等离子体条件下分子氧和丙烯进行气相氧化反应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环氧丙烷、丙醛、丙烯醛和丙酮这四种C_3氧化产物(尤其是环氧丙烷和丙醛)都是有机化工的重要中间体。近二十多年来,国内外研究者一直致力于流程简单、副产物少和无污染的生产C_3氧化产物(尤其是环氧丙烷)的绿色催化工艺的研究。其中,又以分子氧(O_2或Air)直接气相氧化丙烯这一催化工艺最简单,生产成本最低。但是由于丙烯分子具有一个含有活泼α-H的甲基,这使得丙烯的氧化反应变得复杂。因此,以分子氧(O_2或Air)为氧化剂进行丙烯直接氧化反应成为催化界最具挑战性的课题之一。
     非平衡等离子体是一种非常有效的活化分子手段。在等离子体中,电子通过电场加速而获得足够高的能量(1-10eV),使反应物分子激发、离解和电离,形成高活化状态的反应物种。而且放电反应几乎不引起体系温度上升,体系温度可保持在室温或略高于室温。氧气在非平衡等离子体活化条件下可生成O~-,O_2~-,O,O_2~+和O~+等活性形式,这使得丙烯的选择性氧化成为可能。
     迄今为止,国内外尚未发现有将非平衡等离子体放电手段用于直接活化分子氧进行丙烯气相氧化反应的相关报道。
     本论文在室温常压下,以O_2或Air为氧化剂,采用非平衡等离子体(脉冲电晕放电等离子体和介质阻挡放电等离子体)活化手段,进行直接气相氧化丙烯生成C_3氧化产物(环氧丙烷、丙醛、丙烯醛和丙酮)反应。反应过程中,不用有机氧载体,不需加入催化剂,只用分子氧(O_2或Air)在等离子体反应器中直接产生活性氧物种,原料廉价清洁,操作过程简单,无设备腐蚀和环境污染问题,属于低成本一步法制C_3氧化产物的绿色合成路线。
     本论文取得的主要结果如下:
     1、研制出用于丙烯选择性氧化的脉冲电晕放电等离子体反应器。在该反应器中,以氧气为氧化剂,在室温常压下实现了丙烯气相氧化合成C_3氧化产物(PO、丙醛、丙酮和丙烯醛)。在极间距为4mm,V(C_3H_6)/V(O_2)=1:99,反应气总流速为200ml/min,脉冲放电电压为18kV,放电频率为120Hz的条件下,丙烯转化率、C_3氧化产物的总选择性及总收率分别为19.2%、52.5%和10.1%。在本论文实验条
Propylene oxide (PO), propionaldehyde, acrolein and acetone are one of the most important chemical feedstocks. Molecular oxygen is the best oxidant due to low cost and significant advantages for the environment. Because the allylic protons of propylene possess high acidity, propylene is easily oxidized to acrolein but is difficultly oxidized to propylene oxide or acetone by molecular oxygen. So, gas phase propylene oxidation to prepare C_3 partial oxidation products (especially PO) with molecular oxygen as the oxidant is the most desirable reaction and is one of the most challenging topics in catalysis.The pulse corona plasma and dielectric barrier discharge plasma are typical non-equilibrium cold plasma in a gas at atmospheric pressure. They are excellent source of energetic electrons with 1-10 eV and high density. Their unique advantages are to generate low excited atomic and molecular species, free radicals and excimers with several electron volt energy. The electron temperature is very high, yet the ionic or molecular temperature is rather low in non-equilibrium cold plasma.In this paper, C3 partial oxidation products (PO, propionaldehyde, acrolein and acetone) were obtained by oxidizing propylene directly using O_2 or air as oxidant at room temperature and atmospheric pressure, and the reaction was activated by pulse corona plasma and dielectric barrier discharge plasma. Active oxygen species were utilized by using molecular oxygen (O2 or air) as oxidant and organic oxygen carrier and catalyst were not needed in the process of reaction. This technique was one-step and low cost green-synthesis route of C3 partial oxidation products (PO, propionaldehyde, acrolein and acetone), which was due to cheap raw material, simple operatione process and without equipment corrosion or environmental pollution.The following results were obtained:1. The reaction of direct gas phase oxidation to C3 partial oxidation products (PO, propionaldehyde, acrolein and acetone) of propylene can be driven using O_2 as oxidant by means of pulse corona plasma without catalyst at room temperature and atmosphere pressure. When total flow rate was 200ml/min, space between electrodes was 4mm, pulse discharge voltage was 18kV and discharge frequency was 120Hz, the conversion of propylene, the total selectivity and total yield of C3 partial oxidation products were 19.2%, 52.5% and 10.1%, respectively. The discharge parameters, structure of reactor, space between electrodes, ratio of V(C_3H_6) to V(O_2) and total flow rate were main factors that affected the reaction under pulse corona plasma.
