no significant differences in microfibril angle, ratio of length to width, ratio of wall to lumen, ratio of lumen to diameter, ratio of different tissue, cell wall percentage, degree of crystallinity among 5 radial positions. There was positive correlation between tensile residual strain and fiber length, fiber width, T-diameter of vessel element and hollocellulose content, and between compressive residual strain and fiber wall thickness and distributing frequency of vessel. There was great positive
    correlation between tensile residual strain and alpha-cellulose content. 6. Radial distribution Changing gradient of ILRS was greatly affected by tree diameter, the curve of the smaller tree was much steeper. For Eucalyptus urophylla ×E. grandis in this study, when tree diameter was larger than 19.9cm, effect of diameter on radial distribution of ILRS became weak.It indicated that tree grow enters mature period while tree diameter reaches 19.9cm.So a new approach for classify juvenile wood and mature wood was brought forward, according to radial distribution of ILRS and tree diameter. 7. There was no significant difference between high growth strain material and low growth strain material for lignin deposition. After the appearance of S1 layer, lignin deposited with a style of patches firstly at the middle lamellae of cell corner. Accompanying with S2 layer deposition, lignification extended from corner to the rest regions of middle lamellae and secondary cell wall at the same time, and lignin content at cell corner increased sharply. After S3 layer appeared, lignin with irregular patches deposited on the entire secondary cell wall. 8. The results of histo-chemical dyeing showed, Syringyl(S) lignin and Guaiacyl(G) lignin were main component in micro-morphological regions of wood fiber cell wall for high growth strain and low growth strain material during lignification process. S lignin and G lignin content increased firstly and then leveled off. With lignification process, S lignin content was higher than G lignin content. S lignin and G lignin content decreased with growth strain increasing, at the same time, the difference of S lignin content among micro-morphological regions of wood fiber cell wall became smaller, but the difference of G lignin content became bigger. 9. The results of lignin bromazation method showed, lignin content in micro-morphological regions of wood fiber cell wall increased firstly and then leveled off during lignification process. Lignin content in sequence was cell corner, compound middle lamellae, S1, S2, S3.With growth strain increasing, lignin content decreased, lignification rate was slowed down and lignification process was delayed. Thereout, a new viewpoint that there was“deficient lignification”phenomenon in wood fiber cell wall of high growth strain normal wood was brought forward. This phenomenon was intrinsic response for trees adapting and counteracting outside circumstance changes.
引文
1. Jacobs M R. The growth stresses of woody stems. Common W. For. Bur. Aust. Bull. 1945, 28: 64
    2. Archer R R. Growth stresses and strains in trees. Springer-verlag. Berlin, Heidelberg, New York .1986
    3. Jacobs M R. The fibre tension of woody stems, with special reference to the genus Eucalyptus. Commonwealth Forestry Bureau, Australia, Bulletin. 1938, 22: 37
    4. Kubler H. Growth stresses in trees and related wood properties. Forestry Abstracts. 1987, 48: 131-189
    5. Yang J L and Waugh G. Growth stress, its measurement and effects. Australian Forestry. 2001, 64(2): 127-135
    6. Waugh G. Use of twin saw system for young, fast-grown eucalyptus. IUFRO Conference: The future of eucalyptus for wood products. Tasmania. Australian. 2000, 175-183
    7. Jiang X M, Yin Y F, Lu J X and Zhao Y K. Growth strain in different species of eucalyptus plantation in the south of China. In: The First Technical Report of ITTO Project PD 69/01 Rev.2 (I). Chinese Forestry Publishing House. 2002, 33-41
    8. Malan F S and Gerischer G F R. Wood property differences in South African grown Eucalyptus grandis trees of different growth stress intensity. Holzforschung. 1987, 41: 331-335
