等离子体处理制备高效催化剂的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
负载型金属催化剂应用广泛,制备高效催化剂是提高效率、降低成本的关键。发展新的催化剂制备方法具有重要的现实和理论意义。本文对等离子体处理制备高效催化剂进行了系统研究,分析了制备方法与催化剂的物理化学性质和活性之间的关系,探讨了等离子体制备催化剂的共性特征,力图建立等离子体制备高效催化剂的方法体系。同时,鉴于能源和环境问题日益严峻,太阳能和生物质等可再生能源的利用受到越来越多的重视,本文分别选取用于光催化制氢和葡萄糖氧化的催化剂作为研究对象。
    利用等离子体增强的浸渍法制备了Pt/TiO_2催化剂,制备步骤包括:浸渍、等离子体处理、焙烧和还原。对于醇/水混合物制氢反应,等离子体制备的催化剂具有比常规催化剂更高的活性,当负载0.5wt%金属时,其活性是常规催化剂的2.3倍。金属负载量对等离子体制备的催化剂活性影响不大,而对常规催化剂影响极大。催化剂表征证明,等离子体处理将负载的氯铂酸还原为特殊金属团簇,焙烧后金属被氧化,同时与载体形成扭曲的金属-载体界面,导致增强的金属-半导体相互作用,使得催化剂的物理化学性质得到改善。等离子体制备的催化剂具有较高的金属分散性和稳定性,以及较强的近紫外区域吸光能力。同时,特殊的金属-载体界面有力地促进了电子从半导体到金属的传递速率,从而极大地提高催化效率。
    为了使氧化镍与载体之间生成一个金属夹层,提高负载NiO的半导体催化剂的效率,对金属-载体界面进行了设计和控制。常规方法包括:浸渍、焙烧分解、500℃还原和200℃氧化。在热分解过程中,镍原子由于热扩散进入载体体相,形成扩散的界面区域,没有获得理想的金属-载体界面。等离子体方法利用等离子体处理代替焙烧,在常温下使Ni(NO_3)_2迅速分解,红外照相测量等离子体的温度低于40℃,有效地避免了镍原子的热扩散,经过后续的还原-氧化过程,形成了界线分明的平整的金属-载体界面。等离子体处理还提高了金属-载体界面面积和金属分散性。在光催化中,扩散的界面会妨碍光生电荷的分离和传递,而平整金属-载体界面具有更高的电荷分离和传递效率。对于水分解反应,具有平整金属-载体界面的NiO/Ta_2O_5和NiO/ZrO_2的活性分别是常规催化剂的1.7倍和1.5倍。
    建立了等离子体还原负载型金属催化剂的方法。等离子体可以使H_2PtCl_6快速地还原为金属单质,获得高分散的非晶态金属团簇。对于光催化制氢,等离子体还原的Pt/TiO_2活性与氢还原催化剂相当,比化学还原和光沉积的催化剂高。在
Metal-loaded catalysts have been extensively used in chemical industry. Theoperating efficiency and cost depend on the activity of catalysts. The presentstate-of-art status of technologies for catalyst preparation is far from perfect and theexploring of new preparation method is necessary. In this dissertation, the plasmamethod was systematically investigated with the aim of establishing a new andeffective technique for the preparation of highly efficient catalysts. With regard to theincreasing interest in utilization of solar energy and biomass, the catalysts forphotocatalytic hydrogen generation and glucose oxidation were chose as the modelcatalysts.
    Pt/TiO_2 was prepared by a plasma-enhanced impregnation method includingimpregnation, glow discharge plasma treatment, calcination and reduction. For thephotocatalytic H2 from water/methanol mixture, such catalysts show significantlyhigh activity. Especially, the plasma-prepared 0.5wt%Pt/TiO_2 exhibits a 2.3 timeshigher activity when compared with the conventional one. The activity ofplasma-prepared catalysts does not change much with the amount of Pt loaded, whilethat of conventional catalysts is greatly dependent on the loading-amount. Catalystcharacterizations show that the plasma treatment produces novel metal clusters. Theseclusters are oxidized with calcinations in air. And a largely distorted metal-supportinterface is produced, inducing an enhanced metal-semiconductor interaction. Thisinteraction improves several properties of the catalysts such as metal dispersion andstability, and optical absorption in near UV region. Moreover, the novel metal-supportinterface greatly facilitates the electron transfer from the semiconductor to metalparticles, leads to remarkably high efficiency.
    The metal-support interface was designed and controlled to improve the activityof NiO-loaded semiconductor catalysts. In conventional method, semiconductors wereimpregnated with Ni(NO_3)_2, calcined, reduced at 500℃ and re-oxidized at 300℃.The nickel atoms migrate into the crystal of support during the thermal decomposition,and a diffused interfacial region is produced for the resulted catalysts. This is differentfrom the previously designed interface. A plasma treatment was used to replace thethermal calcination to decompose Ni(NO_3)_2. IR image shows that the temperature ofplasma is less than 40℃. Thus the thermal diffusion of nickel atoms is avoided. Withthe sequent reduction-oxidation treatment, a clean metal-support interface is produced
    which is identical to the designed one. In addition, the size and shape of nickelparticles are modified towards larger metal-support interface and larger metal surfacearea. In photocatalysis, the clean metal-support interface is favorable for theseparation of photoinduced charges and transfer of electron from the semiconductor toNiO. The activity for water splitting over NiO/Ta2O5 and NiO/ZrO2 with the cleanmetal-support interface is 1.7 and 1.5 times higher than those with the diffusedinterfacial region, respectively.A novel plasma reduction of metal-loaded catalysts was established. H2PtCl6 isquickly reduced into highly dispersed amorphous metals. For photocatalytic H2generation reaction, such plasma-reduced Pt/TiO2 shows an activity slightly higherthan the hydrogen-reduced sample, much higher than the chemical-reduced andphoto-deposited samples. The metal clusters are crystallized with calcinations in inertatmosphere, with the activity being improved.Pd/Al2O3 was reduced by the plasma method. PdCl2 is reduced into amorphousclusters. For glucose oxidation, this Pd/Al2O3 is as efficient as the hydrogen-reducedone. Thermal calcinations transfer the metal clusters into crystals but decrease theactivity, indicating that amorphous catalysts are more efficient for this reaction.The characteristics of the preparation of highly efficient catalysts using plasmatreatment were studied from the point view of plasma physics and cluster physics. Theplasma behaves similar to dusty plasma in the presence of catalyst powders. Thechemical and physical states of loaded metal are greatly modified by the plasmatreatment. The chemical bonds are elongated and distorted by coulomb repulsions,and then they are quickly split when collided with the energetic species in plasma.Furthermore, they can be reduced by the electrons produced in plasma. A criterion issuggested to determine whether the metal salts can be reduced or not. The ions pair(Mn+/M) with positive standard electrode potential can be reduced and vice verse.Novel amorphous metal (oxide) clusters with lattice defects and vacancies areproduced with the plasma treatment, which may be highly active in catalysis. Whencalcined in air, the defects and vacancies are occupied by oxygen atoms, and novelmetal-support interface is produced. Meanwhile, the clusters are crystallized intocrystals when calcined in inert atmosphere, and the lattice distortion may be healed.