    2. C3 partial oxidation products (PO, propionaldehyde, acrolein and acetone) were successfully prepared from propylene and Ot directly by method of dielectric barrier discharge plasma at room temperature and atmosphere pressure. When electrode was made of stainless steel, the total flow rate was 160.8ml/min, discharge frequency was 1.38kHz, ratio of F(C3H6) to V(O2) was 1:200, and dielectric barrier discharge voltage was 21kV, the conversion of propylene, the total selectivity and total yield of C3 partial oxidation products were 81.6%, 43.0% and 35.1%, respectively. The ratio of V(Ct,H() to F(C>2) caused a great effect on products distribution. The dielectric barrier discharge voltage has an effect on the conversion of propylene, total selectivity and yield of C3 partial oxidation products, composition and distribution of products. It is very advantageous for the conversion of propylene and disadvantageous for the total yield of C3 partial oxidation products and other organic oxides under intermediate frequency, but, C3 total yield increases under low frequency. The total flow rate affects the conversion of propylene, the selectivities of C3 and other products at a certain extent.3, The reaction of direct gas phase oxidation of propylene to prepare C3 partial oxidation products (PO, propionaldehyde, acrolein and acetone) can be driven using air as oxidant by means of dielectric barrier discharge plasma with water electrode at room temperature and atmosphere pressure. When total flow rate was 40.4ml/min, dielectric barrier discharge voltage was 21.5kV, dielectric barrier discharge frequency was 1.38kHz and ratio of F(C3H6) to F(air) was 1:99, the conversion of propylene, the total selectivity and total yield of C3 partial oxidation products were 63.5%, 52.4% and 33.3%, respectively. The dielectric barrier discharge voltage has a crucial effect on propylene conversion and selectivity of products. The composition of glass reactors has a great effect on propylene epoxidation reaction under dielectric barrier discharge plasma. The glass composition of more SiC>2 and less B2O3 is effective for conversion of propylene and PO yield, moreover, this composition inhibits also further oxidated reaction of products at a certain extent. Other condations is same, With the increase of the length of reactor and the inside diameter of water electrode, the conversion of propylene increases, the selectivities of C3 partial oxidation products decrease, the selectivities of other products increase. The proportion and the total flow rate of reaction gas have effect on the conversion of propylene, the total yield of C3 partial oxidation products and other products distribution at a certain extent.
引文
[1] 李雅丽.环氧丙烷生产技术市场.石油化工快报.2003,13:8-11
    [2] 刘俊红.环氧丙烷的生产现状以及消费概况.化工中间体(科技产业版).2004,5:37-40
    [3] 刘敏,曹爱军,左晓光等.国内外环氧丙烷生产技术现状.氯碱工业.2003,7:33-36
    [4] Strukul G(ED). Catalytic Oxidation with Hyfrogen Peroxide as Oxidant. Kluwer Academic Publishers. 1992: 6
    [5] Sherrington D C. Polymer-supported Metal Complex Alkene Epoxidation Catalysts. Catal. Today., 2000, 57: 87-104
    [6] Yamamoto J, Tsuji J. Titanium-containing Silicon Oxide Catalyst. Production of the Catalyst and Production of Propylene Oxide. JP 2000107604, 2000
    [7] 王晓晗,卢冠忠.过氧化氢异丙苯催化氧化丙烯制环氧丙烷.催化学报,2000,21(5):407-410
    [8] 王新宏,卢冠忠,刘晓晖等.在溶胶-凝胶法制备的MoO_3/SiO_2催化剂上丙烯的环氧化反应.催化学报.2002,23(6):498-502
    [9] 王哓晗,卢冠忠.丙烯环氧化钼-醇配合物催化剂的研究.分子催化,2001,15(1):29-32