    9. Washusen R, Ades P, Evans R, Ilic J and Vinden P. Relationship between density, shrinkage, extractives content and microfibril angle in tension wood from three provenances of 10-year-old Eucalyptus globules Labill. Holzforschung. 2001, 55
    10. Turnbull R F. Review of current attitudes to growth stresses. Proceedings IUF RO-41Meeting. Melbourne, Australia. 1965, 3: 8
    11. Boyd J D. Tree growth stresses –Part V: Evidence of an origin in differentiation and lignification. Wood Science and Technology. 1972, 6: 251-262
    12. Martley J F. Theoretical calculations of the pressure distribution on the basal section of a tree. Forestry.1928, 2: 69-72
    13. Koehler A. A new hypothesis as to the cause of shakes and rift cracks in green timber. J. For. 1933, 31: 551-556
    14. Munch E. Statik und dynamik des schraubigen baues der Zellwand besonders des Druck-und Zugholzes. Flora .1938, 32: 357-424
    15. Clarke SH. Stresses and strains in growing timber. Forestry. 1939,13:68-79
    16. Wardrop A B. The formation and function of reaction wood. In:C?téWA Jr (ed) Cellular ultrastructure of woody plants. Syracuse Univ. Press, Syracuse. 1965, 373-390
    17. Barber N F and Meylan B A. The anisotropic shrinkage of wood. Holzforschung. 1964, 18: 145-156
    18. IAWA Committee. Multilingual glossary of terms used in wood anatomy. Zurich. 1964
    19. C?téW A and Day A C. Anatomy and ultrastructure of reaction wood In: Cellular ultrastructure of woody plants. Ed. W.A. C?té. Syracuse Univ. Press. Syracuse. 1965, 391-418
    20. Ford-Robertson F C. Terminology of forest science, technology practice and products. Society of American Foresters. Washington D.C. 1971
    21. Wardrop A B. Lignins, occurrence and formation in plants.In Sarkanen, K.V., Ludwig, C. H.(Ed.): Lignins. New York:John Wiley & Sons, Inc. 1971
    22. Panshin A J and de Zeeuw C. Textbook of Wood Technology. McGraw-Hill Book Company, New York, 1970, 722
    23. Grozdits G A and Ifju G. Development of tensile strength and related properties in differentiating coniferous xylem. Wood Sci. 1969, 1: 137-147
    24. Kubler H. Studies on growth stresses in trees. Part I. The origin of growth stresses and the stresses in transverse direction. Holz als Roh-und Werkstoff. 1959a, 17: 1-9
    25. Zasada J C and Zahner R. Vessel element development in the earlywood of red oak (Quercus rubra).Canadian Journal of Botany. 1969, 47(10): 1965-1971
    26. Nicholson J E, Campbell G S and Bland D E. Association between wood characteristics and growth stress level: a preliminary study. Wood Sci. 1972, 5(2): 109-112
    27. Stockmann V E. Developing a hypothesis: native cellulose elementary fibrils are formed with metastable structure.Biapolymers.1972, 11(1): 251-270
    28. Bamber R K. Origin of growth stresses. Forpride Diges. 1978, 8(1): 75-90
    29. Cleland R. Cell wall extension. Ann.Rev. Plant Physiol. 1971, 22: 192-222
    30. Wardrop A B and Dadswell H E. The nature of reaction wood for the cellular ultrastructure of woody plants. Ed. by W.A. Cote Jr.Syracuse Yniv.Press. Syracuse. 1955
    31. Kubler H. Role of moisture in hygrothermal recovery of wood. Wood Sci. 1973a, 5(3): 198-204
    32. Okuyama T, Kawai A, Kikata Y and Yamamoto H. Proc. ⅩⅧIUFRO World Congress, Yugoslavia. 1986, 249-260
    33. Okuyama T, Yamomoto H, Yoshida M, Hattori Y and Archer R R. Growth stresses in tension wood: role of microfibrils and lignification. Ann. Sci For.1994, 51: 291-300
    34. Yamamoto H, Okuyama T, Yoshida M and Sugiyama K. Generation process of growth stresses in cell walls Ⅲ. Growth stress in compression wood. Mokuzai Gakkaishi. 1991, 37(2): 94-100
    35. Yamamoto H, Okuyama T, Sugiyama K and Yoshida M. Generation process of growth stresses in cell walls ⅣAction of the cellulose microfibril upon the generation of the tensile stresses. J. Jpn. Wood Res. Soc. 1992, 38: 107-113
    36. Okuyama T. Growth stresses in tree.木材学会志.1993, 39(7): 747-756