引文
[1] Fujishima A, Honda K. Electrochemical photolysis of water at a semicondcutor electrode. Nature, 1972, 238: 37~38
    [2] 罗思 J. R. 工业等离子体工程基本原理(第一卷),北京:科学出版社,1998
    [3] Liu C, Vissokov G P, Jang B W-L. Catalyst preparation using plasma technologies. Catal. Today, 2002, 72: 173~184
    [4] 于开录,刘昌俊,夏清等. 低温等离子体技术在催化剂领域的应用,化学进展,2002, 14: 456~461
    [5] Vissokov G P. Plasma-chemical preparation and properties of catalysts used in synthesis of ammonia, J. Mater. Sci., 1998, 33: 3711~3720
    [6] Peev T M, Vissokov G P,Czako-Nagy I et al. Mossbauer spectra of unreduced catalysts for ammonia synthesis obtained in plasma, Appl. Catal., 1985, 19: 301~305
    [7] Vissokov G P. On the plasma-chemical synthesis and/or regeneration of ultradispersed catalysts for ammonia production. Catal. Today, 2002, 72: 197~203
    [8] Zou J, Vissokov G P, He F et al. Synthesis and characterization of ultra-fine Si3N4 by electric arc plasma. Plasma Sci. Tech., 2002, 4: 1127~1134
    [9] Vissokov G P, Pirgov P S. Experimental studies on the plasma-chemical synthesis of a catalyst for a natural gas reforming. Appl. Catal. A: General, 1998, 168: 229~233
    [10] Vissokov G P. Plasma chemical synthesis and regeneration (activation) of nanostructured catalysts for steam conversion of methane. Catal. Today, 2004, 98: 625~631
    [11] Vissokov G P. Plasma-chemical preparation of nanostructured catalysts for low-temperature steam conversion of carbon monoxide: properties of catalysts. Catal. Today, 2004, 98: 213~221
    [12] Zubowa H L, Lischke G, Parlitz B et al. Improvement of catalytic properties of SAPO-31 molecular sieves by using an activated form of SiO2. Appl. Catal., 1994, 110: 27~38
    [13] Li Y-L, Ishigaki T. Controlled one-step synthesis of nanocrystalline anatase and rutile TiO2 powders by in-flight thermal plasma oxidation. J. Phys. Chem. B, 2004, 108: 15536~15542
    [14] Ismagilov Z R, Podyacheva O Y, Solonenko O P et al. Application of plasma spraying in the preparation of metal-supported catalysts. Catal. Today, 1999, 51: 411~417
    [15] Halverson D E, Cocke D L. Ruthenium impregnation of plasma-grown alumina films. J. Vac. Sci. Technol., 1989, 7: 40~48
    [16] Khan H R, Frey H. Plasma spray deposition of LaMOx(M=Co, Mn, Ni) films and the investigations of structure, morphology and the catalytic oxidation of CO and C3H8. J. Alloys Compounds, 1993, 10: 209~214
    [17] Cao Y, Zhang X, Yang W et al. A bicomponent TiO2/SnO2 particulate film for photocatalysis. Chem. Mater., 2000, 12: 3445~3448
    [18] Asahi R, Morikawa T, Ohwaki et al. Visible-light photocatalysis in nitrogen-doped titanium oxide. Science, 2001, 293: 269~271
    [19] Khan S U M, Al-Shahry M, Ingler W B Jr. Efficient photochemical water splitting by a chemically modified n-TiO2. Science, 2002, 297: 2243~2245
    [20] Premkumar J. Development of super-hydrophilicity on nitrogen-doped TiO2 thin film surface by photoelectrochemical method under visible light. Chem. Mater., 2004, 16: 3980~3982
    [21] Linddgren T, Mwabora J M, Avendańo E et al. Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive DC magnetron sputtering. J. Phys. Chem. B, 2003, 107: 5709~5716
    [22] Arabatzis I M, Stergiopoulos T, Andreeva D et al. Characterization and photocatalytic activity of Au/TiO2 thin film for azo-dye degradation. J. Catal., 2003, 220: 127~135
    [23] Armelao L, Barreca D, Bottaro G et al. Au/TiO2 nanosystems: a combined rf-sputting/sol-gel approach. Chem. Mater., 2004, 16: 3331~3338
    [24] Shim H, Phillips J, Fonseca I M et al. Plasma generation of supported metal catalysts. Appl. Catal. A: General, 2002, 237: 41~51
    [25] 邹吉军. 使用淀粉改进等离子体甲烷、二氧化碳转化制含氧化合物,硕士学位论文,天津大学,2002
    [26] 李阳. 介质阻挡放电等离子体条件下甲烷转化的特性研究,博士学位论文,天津大学,2001
    [27] 崔锦华. 非平衡等离子体甲烷常压偶联研究,博士学位论文,天津大学,2002
    [28] Luo J, Suib S L, Hayashi Y et al. Emission spectroscopic studies of plasma-induced NO decomposition and water splitting. J. Phys. Chem. A, 1999, 103: 6151~6161
    [29] Mendez J A, Mendez E M, Lglesials M J et al. Modification of the surface chemistry of active carbon by means of microwave-induced treatments. Carbon, 1999, 37: 1115~1121
    [30] Takeuchi N. Modification of HY zeolite by microwave discharge. J. Electronchem. Soc. Jpn., 1995, 63: 164~169
    [31] Maesen T L M, Bruinsma D S L, Kouwenhoven H W et al. Use of radiofrequency plasma for low-temperature calcinations of zeolites. J.C.S. Chem. Commun. 1987: 1284~1285
    [32] Maesen T L M, Bruinsma D S L, Kouwenhoven H W et al. Template removal from molecular sieves by low-temperature plasma calcinations. J.C.S. Faraday Trans., 1990, 86: 3967~3970
    [33] Boyen H-G, K?stle G, Weigl F et al. Oxidation-resistant gold-55 clusters. Science, 2002, 297: 1533~1535