    [10] 卢冠忠,曹钢,王新宏等.低压低浓度丙烯制备环氧丙烷的清洁生产方法.CN 1415608A
    [11] Xi Z W, Wang H P, Sun Y, et al. Direct Epoxidation of Olefins Catalyzed by Heteropolyoxometalates with Molecular Oxygen and Recyclable Reductant. J. Mol. Catal. A: Chem, 2001, 168: 299-301
    [12] Xi Z W, Zhou N, Sun Y, et al. Reaction-controlled Phase-transfer Catalysis for Propylene Epoxidation to Propylene Oxide. Science, 2001, 292: 1139-1141
    [13] Ritter S. A Greener Route to Propylene Oxide. Chem. & Eng. News., 2001, 79: 15
    [14] 林励吾.反应控制相转移催化用于丙烯氧化制环氧丙烷.化学进展,2001,13(6):486-487
    [15] Taramasso M, Perego G, Notari B. Preparation of Porous Crystalline Synthetic Material Comprised of Silicon and Titanium Oxides. US 4410501, 1983
    [16] Clerici M G, Bellussi G, Romano U. Synthesis of Propylene Oxide from Propylene and Hydrogen Peroxide Catalyzed by Tianium Silicalite.J. Catal., 1991, 129(1): 159-167
    [17] Neri C, Anfossi B, Esposito A, et al. Process for the Epoxidation of Olefinic Compounds. US 4833260, 1989
    [18] Crocco G L, Zajacek J G. Process for Titanium Silicalite-Catalyzed Epoxidation. US 5646314, 1997
    [19] Nemeth L T, Lewis G J, Rosin R R. Titanovanadosilicalites as Epoxidation Catalysts for Olefins. US 5744619, 1998
    [20] Nemeth L, Lewis G J, Rosin R R. Yitanostannosilicalites: Epoxidation of Olefins. US 5780654, 1998
    [21] 卢冠忠,金国杰.环氧丙烷合成技术的研究进展及展望.化工进展,2004,23(11):1153-1160
    [22] Mantegazza M A, Petrini G, Spano G, et al. Selective Oxidations with Hydrogen Peroxide and Titanium Silicalite Catalyst. J. Mol. Catal. A, 1999, 146 (1-2): 223-228
    [23] Omori H, Saito K, Suzuki Y, Yamada T. Crystalline Titanium-Silicalite Coated Catalyst for Epoxidation of Olefin Compound. JP, 8103659, 1996
    [24] 薛俊利,许锡恩.TS-1催化合成环氧丙烷.燃料化学学报,1998,26(6):569-574
    [25] 高焕新,曹静,陆巍然等.丙烯氧化制环氧丙烷催化剂的合成.石油学报(石油加工),2000,16(3):79-84
    [26] Neri C, Anfossi B, Esposito A, et al. Process for the Epoxidation of Olefinic Compounds. Eu 100119, 1986
    [27] Neri C, Buonomo F. Process for Oxidizing Vinylbenzene Compounds to Bete-phenyladehydes. Eu 102097, 1986
    [28] Khouw C B, Dartt C B, Labinger J A, et al. Studies on the Catalytic Oxidation of Alkanes and Alkanes by Titanium Silicates. J. Catal., 1994, 149: 195-205
    [29] 王祥生,李钢,陈涛等.一种复合催化剂的制备和应用.CN,01140509,2001
    [30] Ingallina P, Clerici M G, Rossi L, et al. Catalysis with TS-1: New Perspectives for the Industrial Use of Hydrogen Peroxide. Stud. Surf. Sci. Catal., 1995, 92: 31
    [31] Clerici M G, Ingallina R Process for Producing Olefin Oxides. US 5221795, 1993
    [32] Clerici M G, Ingallina R Process for Oxidizing Organic Compounds. US 5252758, 1993
    [33] Rodriguez C L, Zajacek J G. Integrated Process for Epoxide Production. US 5463090, 1995
    [34] Zajacek J G, Jubin J C, Crocco G J. Integrated Process for Epoxide Production. US 5384418, 1995
    [35] Crocco G L, Shum W F, Zajacek J G, et al. Epoxidation Process. US 5166372, 1992
    [36] 陈晓晖,孟祥坤,陈宪等.TS-1 催化丙烯环氧化及其生产工艺.石油化工,2000,29:140-143
    [37] Kahn A P, Dessau R M, Grey R A. Epoxidation Process. WO 9952884, 1999
    [38] Jewson J D, Kahn A P, Dessau R M, Grey R A, Jones C A. Epoxidation Process. WO 9952885, 1999
    [39] Jones C A, Grey RA. Epoxidation Process. US 5939569, 1999
    [40] Dorf E U, Dilcher C, Luecke B, Schuelke U, Wegener G, Weisbeck M, Schild C. Method for Improving the Operational Life of Supported Catalysts Covered with Gold Particles and Used for Oxidizing Unsaturated Hydrocarbons. WO 9939826, 1999