    37. Yamamoto H, Okuyama T and Yoshida M. Generation process of growth stresses in cell walls VI: analysis of the growth stress generation by using cell model having three layers (S1, S2 and I+P). J. Jpn. Wood Res. Soc. 1995, 41: 1-8
    38. Yamamoto H and Okuyama T. Analysis of the generation process of growth stresses in cell wall. 木材學會志. 1988, 34(10): 788-793
    39. Yamamoto H, Okuyama T and Yoshida M. Generation process of growth stresses in cell walls Ⅴ.Model of tensile stress generation in gelatinous fibers. Mokuzai Gakkaishi. 1993a, 39(2): 118-125
    40. Yamamoto H. Generation mechanism of growth stresses in wood cell walls: roles of lignin deposition and cellulose microfibril during cell wall maturation. Wood Science and Technology. 1998, 32: 171-182
    41. Terashima N A. new mechanism for formation of a structural ordered protolignin macromolecule in the cell wall of tree xylem J Pulp Paper Sci. 1990, 16: 150-155
    42. Yoshida M, Hosoo Y and Okuyama T. Periodicity as a factor in the generation of isotropic compressive growth stress between microfbrils in cell wall formation during a twenty-four hour period. Holzforschung. 2000a, 54: 469-473
    43. Chaffey N and Barlow P. The cytoskeleton facilitates a three-dimensional symplasmic continuum in the long-lived ray and axial parenchyma cells of angiosperm trees. Planta, 2001, 213: 811-823
    44. Donaldson L A. Abnormal lignin distribution in wood from severely drought stressed pinus radiata trees. IAWA Journal. 2002, 23(2): 161-178
    45. 殷亚方, 姜笑梅, 魏令波. 树木形成层的活动及其衍生木质部细胞的分化. 植物科学进展(第四卷). 高等教育出版社, 德国Springer 公司. 2001, 137-148
    46. Yoshizawa N, Inami A, Miyake F, Ishiguri S and Yokoya S. Anatomy and lignin distribution of reaction wood in two Magnolia species. Wood Science and Technology. 2000, 34: 183-196
    47. Nicholson, J E. A rapid method for estimating longitudinal growth stresses in logs. Wood Science and Technology. 1971, 5: 40-48
    48. Gerard J, Bailleres H, Fournier M and Thibaut B. Wood quality in plantation Eucalyptus -a study of variation in three reference properties. Bois et Forêts des Tropiques. 1995, 245(3): 101-110 (in French with English summary)
    49. Okuyama T, Sasaki Y, Kikata Y and Kawai N. The seasonal change in growth stresses in the tree trunk. J. of the Japan Wood Research Society. 1981, 24(2): 77-84
    50. Kubler H. Studies on growth stresses in trees. Part II. Longitudinal stresses. Holz als Roh-und Werkstoff.1959b, 17(2): 44-54
    51. 胡继青,姜笑梅,侯祝强,殷亚方. 三种人工林桉树轴向生长应变变异初探. 木材工业. 2000, 14(6): 9-11
    52. Okuyama T. Assessment of growth stresses and peripheral strain in standing trees. Proceedings of the IUFRO Conference on Silviculture and Improvement of Eucalypts. Salvador, Brazil. 1997, Aug. 24-29
    53. Wilkins A P and Kitahara R. Relationship between growth strain and rate of growth in 22 year-old Eucalyptus grandis. Australian Forestry. 1991a, 54: 95-98
    54. Wilkins A P and Kitahara R. Silvicultural treatments and associated growth rates, growth strains and wood properties in 12.5 year-old Eucalyptus grandis. Australian Forestry. 1991b, 54: 99-104
    55. Aggarwal P K, Chauhan S S, Karmarkar A and Ananthanrayana A K. Measurement of longitudinal growth strains in Eucalyptus tereticornis by strain gauge technique. Wood News. 1997a, 7(3): 27-30
    56. Aggarwal P K, Karmarkar A, Chauhan S S and Ananthanarayana A K. A rapid and non-destructive technique for estimating growth strains in trees and logs. Institute of Wood Science and Technology.Technical Bulletin. 1997b, 2: 8 Indian Council of Forestry Research and Education. Bangalore
    57. Aggarwal P K, Chauhan S S, Karmarkar A and Ananthanarayana A K. Distribution of growth stresses in logs of Acacia auriculiformis. Journal of Tropical Forest Products .1998, 4(1): 87-89
    58. Haines D W, Leban J and Herb C. Determination of Young's modulus for spruce, fir and isotropic materials by the resonance flexure method with comparisons to static flexure and other dynamic methods. Wood Science and Technology. 1996, 30: 253-263
    59. Haines D W and Leban J. Evaluation of the MOE of Norway spruce by the resonance flexures method. Forest Products Journal. 1997, 47(10): 91-93