    [34] Sugiyama K, Anan G, Shimada T et al. Catalytic ability of plasma heat-treated metal oxides on vapor-phase Beckmann rearrangement. Surf. Coatings Tech., 1999, 112: 76~79
    [35] Furukawa K, Tian S R, Yamauchi H et al. Characterization of HY zeolite modified by a radio-frequency CF4 plasma. Chem. Phys. Lett., 2000, 318: 22~26
    [36] Dittmar A, Kosslick H, Herein D. Microwave plasma assisted preparation of disperse chromium oxide supported catalysts: influence of the microwave plasma treatment on the properties of the supports. Catal. Today, 2004, 89: 169~176
    [37] Nakamura I, Negishi N, Kutsuna S et al. Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal. J. Mol. Catal. A: Chem., 2000, 161: 205~212
    [38] Dadashova E A, Yagodovskaya T V, Shpiro E S et al. The synthesis of Fe2O3/ZSM-5 catalyst for carbon monoxide hydrogenation in glow discharge of oxygen and argon. Kinetics Catal., 1993, 34: 670~673
    [39] Zhang Y, Chu W, Cao W et al. A plasma-activated Ni/α-Al2O3 catalyst for the conversion of CH4 to syngas. Plasma Chem. Plasma Process., 2000, 20: 137~144
    [40] Kim S-S, Lee H, Na B-K et al. Plasma-assisted reduction of supported metal catalyst using atmospheric dielectric-barrier discharge. Catal. Today, 2004, 89: 193~200
    [41] He J, Ichinose I, Kunitake T et al. In situ synthesis of noble metal nanoparticles in ultrathin TiO2-gel films by a combination of ion-exchange and reduction process. Langmuir, 2002, 18: 10005~10010
    [42] Li Z-H, Tian S-X, Wang H-T et al. Plasma treatment of Ni catalyst via a corona discharge. J. Mol. Catal. A: Chem., 2004, 211: 149~153
    [43] Chen M H, Chu W, Dai X Y et al. New palladium catalysts prepared by glow discharge plasma for the selective hydrogenation of acetylene. Catal. Today, 2004, 89: 201~204
    [44] Qi S, Yang B. Methane aromatization using Mo-based catalysts prepared by microwave heating. Catal. Today, 2004, 98: 639~645
    [45] Blecha J, Dudas J, Lodes A et al. Activation of tungsten oxide catalyst on SiO2 surface by low-temperature plasma, J. Catal., 1989, 116: 285~290
    [46] Liu C, Wang J, Yu K et al. Floating double probe characteristics of non-thermal plasmas in the presence of zeolite. J. Electrostatics, 2002, 54: 149~158
    [47] Liu C, Cheng D, Zhang Y et al. Remarkable enhancement in the dispersion and low-temperature activity of catalysts prepared via novel reduction-calcination method. Catal. Surv. Asia, 2004, 8: 111~118
    [48] Liu C, Yu K, Zhang Y et al. Remarkable improvement in the activity and stability of Pd/HZSM-5 catalyst for methane combustion. Catal. Commun., 2003, 4: 303~307
    [49] Liu C, Yu K, Zhang Y et al. Characterization of plasma treated Pd/HZSM-5 catalyst for methane combustion. Appl. Catal. B: Envion., 2004, 47: 95~100
    [50] Yu K, Liu C, Zhang Y et al. The preparation and characterization of highly dispersed PdO over alumina for low-temperature combustion of methane. Plasma Chem. Plasma Process., 2004, 24: 393~403
    [51] Wang J, Liu C, Zhang Y et al. Partial oxidation of methane to syngas over plasma treated Ni-Fe/La2O3 catalyst. Chem. Lett., 2002: 1068~1069
    [52] Wang J, Liu C, Zhang Y et al. Partial oxidation of methane to syngas over glow discharge plasma treated Ni-Fe/Al2O3 catalyst. Catal. Today, 2004, 89: 183~191
    [53] Zhang Y-P, Ma P-S, Zhu X et al. A novel plasma-treated Pt/NaZSM-5 catalyst for NO reduction by methane. Catal. Commun., 2004, 5: 35~39
    [54] Wang J, Liu C, Fang Z et al. DFT study of structural and electronic properties of PdO/HZSM-5. J. Phys. Chem. B, 2004, 108: 1653~1659
    [55] Maruska P, Ghosh A K. Photocatalytic decomposition of water at semiconductor electrode. Solar Energy, 1978, 20: 443~458
    [56] 李越湘,吕功煊,李树庆. 半导体光催化分解水研究进展,分子催化,2001, 15: 72~79
    [57] 上官文峰. 太阳能光解水制氢的研究进展,无机化学学报,2001, 17: 619~625
    [58] Linsebigler A L, Lu G, Yates J T Jr. Photocatalysis on TiO2 surfaces: principles, mechanism, and selected results. Chem. Rev., 1995, 95: 735~758
    [59] Ashokkumar M. An overview on semiconductor particulate systems for photoproduction of hydrogen. Int. J. Hydrogen Energy, 1998, 23: 427~438
    [60] Kudo A. Photocatalyst materials for water splitting. Catal. Surv. Japn., 2003, 7: 31~38
    [61] Yamakata A, Ishibshi T, Onishi H. Time-resolved infrared absorption spectroscopy of photogenerated electrons in platinized TiO2 particles. Chem. Phys. Lett., 2001, 333: 271~277
    [62] Yamakata A, Ishibshi T, Onishi H. Kinetics of the photocatalytic water-splitting reaction on TiO2 and Pt/TiO2 studied by time-resolved infrared absorption spectroscopy. J. Mol. Catal. A: Chem., 2003, 199: 85~94.