    [41] Dorf E U, Dilcher C, Luecke B, Schuelke U, Wegener G, Weisbeck M, Schild C. Method for the Direct Catalytic Oxidation of Unsaturated Hydrocarbons in Gaseous Phase. WO 9940077, 1999
    [42] Grosch G H, Muller U, Stein B, Rieber N. Oxidation of an Organic Compound Containing at Least one C-C Double Bond. WO 0021945, 2000
    [43] Sato A, Oguri M, Tokumaru S, et al. Production of Propylene Oxide. JP 8269030, 1996
    [44] Mueller U, Lingelbach P, Basler P, et al. Oxidation Catalysts Comprising Zeolites and Platinum Group Metal. Ger. Patent: DE 4425672 Al, 1996
    [45] Meiers R, Dingerdissen U, Holderich W F. Synthesis of Propylene Oxide from Propylene, Oxygen, and Hydrogen Catalyzed by Palladium-Platinum-Containing Titanium Silicalite. J. Catal., 1998, 176(2): 376-386
    [46] Laufer W, Meiers R, Holderich W F. Propylene Epoxidation with Hydrogen Peroxide over Palladium Containing Titanium Silicalite. J. Mol. Catal. A: Chem, 1999, 141 (1-3): 215-221
    [47] Laufer W, Holderich W F. Direct Oxidation of Propylene and Other Olefins on Precious Metal Containing Ti-Catalysts. Appl. Catat.A: Gen, 2001, 213 (1-2): 163-171
    [48] Gosser L W. Catalytic Process for Making H_2O_2 from Hydrogen and Oxygen. US 4681751, 1987
    [49] Jenzer G, Mallat T, Maciejewski M, et al. Continuous Epoxidation of Propylene with Oxygen and Hydrogen on a Pd-Pt/TS-1 Catalyst. Appl. Catal. A, 2001, 208 (1-2): 125-133
    [50] Haruta M. Size-and Support-Dependency in the Catalysis of Gold. Catal.Today., 1997, 36(1): 153-166
    [51] Hayashi T, Tanka K, Haruta M. Selective Vapor-Phase Epoxidation of Propylene over Au/TiO_2 Catalysts in the Presence of Oxygen and Hydrogen. J.Catal., 1998, 178(2): 566-575
    [52] Haruta M, Tsubota S, Kobayashi T, et al. Low Temperature Oxidation of CO over Gold Supported on TiO_2, a -Fe_2O_3, and Co_3O_4 . J.Catal., 1993, 144(1): 175-192
    [53] Schubert M M, Hackenberg S, van Veen A C, et al. CO Oxidation over Supported Gold Catalysts- "Inert" and "Active" Support Materials and their Role for the Oxygen Supply during Reaction. J.Catal., 2001, 197(1): 113-122
    [54] Bond G C, Thompson D T. Catalysis by Gold. Catal.Rev-Sci.Eng., 1999, 41(3-4): 319-388
    [55] Haruta M, Yamada N, Kobayashi T, Iijima S. Goid Catalysts Prepared by Co-precipitation for Low-Temperature Oxidation of Hydrogen and of Carbon Monoxide. J.Catal., 1989, 115(2): 301-309
    [56] Uphade B S, Okumura M, Tsubota S, Haruta M. Effect of Physical Mixing of CsCl with Au/Ti-MCM-41 on the Gas-Phase Epoxidation of Propene Using H_2 and O_2: Drastic Depression of H_2 Consumption . Appl.Catal.A: Gen, 2000, 190 (2): 43-50
    [57] Kalvachev Y A, Hayashi T, Tsubota S, Haruta M. Vapor-phase Selective Oxidation of Aliphatic Hydro-carbon over Gold Deposited on Meso-porous Titanium Silicalites in the Co-presence of Oxygen and Hydrogen . J.Catal., 1999, 186(1): 228-233
    [58] Uphade B S, Akita T, Nakamura T, Haruta M. Vapor-Phase Epoxidation of Propene Using H_2 and O_2 over Au/Ti-MCM-48. J.Catal., 2002, 209(2): 331-340
    [59] Uphade B S, Okumura M, Yamada N, Tsubota S, Haruta M. Vapor-Phase Epoxidation of Propene Using H_2 and O_2 over Au/Ti-MCM-41 and Au/Ti-MCM-48. Stud.Surf.Sci.Catal., 2000, 130:833-838
    [60] Haruta M, Sinha A K, Seelan S, Qi C, Uphade B S, Date M, Tsubota S. Vapor-Phase Propylene Epoxidation over Gold Catalysts. 3rd Asia-Pacific Congress on Catalysis, Dalian, China. 2003, p24-25