    60. Kollmann F F P and C?téW A Jr. Principles of Wood Science and Technology. I. Solid Wood. Springer-Verlag. Berlin, Heidelberg, New York, Tokyo. 1984, 292
    61. Cave I D and Walker J C F. Stiffness of wood in fast-grown plantation softwoods: The influence of microfibril angle. For. Prod. J. 1994, 44(5): 43-48
    62. Evans R, Ilic J and Matheson A C. Rapid estimation of solid wood stiffness using SilivScan. In: Proceedings of 26th For. Prod. Res. Conf., CSIRO Forestry and Forest Products, Clayton, Australia, 2000, 49-50
    63. Evans R and Ilic J. Rapid prediction of wood stiffness from microfibril angle and density. For. Prod. J. 2001, 51(3): 53-57
    64. Nicholson J E, Barnacle J E and Lesse P F. Evidence of residual stress in small sections of ordinary green Eucalyptus regnans. Wood Science and Technology. 1973, 7: 20-28
    65. Mariaux A and Vitalis-Brun A. Relationship between fine structure in wapa and growth stresses. Bois et Forêts des Tropiques.1983, 199: 43-46
    66. Yoshida M and Okuyama T. Technique for measuring growth stress on the Xylem surface growth strain and dial gauges. Holzforschung. 2002, 56: 461-467
    67. Archer R R and Byrnes F E. On the distribution of tree growth stresses. Part Ⅰ:An anisotropic plane strain theory. Wood Sci. Technol. 1974, 8: 184-196
    68. Okuyama T and Kikata Y. The residual stress distribution in wood logs due to growth stresses. Mokuzai Gakkaishi .1975a, 12(6): 335-341
    69. Okuyama T and Sasaki Y. The residual stresses in wood logs due to growth stresses(Ⅳ) The growth stresses piled in the trunk. Mokuzai Gakkaishi. 1978, 24(2): 77-84
    70. Fournier M, Bordonne P A, Guitard D and Okuyama T. Growth stress patterns in tree stems. Wood Science and Technology. 1990, 24: 131-142
    71. 张文标, 李文珠, 阮锡根. 树木的生长应力. 世界林业研究.2001, 14(3): 29-34
    72. Abasolo W, Yoshida M, Yamamoto H and Okuyama T. Internal stress generation in rattan canes. IAWA Journal. 1999, 20(1): 45-48
    73. Mayer-Wegelin H and Mammen E.Tensions and tension splitting in standing Beech wood. Allg. Forst-und ?agdzeitung.1954, 125(9): 287-297
    74. Lenz O and Str?ssler H. Notes on the splitting of Beech logs(Fagus sylvatica). Schweizerische Anstalt für das Forstliche Versuchwesen.1959, 35(5): 373-409. CSIRO, Australia, Trans. No.2749
    75. Boyd J D. Relationship between fiber morphology, growth strain and physical properties of wood. Australian Forestry Research. 1980, 10: 337-360
    76. Nicholson, J.E. Growth stress differences in Eucalypts. Forest Science.1973b, 19(3):169-174
    77. Saurat J.and Gueneau P. Growth stresses in beech. Wood Sci. Tech. 1976, 10(2): 111-123
    78. Muneri A, Leggate W and Palmer G. Relationships between surface growth strain and some trees. wood and sawn timber characteristics of Eucalyptus cloeziana . S. Afr. For. J. 1999, 186: 41-49
    79. Yang J L, David F, Alastair C M. Growth strain in three provenances of plantation-grown Eucalyptus globules Labill. Australian Forestry. 2002, 64(4): 248-256
    80. Chafe S C. Variation in longitudinal growth stress with height in the trees of Eucalyptus nitens. Australia Forestry Research. 1985, 15: 51-55
    81. Chafe S C. Variations in longitudinal growth stress, basic density and modulus of elasticity with height in the tree. Aust. For. Res. 1981, 11: 79-82
    82. Wahyudi I, Okuyama T, HAdi Ys, Yamamto H, Yoshida M and Watanabe H. Growth stresses and strains in Acaia mangium. Forest Products Journal. 1999, 49(2): 77-81
    83. Sugiyama K, Okuyama T, Yamamoto H and Yoshida M. Generation process of growth stresses in cell walls: Relation between longitudinal released strain and chemical composition. Wood Science Technology. 1993, 27: 257-262
    84. Takayama S, Yoshida M and Okuyama T. Role of microfibrilar angle on compressive growth stress in juvenile Cryptomeria japonica . Nagoya University Forest Science.2001, 20:7-10
    85. Yoshida M, Okuda T and Okuyama T. Tension wood and growth stress induced by artificial inclination in Liriodendron tulipifera Linn. and Prunus spachiana Kitamura f. ascendens Kitamura. Ann. For. Sci. 2000b, 57: 739-746