    [63] Yamakata A, Ishibshi T, Onishi H. Electron-and hole-capture reactions on Pt/TiO2 photocatalyst exposed to methanol vapor studied with time-resolved infrared absorption spectroscopy. J. Phys. Chem. B, 2002, 106: 9122~9125
    [64] Bahnemann D W, Hilgendorff M, Memming R. Charge carrier dynamics at TiO2 particles: reactivity of free and trapped holes. J. Phys. Chem. B, 1997, 101: 4265~4275
    [65] Skinner D E, Colombo D P Jr., Cavaleri J J et al. Femtosecond investigation of electron trapping in semiconductor nanoclusters. J. Phys. Chem. 1995, 99: 7853~7856
    [66] Hoffmann M R, Martin S T, Choi W et al. Environmental applications of semiconductor photocatalysis. Chem. Rev., 1995, 95: 69~96
    [67] Vorontsov A V, Stoyanova I V, Kozlove D V I et al. Kinetics of the photocatalytic oxidation of gaseous acetone over platinized titanium dioxide. J. Catal., 2000, 189: 360~369
    [68] Gao H, Guan N, Chen J et al. Titania supported Pd-Cu bimetallic catalyst for the reduction of nitrate in drinking water. Appl. Catal. B: Envion., 2003, 46: 341~351
    [69] Chiang K, Lim T M, Tsen L et al. Photocatalytic degradation and mineralization of bisphenol A by TiO2 and platinized TiO2. Appl. Catal. A: General, 2004, 261: 225~237.
    [70] Falconer J L, Margrini-Bair K A. Photocatalytic and thermal catalytic oxidation of acetaldehyde on Pt/TiO2. J. Catal., 1998, 179: 171~178
    [71] Kawai T, Sakata T. Photocatalytic hydrogen production from liquid methanol and water. J.C.S. Chem. Comm., 1980: 694~695
    [72] Ohno T, Haga D, Fujihara K. Unique effects of iron(III) ions and photoelectrochemical properties of titanium dioxide. J. Phys. Chem. B, 1997, 101: 6415~6419
    [73] Domen K, Kudo A, Ohishi T. Mechanism of photocatalytic decomposition of water into H2 and O2 over NiO-SrTiO3. J. Catal., 1986, 102: 82~98
    [74] Hara K, Sayama K, Arakawa H. UV photoinduced reduction of water to hydrogen in Na2S, Na2SO3, and Na2S2O4 aqueous solutions. J. Photochem. Photobiol. A: Chem., 1999, 128: 27~31
    [75] Mills A, Porter G. Photosensitised dissociation of water using dispersed suspensions of n-type semiconductor. J.C.S. Faraday Trans. 1, 1982, 78: 3659~3669
    [76] Sakata T, Kawai T. Heterogeneous photocatalytic production of hydrogen and methane from ethanol and water. Chem. Phys. Lett., 1981, 80: 341~344
    [77] Maruyama T, Nishimoto T. Hydrogen evolution over a powdered semiconductor photocatalyst. Ind. Eng. Chem. Res., 1991, 30: 1634~1638
    [78] Wu N-L, Lee M-S, Pon Z-J et al. Effect of calcinations atmosphere on TiO2 photocatalysis in hydrogen production from methanol/water solution. J. Photochem. Photobiol. A: Chem., 2004, 163: 277~280
    [79] Bowker M, James D, Stone D et al. Catalysis at the metal-support interface: exemplified by the photocatalytic reforming of methanol on Pd/TiO2. J. Catal., 2003, 217: 427~433
    [80] Hussein F H, Rudham R. Photocatalytic dehydrogen of liquid alcohols by platinized antase. J.C.S. Faraday Trans. 1, 1987, 83: 1631~1639
    [81] Kawai T, Sakata T. Conversion of carbohydrate into hydrogen fuel by a photocatalytic process. Nature, 1980, 286: 474~476
    [82] Hashimoto K, Sakata T, Kawai T. Photocatalytic reactions of hydrocarbons and fossil fuels with water: hydrogen production and oxidation. J. Phys. Chem., 1984, 88: 4083~4088
    [83] Sakata T, Kawai T. Photocatalytic hydrogen production from water by decomposition of polyvinylchloride, protein, algae, dead insects, and excrement. Chem. Lett., 1981: 81~84
    [84] Li Y, Lu G, Li S. Photocatalytic hydrogen generation and decomposition of oxalic acid over platinized TiO2. Appl. Catal. A: General, 2001, 214: 179~185
    [85] Anpo M, Takeuchi M. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. J. Catal., 2003, 216: 505~516
    [86] Furube A, Asahi T, Masuhara H et al. Directly observation of a picosecond charge separation process in photoexcited platinum-loaded TiO2 particles by femtosecond diffuse reflectance spectroscopy. Chem. Phys. Lett., 2001, 336: 424~430
    [87] Sato S, While J M. Photodecomposition of water over Pt/TiO2 catalyst. Chem. Phys. Lett., 1980, 72: 83~86
    [88] Yamaguti K, Sato S. Photolysis of water over metallized powdered titanium dioxide. J.C.S. Faraday Trans. 1, 1985, 81: 1273~1276
    [89] Kawai T, Sakata T. Photocatalytic decomposition of gaseous water over TiO2 and TiO-RuO2 surface. Chem. Phys. Lett., 1980, 72: 87~89
    [90] Escudero J C, Cervera-March S, Giménez J et al. Preparation and characterization of Pt(RuO2)/TiO2 catalyst: test in a continuous water photolysis system. J. Catal., 1990, 123: 319~332
    [91] Sayama K, Arakawa H. Effect of carbonate salt addition on the photocatalytic decomposition of liquid water over Pt-TiO2 catalyst. J.C.S. Faraday Trans., 1997, 93: 1647~1654
    [92] Sayama K, Arakawa H. Significant effect of carbonate addition on stiochiometric photodecomposition of liquid water into hydrogen and oxygen from platinum-titanium(IV) oxide. J.C.S. Chem. Commun., 1992, 150~152
    [93] Sayama K, Arakawa H. Photocatalytic decomposition of water and photocatalytic reduction of carbon dioxide over ZrO2 catalyst. J. Phys. Chem., 1993, 97: 531~533
    [94] Sayama K, Arakawa H. Effect of Na2CO3 addition on photocatalytic decomposition of liquid water over various semiconductor catalysts. J Photochem. Photobiol. A: Chem., 1994, 77: 243~247
    [95] Arakawa H, Sayama K. Solar hydrogen production. Significant effect of Na2CO3 addition on water splitting using simple oxide semiconductor photocatalysts. Catal. Surv. Japn., 2000, 4: 75~80
    [96] Abe R, Sayama K, Arakawa H. Significant effect of iodide addition on water splitting into H2 and O2 over Pt-loaded TiO2 photocatalyst: suppression of backward reaction. Chem. Phys. Lett., 2003, 371: 360~364
    [97] Moon S-C, Mametsuka H, Tabata S. Photocatalytic production of hydrogen from water using TiO2 and B/TiO2. Catal. Today, 2000, 58: 125~132
    [98] Moon S-C, Mametsuka H, Suzuki E et al. Stoichiometric decomposition of pure water over Pt-loaded Ti/B binary oxide under UV-irradiation. Chem. Lett., 1998: 117~118
    [99] Miyao T, Suzuki Y, Naito S. Hydrogen formation by the photodecomposition of water over Pt/TiO2 suspended in a water in oil emulsion. Chem. Lett., 2000, 66: 197~200
    [100] Harada H. Sonophotocatalytic decomposition of water using TiO2 photocatalyst. Ultrasonics Sonochemistry, 2001, 8: 55~58
    [101] Hurum D C, Agrios A G, Gray K A et al. Explaining the enhanced photocatalytic activity of Degusssa P25 mixed-phase TiO2 using EPR. J. Phys. Chem. B, 2003, 107: 4545~4549
    [102] Brus L. Electronic wave function in semiconductor clusters: experiment and theory. J. Phys. Chem., 1986, 90: 2555~2560
    [103] Kormann C, Bahnemann D W, Hoffmann M R. Preparation and characterization of quantum-size titanium dioxide. J. Phys. Chem., 1988, 92: 5196~5201
    [104] Duonghong D, Borgarello E, Gr?tzel M. Dynamic of light-induced water cleavage in colloidal systems. J. Am. Chem. Soc., 1981, 103: 4685~4690
    [105] Choi W, Termin A, Hoffmann M R. The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem., 1994, 98: 13669~13679
    [106] Litter M I, Navio J A. Photocatalytic properties of iron-doped titanium semiconductors. J. Photochem. Photobiol. A: Chem., 1996, 98: 171~181
    [107] Kato H, Kudo A. Visible-light-response photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium. J. Phys. Chem. B., 2002, 106: 5029~5034
    [108] Xu A-W, Gao Y, Liu H-Q. The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles. J. Catal., 2002, 207: 151~157
    [109] Karakitsou K, Verkios X E. Effects of altervalent cation doping of TiO2 on its performance as a photocatalyst for water cleavage. J Phys. Chem., 1993, 97: 1181~1189
    [110] Wang C, B?ttcher C, Bahnemann D W et al. A comparative study of nanometer sized Fe(III)-doped TiO2 photocatalysts: synthesis, characterization and activity. J. Mater. Chem., 2003, 13: 2322~2329
    [111] Sperone N, Lawless D, Disdier J et al. Spectroscopic, photoconductivity, and photocatalytic studies of TiO2 colloids: naked and with the lattice doped with Cr3+, Fe3+, and V5+ cations. Langmuir, 1994, 10: 643~652
    [112] Wang, C, Pagel R, Bahnemann D W et al. Quantum yield of formaldehyde formation in the presence of colloidal TiO2-based photocatalysts: effect of intermittent illumination, platinization, and deoxygenation. J. Phys. Chem. B, 2004, 108: 14082~14092
    [113] Zhang Z, Wang C-C, Zakaria R et al. Role of particle size in nanocrystalline TiO2-based photocatalysts. J. Phys. Chem. B, 1998, 102: 10871~10878
    [114] Sato S. Photocatalytic activity of NOx-doped TiO2 in the visible light region. Chem. Phys. Lett., 1986, 123: 126~128
    [115] Ohno T, Akiyoshi M, Umebayashi T et al. Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Appl. Catal. A: General, 2004, 265: 115~121
    [116] Luo H, Takata T, Lee Y et al. Photocatalytic activity enhancing for titanium dioxide by co-doping with bromine and chlorine. Chem. Mater., 2004, 16: 846~849
    [117] Diwald O, Thompson T L, Zubkov T et al. Photochemical activity of nitrogen-doped rutile TiO2(111) in visible light. J. Phys. Chem. B, 2004, 108: 6004~6008
    [118] Burda C, Lou Y, Chen X et al. Enhanced nitrogen doping in TiO2 nanoparticles. Nano Lett., 2003, 3: 1049~1051
    [119] Premkumar J. Development of super-hydrophilicity on nitrogen-doped TiO2 thin film surface by photoelectrochemical method under visible light. Chem. Mater., 2004, 16: 3980~3982
    [120] Linddgren T, Mwabora J M, Avendańo E. et al. Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive DC magnetron sputtering. J. Phys. Chem. B, 2003, 107: 5709~5716
    [121] 张向华,李文钊,徐恒泳等. 分子筛在光催化中的应用,化学进展, 2004, 16: 728~737