    86. Taylor F W. Variations in the anatomical properties of South African grewn Eucalyptus grandis. Appita.1973, 5(3): 171-178
    87. Okuyama T, Yamamoto H and Watanabe H. Growth stresses and other wood qualities related to the growth rate in tropical man-made forest species. IUFRO WP S5.01-04. Biological improvement of wood properties proceeding 113-122.La Londe-Les-maures, Southern France. 1999, September, 5-12
    88. Clair B, Ruelle J and Thibaut B. Relationship between growth stress, mechanicalphysical properties and proportion of fibre with gelatinous layer in Chestnut (Castanea sativa Mill.) Holzforschung. 2003, 57: 189-195
    89. Sassus F. Déformations de maturation et propriétés du bois de tension chez le hêtre et le peuplier:Mesures er modèles. Ph. D Thesis. ENGREF, Montpellier. 1998
    90. Cortand C G, Jeronimidis G, Chanson B and Loup C. In Press. Comparison of mechanical properties of tension and normal wood in Populus. Wood Sci. Technol. 2002
    91. 宋永芳. 我国桉树资源的利用与展望. 林产化工通讯. 1998, 4: 3-7
    92. 翁继生, 李维甫. 桉树的加工利用. 建筑人造板. 2001, 2: 34-37
    93. Scott M H. The utilization of South African grown Eucalyptus saligna. Bulletin, Department of Forestry, Petoria, South Africa. 1950, 34:15
    94. Maree B and Malan F S. Growing for solid hardwood products -a South African experience and perspective. In The Future of Eucalypts for Wood Products, Proceedings of IUFRO Conference, Launceston, Tasmania, Australia, 19-24 March. 2000, 319-327
    95. Dadswell H E and Langlands I. Brittle heart and its relation to compression failures. Empire Forestry Journal. 1938, 17: 58-65
    96. 中澳合作项目课题组. 关于桉树生长应力的研究现状. 桉树科技. 2000, 1: 56-60
    97. 刘晓丽, 姜笑梅, 殷亚方. 树木生长应力研究进展. 植物科学进展(第六卷), 2004, 133-146
    98. Waugh G. Reducing growth stresses in standing trees. Australian Forest Research. 1977, 7: 215-218
    99. 费本华, 江泽慧, 赵荣军, 王喜明. 桉树人工林木材生长应变研究. 木材工业. 2004, 18(2): 18-20
    100. Boyd J D. Tree growth stresses. Ⅰ.Growth stress evaluation Australian Journal of Scientific Research, Series B, Biological Sciences. 1950a, 3(3): 270-293
    101. Boyd J D. Tree growth stresses. Ⅱ.Development of shakes and other visual failures in timber. Aust. J. Sci. 1950b, 1: 296-312
    102. Gillis P P. Theory of growth stresses. Holzforschung. 1973, 27(6): 197-207
    103. Chafe S C. Growth stress in trees. Aust. For. Res. 1979a, 9: 203-223
    104. Combes J G, Sassus F, Baillères H,Chanson B and Fournier M. Les bois de reaction: Relation entre la deformation longitudinale de maturation et les principales caractéristiques physico-mécaniques, anatomiques et chimiques.In:4ème Colloque Sciences et industries du Bois. Ed. Haluk. ARBOLOR, Nancy. 1996, 75-82
    105. Grzeskowiak V, Sassus F and Fournier M. Coloration macroscopique, retraits longitudinaux de maturation et de séchage du bois de tension du Peuplier (Populus ×euramericana cv.Ⅰ.214.). Ann. Sci. For. 1996, 53(6): 1083-1097
    106. Clair B and Thibaut B. Shrinkage of the gelatinous layer of poplar and beech tension wood. IAWA J. 2001, 22(2): 121-131
    107. Meylan B A. The influence of microfibril angle on the longitudinal shrinkage-moisture content relationship. Wood Sci. Technol. 1972, 6(4): 293-301
    108. Boyd J D. Compression wood force generation and functional mechanics. New Zealand. Journal of Forestry Science. 1973a, 3(2): 240-258
    109. Boyd J D. Helical fissures in compression wood cells: causative factors and mechanics of development. Wood Science and Technology. 1973b, 7(2): 92-111
    110. Nicholson J E, Hillis W E and Ditchburne N. Some tree growth-wood property relationships of eucalypts. Canadian Journal of Forest Research. 1975, 5: 424-432
    111. Chafe S C. Relationships among growth strain, density and strength properties in two species of eucalypts. Holzforschung. 1990, 44(6): 431-437
    112. Boyd J D. Tree growth stresses. Ⅰ.Growth stress evaluation Australian Journal of Scientific Research, Series B, Biological Sciences. 1950a, 3(3): 270-293
    113. Beck J L. Anisotropic theory of growth stresses. Phys. and Engr. Lab. Dept. Sci. and Ind Res Lower Hutt New Zeal, Rep. 1974, 452, 32pp
    114. Post I L. An incremental longitudinal growth stress distribution model. Holzforschung. 1979, 33: 107-111
    115. Wilson B F. and Archer RR. Reaction wood: Induction and mechanical action. Ann Rev Plant Physial. 1977, 28: 23-43
    116. Boyd J D and Foster R C. Tracheid anatomy changes as responses to changing structural requirements of the tree. Wood Sci. Technol. 1974, 8: 91-105
    117. Archer R R. On the distribution of tree growth stressesⅡ: Stresses due to asymmetric growth strains. Wood Sci. Tcdhnol. 1976, 10: 293-309
    118. Vendhan C P and Archer R R. Relief of asymmetric growth stresses in logs. Holzforschung. 1978, 32(4): 123-127
    119. 李静辉, 关明星, 方广盛, 吴永康, 徐震凡. 树木生长应力与测试分析(Ⅱ)-非均质各向异性体. 东北林业大学学报. 1994, 22(1): 86-91
    120. Kikata Y. The effect of lean on level of growth stress in Pinus densiflora. Journal of the Japan Wood Research Society.1972, 18(9): 443-449
    121. Okuyama T and Kikata Y. The residual stresses distribution in wood logs measured by thin layer removal method. J. Soc. Mat. Jap. 1975c, 24: 845-848
    122. Sasaki Y, Okuyama T and Kikata Y. Determination of the residual stress in a cylinder of inhomogeneous anisotropic material Ⅰ.Mokuzai Gakkaishi. 1981b, 27(4): 270-276
    123. Sasaki Y, Okuyama T and Kikata Y. Determination of the residual stress in a cylinder of inhomogeneous anisotropic materialⅡ. Mokuzai Gakkaishi. 1981a, 27: 277-282
    124. Okuyama T and Sasaki Y. Crooking during lumbering due to residual stresses in the tree. Mokuzai Gakkaishi. 1979, 25(11): 681-687
    125. Tejada A, Okuyama T, Yamamoto H and Yoshida M. Reduction of growth stress in logs by direct heat treatment assessment of a commercial –scale operation. Forest Products Journal. 1997, 47(9): 86-93
    126. Tahani N. Modélisation des contrainntes internes dans les matériaux orthotropes sylindriques:séchage d’un billon soumis àun gradient radial d’humidité.Thesis Doctorat I. N. P. de Lorraine. 1988
    127. Wahyudi I, Okuyama T, Hadi YS, Yamamoto H, Watanabe H.and Yoshida M. Relationship between released strain and growth rate in 39 year-old Tectona grandis planted in Indonesia. Holzforschung. 2001, 55: 63-66
    128. Wilhelmy V and Kubler H.Probe for measurement of strain inside solid states. Exp Mech.1973a,13:142-144
    129. Swaczyna I. The effect of conversion and steaming on the deformation of green beech wood. Holztechnologie. In German. 1979a, 20(1): 17-22
    130. Swaczyna I. Influence of splitting on the degree and the positon of linear deformations in swaing edge-grained boards. Holztechnologie. In German. 1979b, 20(3): 158-161
    131. 李坚等著. 木材波谱学. 北京: 科学出版社, 2003
    132. 管宁, 姜笑梅, 文小明. 木材材性株内径向变异模式研究初探. I. 论木材材性株内径向变异模式的系统研究. 林业科学. 1996, 32(4): 366—377
    133. 姜笑梅, 殷亚方, 浦上弘幸. 北京地区I -214 杨树木材解剖特性与基本密度的株内变异及其预测模型. 林业科学. 2003, 39(6): 115-121
    134. Bendtsen B A, and Senft J. Mechanical and anatomical properties in individual growth rings of plantation-grown eastern cotton wood and loblolly pine. Wood and Fiber Sci. 1986, 18(1): 23-38
    135. 鲍甫成, 江泽慧等著. 中国主要人工林树种木材性质. 北京: 中国林业出版社, 1998
    136. Bosman M T M, Kort I D et al . Radial variation in wood properties of naturally and plantation grown light red meranti ( Shorea dipterocarpaceae) , IAWA Journal, 1994, 15(2):111-120
    137. 费本华. 人工经济林银杏和板栗木材性质特点及变异规律的研究[J]. 中国林科院博士论文, 1999
    138. Herman M, Dutilleul P and Avella-Shaw T. Growth rate effects of on intra-ring and inter-ring trajectories of microfibril angle in Norway spruce(Picea abies). IAWA Journal. 1999, 20(1): 3-21
    139. Paul R B.Wood and fiber science.1985, 17(3): 351-360
    140. 徐有明, 林汉, 江泽慧等. 樟树人工林株间株内材性变异及其材性预测的研究. 林业科学. 2001, 37 (4): 92–98
    141. Okuyama K, Yamamoto H, Iguchi M and Yoshida M. Generation process of growth stresses in cell walls. Ⅱ.Growth stresses in tension wood. Mokuzai Gakkaishi.1990, 36(10): 797-803
    142. Helper P K, et al. Cytochemical localization of peroxidase activity in wound vessel members of Coleus. Can J Bot, 1972, 50: 977-983
    143. Donaldson L A. Mechanical constrains on lignin deposition during lignification. Wood Sci Technol, 1994, 28: 111-118