    [122] Takahara Y, Kondo J N, Takata T et al. Mesoporous tantalum oxide. 1. Characterization and photocatalytic activity for the overall water decomposition. Chem. Mater., 2001, 13: 1194~1199
    [123] Domen K, Naito S, Soma M et al. Photocatalytic decomposition of water vapour on an NiO-SrTiO3 catalyst. J.C.S. Chem. Comm., 1980: 543~544
    [124] Domen K, Naito S, Tamaru K. Photocatalytic decomposition of liquid water on a NiO-SrTiO3 catalyst. Chem. Phys. Lett., 1982, 92: 433~434
    [125] Domen K, Kudo A, Onishi T et al. Photocatalytic decomposition of water into hydrogen and oxygen over nickel(II) oxide-strontium titanate (SrTiO3) powder. 1. Structure of the catalysts. J. Phys. Chem., 1986, 90: 292~295
    [126] Domen K, Naito S, Onishi T et al. Study of the photocatalytic decomposition of water vapor over a NiO-SrTiO3 catalyst. J. Phys. Chem., 1982, 86: 3657~3661
    [127] Sayama K, Arakawa H. Remarkable effect of Na2CO3 addition on photodecomposition of liquid water into H2 and O2 from suspension of semiconductor powder loaded with various metals. Chem. Lett., 1992: 253~256
    [128] Mizoguchi H, Ueda K, Orita M et al. Decomposition of water by a CaTiO3 photocatalyst under UV light irradiation. Mater. Res. Bull., 2002, 37: 2401~2406
    [129] Kato H, Kudo A. Photocatalytic water splitting into H2 and O2 over various tantalite photocatalysts. Catal. Today, 2003, 78: 561~569
    [130] Kato H, Kudo A. New tantalate photocatalysts for water decomposition into H2 and O2. Chem. Phys. Lett., 1998, 295: 487~492
    [131] Kato H, Kudo A. Highly efficient decomposition of pure water into H2 and O2 over NaTaO3 photocatalysts. Catal. Lett., 1999, 58: 153~155
    [132] Kato H, Kudo A. Water splitting into H2 and O2 on alkali tatalate photocatalysts ATaO3. J. Phys. Chem. B, 2001, 105: 4285~4292
    [133] Kudo A, Kato H. Effect of lanthanide-doping into NaTaO3 photocatalysts for efficient water splitting. Chem. Phys. Lett., 2000, 331: 373~377
    [134] Kato H, Asakuru K, Kudo A. Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. J. Am. Chem. Soc., 2003, 125: 3082~3089
    [135] Kudo A, Kato H, Tsuji I. Strategies for the development of visible-light-driven photocatalysts for water splitting. Chem. Lett., 2004, 33: 1534~1539
    [136] Kato H, Kudo A. Photocatalytic reduction of nitrate ions over tantalite photocatalysts. Phys. Chem. Chem. Phys., 2002, 4: 2833~2838
    [137] Kudo A. Development of photocatalyst materials for water splitting with the aim at photon energy conversion. J. Ceramic Soc. Japn., 2001, 109: S81~S88
    [138] Takata T, Tanaka A, Hara M et al. Recent progress of photocatalysts for overall water splitting. Catal. Today, 1998, 44: 17~26
    [139] Domen K, Kondo J N, Hara M et al. Photo-and mechano-catalytic overall water splitting reactions to form hydrogen and oxygen on heterogeneous catalysts. Bull. Chem. Soc. Jpn., 2000, 73: 1307~1331
    [140] Kudo A, Tanaka A, Domen K et al. Photocatalytic decomposition of water over NiO-K4Nb6O17 catalyst. J. Catal., 1988, 111: 67~76
    [141] Kudo A, Sayama K, Tanaka A et al. Nickel-loaded K4Nb6O17 photocatalyst in the decomposition of H2O into H2 and O2: structure and reaction mechanism. J. Catal., 1989, 120: 337~352
    [142] Kim Y II, Salim S, Huq M J et al. Visible light photolysis of hydrogen iodide using sensitized layered semiconductor particles. J. Am. Chem. Soc., 1991, 113: 9561~9563
    [143] Saupe G B, Mallouk T E, Kim W et al. Visible light photolysis of hydrogen iodide using sensitized layered metal oxide semiconductors: the role of surface chemical modification in controlling back electron transfer reactions. J. Phys. Chem. B, 1997, 101: 2508~2513
    [144] Kim H G, Hwang D W, Kin J et al. Highly donor-doped (110) layered perovskite materials as novel photocatalysts for overall water splitting. Chem. Commun., 1999: 1077~1078
    [145] Hwang D W, Kim H G, Kin J et al. Photocatalytic water splitting over highly donor-doped (110) layered perovskites. J. Catal., 2000, 193: 40~48
    [146] Kudo A, Kato H, Nakagawa S. Water splitting into H2 and O2 on new Sr2M2O7 (M = Nb and Ta) photocatalysts with layered perovskite structures: factors affecting the photocatalytic activity. J. Phys. Chem. B, 2000, 104: 571~575
    [147] Takata T, Furumi Y, Shinohara K et al. Photocatalytic decomposition of water on spontaneously hydrated layered pervoskites. Chem. Mater., 1997, 9: 1063~1064
    [148] Ikeda S, Hara M, Kondo J N et al. Preparation of a high active photocatalyst, K2La2Ti3O10 by a polymerized complex method and its photocatalytic activity of water splitting. J. Mater. Res., 1998, 13: 852~855
    [149] Gopalakrishnan J, Sivakumar T, Thangadurai V et al. A[Bi3Ti4O13] and A[Bi3PbTi5O16] (A = K, Cs): new n = 4 and n = 5 members of the layered pervoskite series. A[A'n-1BnO3n+1], and their hydrates. Inorg. Chem., 1999, 38: 2802~2806