    144. Kim Y, Koh H B. Immune electron microscopic study on the origin of middle wood lignin. Holzforschung, 1997, 51: 411-413
    145. Saka S and Thomsa R J. A study of lignification in Loblolly pine tracheids by the SEM-EDXA technique. Wood Sci. Technol.1982c, 16: 167-179
    146. Eriksson I, et al. Lignin distribution in birch(Betula verrucose) as determined by mercerization with SEM-and TEM-EDXA. Wood Sci Technol, 1988, 22: 251-257
    147. Saka S and Goring DAI. The distribution of lignin in white birch as determined by bromination with TEM-EDXA. Hokforschung.1988, 42:149-153
    148. Fergus BJ and Goring DAI. The location of guaiacyl and syringyl lignins in birch xylem tissue.Holzforschung.1970, 24(4):113-117
    149. Takabe K, Miyauchi S, Tsunoda R and Fukazawa K. Distribution of guaiacyl and syringyl lignins in Japanese beech (Fagus crenata): variation within an annual ring. IAWA Bulletin n.s.1992, 13(1): 105-112
    150. 肖绍琼, 吴晋. 云南杉木G 木素分布的研究.西南林学院学报. 1996, 16(2): 105-108
    151. Yoshizawa N, Ohba H, Uchiyama J and Yokota S. Deposition of lignin in differentiating xylem cell walls of normal and compression wood of Buxus microphylla var. insularis Nakai.Holzforschung.1999, 53: 156-160
    152. He X Q, Cui K M and Li Z L. Dynamic changes in distribution of lingin and hemicelluloses in cell walls during differentiation of secondary xylem in Eucommia Ulmoides. Acta Bot Sin 2001, 43(9): 899-904
    153. 殷亚方. 毛白杨的形成层活动及其木材形成的组织和细胞生物学研究. 中国林业科学研究院博士学位论文. 2002
    154. Donaldson L A, Singh A P, Yoshinaga A and Takabe K. Lignin distribution in mild compression wood of Pinus radita Can. J. Bot. 1999, 77: 41-50
    155. Yoshizawa N, Watanabe N, Yokata S and Idei T. Distribution of guaiacyl and syringyl lignins in normal and compression wood of Buxus microphylla var. insularis Nakai. IAWA J.1993, 14(2): 139-151
    156. Yoshida M. Ohta H. Yamamoto H and Okuyama T. Tensile growth stress and lignin distribution in the cell walls of yellow poplar, Liriodendron tulipifera linn. Tree. 2002b, 16: 457-464
    157. Ryan K G. Preparation techniques for X-ray analysis in the transmission electron microscope of wood treated with copper-chrome-arsenate. Mater. Org. 1986, 21: 223-234
    158. Matsunage H J, Matsumra J, Oda K and Takechi Y. Microdistribtion of copper in Cryptomeria japonica sapwood fixed with CuAz preservative. Mokuzai Gakkaishi. 2002, 38: 199-204
    159. Mizuhira V. Elemental analysis of biological specimens by electron probe X-ray microanalysis. Acta Histochem.Cytochem. 1976, 9(1): 69-87
    160. 朱丽霞, 程乃乾, 高信曾. 生物学中的电子显微镜技术. 北京: 北京大学出版社, 1983
    161. Howitt D G, Thomas G and Toutolmin W. Comparison of the measurement of beam-current densities in an electron microscope using a Faraday cup and solid-state detector. J. Appl. Phys. 1976, 47(4): 1694-1696
    162. 成俊卿主编. 木材学. 北京: 中国林业出版社, 1985
    163. 戈尔茨坦J I.张大同译. 扫描电子显微技术与X 射线显微分析. 北京:科学出版社, 1988
    164. Wardrop A B. Lignification and Xylogenesis. In: Barnett J R, (ed) Xylem cell development. Kent: Castle House Publications Ltd., 1981, 115-146
    165. Donaldson L A. Critical assessment of interference microscopy as a technique for measuring lignin distribution in cell walls. New Zealand Journal of Forestry Science. 1985a, 15(3): 349-360
    166. Fergus B J and Goring D A I. The location of guaiacyl and syringyl lignins in birch xylem tissue. Holzforschung. 1970, 24(4): 113-117
    167. Scott J A N and Goring A I. Photolysis of wood microsections in the ultraviolet microscope. Wood Sci. and Tech. 1970, 4: 237-239
    168. Saka S and Thomsa R J. Evaluation of the quantitative assay of lignin distribution by SEM-EDXA technique. Wood Sci. Technol. 1982a, 16: 1-8
    169. Terashima N, Fukushima K and Sano H. Hetrogeneity in formation of lignin X. Visualization of lignification process in differentiation xylem of pine by microautoradiagraphy. Holzforschung, 1988, 42: 347-350
    170. Takabe K, et al. Autoradiographic investigation of lignification in the cell wall of cryptomeria (Cryptomeria japonicas). Mokuzai Gakkaishi, 1985, 31: 613-619
    171. Terashima N, Fukushima K. Hetrogeneity in formation of lignin XI. An autoradiagraphic study of the heterogeous formation and structure of pine lignin. Wood Sci. Technol, 1988, 22: 259-270
    172. Meshitsuka G and Nakano J. Studies on the mechanism of lignin color reaction(ⅩⅢ). Mokuzai Gakkaishi. 1979, 25: 588-594
    173. Sarkanen K V and Ludwig C H. Definition and nomenclature. In: Sarkanen K V, Ludwig C H(eds)Lignins. Wiley-Intersci Press, New York. 1971, 1-18
    174. Higuchi T. Biochemical studies of lignin formation. Physiol Plant. 1957, 10: 356-372
    175. He L and Terishima N. Formation and structural diversity of the lignin in the cell wall of sugarcane and rice plants studied by ultraviolet microscopic spectroscopy. Holzforschung. 1991, 45: 191-198
    176. Yoshinaga A et al. Secondary wall thickening and lignification of oak xylem components during latewood formation. Mokuzai Gakkaishi. 1997, 43: 377-383
    177. Lange P W.The distribution of lignin in the cell wall of normal and reaction wood from Spruce and a few hardwoods. Svensk Papperstidn.1954, 57: 525-532
    178. Scott J A N. Procter A R. Fergus B J and Goring D A I. The application of ultraviolet microscopy to the distribution of lignin in wood. Description and validity of the technique. Wood Sci. and Tech.1969, 3: 73-92
    179. Saka S, Thomas R J and Gratzl J S. Lignin distribution determination by energy-dispersive analysis of X rays. Tappi. 1978, 61(1): 73-76
    180. Matsunage H J, Matsumra J and Oda K. X-ray microanalysis using thin sections of preservative-treated wood: Relationship of wood anatomical features to the distribution of copper. IAWA J. 2004, 25(1): 79-90
    181. Saka S, Whiting P, Fukazawa F and Goring D A I. Comparative studies on lignin distribution by UV microscopy and bromination combined with EDXA. Wood Sci. Technol. 1982d, 16: 269-277
    182. Yang JM and Goring DAI. The phenolic hydroxyl content of lignin in spruce wood. Can. J.Chem.1980, 58:2411-2414
    183. Whiting P, Favis B D, St-Germain F G T and Goring D A I. Fractional separation of middle lamella and secondary wall tissue from spruce wood.J. Wood Chem.Technol.1981, 1: 29-42
    184. Watanabe H. A study of the origin of longitudinal growth stresses in tree stems. Presented at meeting of IUFRO section 41, October, 1965
    185. Dinwoodie M J. Growth stresses in timber-A review of literature. Forestry. 1966,39(2):162-170
    186. Stockmann VE. The effect of pulping on cellulose structure. Part Ⅱ. Fibrils contract longitudinally. TAPPI. 1971, 54: 2038-2045
    187. Bamber R K. The origin of growth stresses. IAWA Bull. 1987, 8:80-84
    188. Jutte S M. Tension wood in wane(Ocotea rubra Mez). Holzforschung. 1956, 10: 33-35
    189. Scurfield G and Wardrop A B. The nature of reaction wood. ⅦLignification in reaction wood. Aust. J. Bot. 1963, 11: 107-116
    190. Araki N, Fujita M, Saiki H and Harada H. Transition of the fiber wall structure from normal wood to tension wood in Robinia pseudoacacia L. and Populus euramericana Guinier. Mokuzai Gakkaishi. 1982, 28: 267-273
    191. Yoshida M, Ohta H, Yamamoto H and Okuyama T. Tensile growth stress and lignin distribution in the cell walls of black locust(Robinia pseudoacacia). J. Wood Sci. 2002a, 48: 99-105
    192. Mattheck C and Kubler H. Wood: the internal optimization of trees. Springer, Berlin Heidelberg New York. 1995
    193. Hejnowicz Z.Graviresponses in herbs and trees:a major role for the redistribution of issue and growth stresses. Planta. 1997, 203: S136-S146
    194. Baillères H, Chanson B, Fournier M, Tollie M Y and Monties B. Wood structure, chemical composition and growth strains in Eucalyptus clones(in French).Ann. Sci. For. 1995, 51: 157-172
    195. Terashima N. Higher order structure of protolignin in cell wall of tree xylem. International Symposium on Wood and Pulping Chemistry. Raleigh, 1989: 359-364
    196. Ryser U, et al. Structure cell wall proteins in protoxylem development: evidence for a repair process mediated by a glycine-rich protein. Plant J, 1997, 12(1): 97-111

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700