    [150] Zou Z, Ye J, Abe R et al. Photocatalytic decomposition of water with Bi2InNbO7. Chem. Lett., 2000, 68: 235~239
    [151] Tang J, Zou Z, Ye J. Effect of substituting Sr2+ and Ba2+ for Ca2+ on the structural properties and photocatalytic behaviors of CaIn2O4. Chem. Mater., 2004, 16: 1644~1649
    [152] Takata T, Shinohara K, Tanaka A et al. A highly active photocatalyst for overall water splitting with a hydrated layered perovskite structure. J. Photochem. Photobiol. A: Chem., 1997, 106: 45~49
    [153] Yamakata A, Ishibashi T, Kato H et al. Photodynamics of NaTaO3 catalyst for efficient water splitting. J. Phys. Chem. B, 2003, 107: 14383~14387
    [154] Haber J, Witko M. Oxidation catalysis-electronic theory revisited. J. Catal., 2003, 216: 416~424
    [155] Datye A K, Kalakkad D S, Yao M H et al. Comparison of metal-support interactions in Pt/TiO2 and Pt/CeO2. J. Catal., 1995, 155: 148~153
    [156] Braunschweig E J, Logan A D, Datye A K et al. Reversibility of strong metal-support interactions on Rh/TiO2. J. Catal., 1989, 118: 227~237
    [157] Reyes P, Aguirre M C, Melián-Cabrera I et al. Interfacial properties of an Ir/TiO2 system and their relevance in crotonaldehyde hydrogenation. J. Catal., 2002, 208: 229~237
    [158] Tauster S J, Fung S C, Garten R L. Strong metal-support interactions. Group 8 noble metals supported on TiO2. J. Am. Chem. Soc., 1978, 100: 170~175
    [159] Bell A T. The impact of nanoscience on heterogeneous catalysis. Science, 2003, 299: 1688~1691
    [160] Litter M I. Heterogeneous photocatalysis: transition metal ions in photocatalytic systems. Appl. Catal. B: Envion., 1999, 23: 89~114
    [161] Kraeutler B, Bard A J. Heterogeneous photocatalytic preparation of supported catalysts. Photodeposition of platinum on TiO2 powder and other substrates. J. Am. Chem. Soc., 1978, 100: 4317~4318
    [162] Zhang F, Guan N, Li Y et al. Control of morphology of silver clusters coated on titanium dioxide during photocatalysis. Langmuir, 2003, 19: 8230~8234
    [163] Mardare D, Tasca M, Dlibas M et al. On the structural properties and optical transmittance of TiO2 r.f. sputtered thin films. Appl. Surf. Sci., 2000, 156: 200~206
    [164] Khoobiar S. Particle to particle migration of hydrogen atoms on platinum-alumina catalysts from particle to neighboring particles. J. Phys. Chem., 1964, 68: 411~412
    [165] Perrichon V, Retailleau L, Bazin P et al. Metal dispersion of CeO2-ZrO2 supported platinum catalysts measured by H2 or CO chemisorption. Appl. Catal. A: General, 2004, 260, 1~8
    [166] Nakato Y, Tsubomura H. Structure and function of thin metal layers on semiconductor electrodes. J. Photochem., 1985, 29: 157~166
    [167] Munuera G, González-Elipe A R, Fernández A et al. Spectroscopic characterization and photochemical behavior of a titanium hydroxyperoxo compound. J.C.S. Faraday Trans. 1, 1989, 85: 1279~1290
    [168] Yamakata A, Ishibashi T, Onishi H. Effects of water addition on the methanol oxidation on Pt/TiO2 photocatalyst studied by time-resolved infrared absorption spectroscopy. J. Phys. Chem. B, 2003, 107: 9820~9823
    [169] Yamakata A, Ishibashi T, Onishi H. Effects of accumulated electrons on the decay kinetics of photogenerated electrons in Pt/TiO2 photocatalyst studied by time-resolved infrared absorption spectroscopy. J. Photochem. Photobiol. A: Chem., 2003, 160: 33~36
    [170] Yamakata A, Ishibashi T, Onishi H. Microsecond kinetics of photocatalytic oxidation on Pt/TiO2 traced by vibrational spectroscopy. Chem. Phys. Lett., 2003, 376: 576~580
    [171] Wang R, Sakai N, Fujishima A et al. Studies of surface wettability conversion on TiO2 single-crystal surfaces. J. Phys. Chem. B, 1999, 103: 2188~2194
    [172] Dakin J T. Nonequilibrium lighting plasmas. IEEE Trans. Plasma Sci., 1991, 19: 991~1002
    [173] Scaife D E. Oxide semiconductors in photoelectrochemical conversion of solar energy. Solar Energy, 1980, 25: 41~54
    [174] Hope G, Bard A J. Platinum/titanium dioxide (rutile) interface. Formation of ohmic and recitifying junctions. J. Phys. Chem., 1983, 87: 1979~1984
    [175] Nozik A J, Memming R. Physical chemistry of semiconductor-liquid interfaces. J. Phys. Chem., 1996, 100: 13061~13078
    [176] Nguyen T-V, Yang O-B. Photoresponse and AC impedace characterization of TiO2-SiO2 mixed oxide for photocatalytic water decomposition. Catal. Today, 2000, 87: 69~75
    [177] Vorontsov A V, Dubovitskaya V P. Selectivity of Photocatalytic oxidation of gaseous ethanol over pure and modified TiO2. J. Catal., 2004, 221: 102~109
    [178] Mallick K, Witcomb M J, Scurrell M S. Supported gold catalysts prepared by in situ reduction technique: preparation, characterization and catalytic activity measurements. Appl. Catal. A: General, 2004, 259: 163~168
    [179] Fu X, Zeltner W A, Anderson M A. The gas-phase photocatalytic mineralization of benzene on porous titania-based catalysts. Appl. Catal. B: Environ., 1995, 6: 209~224
    [180] Deng J-F, Li H, Wang W. Progress in design of new amorphous alloy catalysts. Catal. Today, 1999, 51: 113~125
    [181] Lee S-P, Chen Y-W. Nitrobenzene hydrogen on Ni-P, Ni-B and Ni-P-B ultrafine materials. J. Mol. Catal. A: Chem., 2000, 152, 213~223
    [182] Wang L, Li W, Zhang M et al. The interaction between the NiB amorphous alloy and TiO2 support in the NiB/TiO2 amorphous catalysts. Appl. Catal. A: General, 2004, 259: 185~190
    [183] Kraeutler B, Bard A J. Heterogeneous photocatalytic preparation of supported catalysts. Photodeposition of platinum on TiO2 powder and other substrates. J. Am. Chem. Soc., 1978, 100: 4317~4318
    [184] Sato S. Photoelectrochemical preparation of Pt/TiO2 catalysts. J. Catal., 1985, 92: 11~16
    [185] Beck K M, Sasaki T, Koshizaki N. Characterization of nanocomposite materials prepared by laser ablation of Pt/TiO2 bi-combinant targets. Chem. Phys. Lett., 1999, 301: 336~342
    [186] Fu J, Hu R, Zhang W et al. Preparation and characterization of gold thin film electrode modified by microbe. Chinese Chem. Lett., 1999, 10: 311~312
    [187] 孙道华,李清彪,凌学萍等. 细菌还原法制备负载型钯催化剂及其表征,第九届全国化学工艺年会论文集,中国石化出版社,2005: 618~621
    [188] Doneva T, Bassiliet C, Donev R. Catalytic and biocatalytic oxidation of glucose to gluconic acid in a modified three-phase reactor. Biotech. Lett., 1999, 21: 1107~1111
    [189] Gallezot P, Selective oxidation with air on metal catalysts. Catal. Today, 1997, 37: 405~418
    [190] Abbadi A, Bekkum H. Effect of pH in the Pt-catalyzed oxidation of D-glucose to D-gluconic acid. J. Mol. Catal. A: Chem., 1995, 97: 111~118
    [191] Wekin W, Touillaux R, Ruiz P et al. Influence of metallic precursors on the properties of carbon-supported bismuth-promoted palladium catalysts for the selective oxidation of glucose to gluconic acid. Appl. Catal. A: General, 1996, 148: 181~199
    [192] Besson M, Lahmer F, Gallezot P et al. Catalytic oxidation of glucose on bismuth-promoted palladium catalysts. J. Catal., 1995, 152: 116~121
    [193] Karski S, Witońska I. Bismuth as an additive modifying the selectivity of palladium catalysts. J. Mol. Catal. A: Chem., 2003, 191: 87~92
    [194] Nikov I, Paev K. Palladium on alumina catalyst for glucose oxidation: reaction kinetics and catalyst deactivation. Catal. Today, 1995, 24: 41~47
    [195] http://chemelab.ucsd.edu/gluoxi02/finalreport.html
    [196] Sistiaga M, Pierna A R. Application of amorphous materials for fuel cells. J. Non-Crystalline Solids, 2003, 329: 184~187
    [197] Takahashi T, Inoue M, Kai T. Effect of metal composition on hydrogen selectivity in steam reforming of methanol over catalysts prepared from amorphous alloys. Appl. Catal. A: General, 2001, 218: 189~195
    [198] Li H, Wang W, Deng J F. Glucose hydrogenation to sorbitol over a skeletal Ni-P amorphous alloy catalyst (Raney Ni-P). J. Catal., 2000, 191, 257~260
    [199] 顾琅. 等离子体加工过程中尘埃微粒的行为研究. 力学进展,1997, 27: 56~69
    [200] Mendis D A. Progress in the study of dusty plasmas. Plasma Sources Sci. Technol., 2002, 11: A219~A228
    [201] Lin I, Lai Y-J, Juan W-T et al. Fine particles in dusty plasmas. Vacuum, 2002, 285~291
    [202] Alexeff I, Pace M. A dust plasma. IEEE Trans Plasma Sci., 1994, 22: 136~137
    [203] Tsytovich V N, Vladimirov S V, Benkadda S. Dust-plasma sheath: A new dissipative self-organized structure. Phys. Plasma, 1999, 6: 2972~2975
    [204] Schweigert I V, Schweigert V A, Melzer A et al. Melting of dust crystals with defects. Phys. Rev. E, 2000, 62: 1238~1244
    [205] Chu J H, Lin I. Direct observation of coulomb crystals and liquids in strongly coupled rf dusty plasmas. Phys. Rev. Lett., 1994, 72: 4009~4012
    [206] Pieper J B, Goree J, Quinn Q A. Three-dimensional structure in a crystallized dusty plasma. Phys. Rev. E, 1996, 54: 5636~5640
    [207] Hebner G A, Riley M E, Marder B M. Attractive interaction between negatively charged dust particles levitated at the plasma-sheath boundary layer. IEEE Trans Plasma Sci., 2005, 33: 396~397
    [208] 王广厚. 团簇物理学,上海:上海科技出版社,2003
    [209] Zweiback J, Ditmire T, Perry M D. Femtosecond time-resolved studies of the dynamics of noble-gas cluster explosions. Phys. Rev. E, 1999, 59: R3166~R3169
    [210] D?ppner T, Fennel Th, Diederich Th et al. Controlling the coulomb explosion of silver clusters by femtosecond dual-pulse laser excitation. Phys. Rev. Lett., 2005, 94: 013401
    [211] Wang Y-N, Qiu H-T, Miskovic Z L. Coulomb explosion patterns of fast C60 clusters in solids. Phys. Rev. Lett., 2000, 85: 1448~1451
    [212] Wang G-Y, Wang Y-N, Miskovic Z L. Coulomb explosion and energy loss of fast C60 clusters in plasmas. Phys. Plasma, 2005, 12: 042702
    [213] Dean J A. Lange's handbook of chemistry, 15th Ed.. Hcgraw-Hill Book Co., 1999: 4.41~4.53
    [214] 天津大学无机化学教研室. 无机化学(上册),北京:高等教育出版社, 1995: 309~313

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700