    [61] Anil K. S, Sindhu S, Susumu Tsubota, et al. A Three-Dimensional Mesoporous Titanosilicate Support for Gold Nanoparticles: Vapor-Phase Epoxidation of Propene with highConversion. Angew. Chem. Int. Ed.,2004, 43: 1546 -1548
    [62] De Oliveira A L, Wolf A, Schuth F. Highly Selective Propene Epoxidation with Hydrogen/Oxygen Mixtures over Titania-supported Silver Catalysts. Catal. Lett., 2001, 73 (2-4): 157-160
    [63] Wang R P, Guo X W, Wang X S, et al. Propylene Epoxidation over Silver Supported on Titanium Silicalite Zeolite. Catal. Lett., 2003, 90 (1-2): 57-63
    [64] Wang R P, Guo X W, Wang X S, et al. Effects of Preparation Conditions and Reaction Conditions on the Epoxidation of Propylene with Molecular Oxygen over Ag/TS-1 in the Presence of Hydrogen. Appl.Catal.A: Gen, 2004, 261: 7-13
    [65] Cant N W, Hall W K. Catalytic Oxidation: Oxidation of Labeled Olefms over Silver . J.Catal., 1978, 52(1): 81-94
    [66] Freriks I L C, Bouwman R, Geenen P V. A Fourier Transform Infrared Spectroscopic Study of the Oxidation of Propylene over Supported Silver Catalysis. J. Catal., 1980, 65(2):311-317
    [67] Akimoto M, Ichikawa K, Echigoya E. Kinetic and Adsorption Studies on Vapor Phase Catalytic Oxidation of Olefins over Silver. J. Catal., 1982, 76(2):333-344
    [68] Carter E A, Goddard W A. The Surface Atomic Oxyradical Mechanism for Ag-catalyzed Olefin Epoxidation. J. Catal., 1988, 112:80-92
    [69] Roberts J T, Madix R J, Crew W W. The Rate-limiting Step for Olefin Combustion on Siver: Experiment Compared to Theory. J. Catal., 1993, 141:300-307
    [70] Hu Z M, Nakai H, Nakatsuji H. Oxidation Mechanism of Propylene on an Ag Surface: Dipped Adcluster Model Study. Surf. Sci., 1998, 401(3):371-391
    [71] Geenen P V, Boss H J, Pott G T. Study of the Vapor-Phase Epoxidation of Propylene and Ethylene on Silver and Silver-Gold Alloy Catalysts. J.Catal., 1982, 77(2): 499-510
    [72] Barteau M A, Madix R J. Low-pressuer Oxidation Mechanism and Reactivity of Propylene on Ag(i 10) and Reaction to Gas-phase Activity. J. Am. Chem. Soc, 1983, 105 (3): 344-349
    [73] Ranney J T, Bare S R. The Reaction of Propylene with Ordered and Disorder Oxygen Atoms Adsorbed on the Ag( 110) Surface. Surf. Sci., 1997, 382(l-3):266-274
    [74] Hawker S, Mukoid C, Badyal J P S, et al. Molecular Mechanism of Heterogeneous Alkene Epoxidation: A Model Study with Styrene on Ag(111). Surf. Sci., 1989, 219(3):L615-L622
    [75] Mukoid C, Hawker S, Badyal J P S, et al. Molecular Mechanism of Alkene Epoxidation: A Model Study with 3,3-dimethyl-1-butene on Ag(111). Catal. Lett., 1990,4(1): 57-61
    [76] Roberts J T, Madix R J. Epoxidation of Olefins on Silver: Conversion of Norbornene to Norbornene Oxide by Atomic Oxygen on Silver(110). J. Am. Chem. Soc., 1988, 110(25): 8540-8541
    [77] Pitchai R, Kahn A P, Gaffney A M. Vapor Phase Oxidation of Propylene to Propylene Oxide. US 5625084, 1997
    [78] Pitchai R, Kahn A P, Gaffney A M. Vapor Phase Oxidation of Propylene to Propylene Oxide. US 5686380, 1997
    [79] Gaffney A M, Kahn A E Propylene Oxide Process Using Mixed Precious Metal Catalyst Supported on Alkaline Earth Metal Carbonate. US 5703254, 1997
    [80] Cooker B, Gaffney A M, Jewson J D, et al. Propylene Epoxidation using Chloride-containing Silver Catalysts. US 5780657, 1998
    [81] Kahn A P, Gaffney A M, Pitchai R. Propylene Oxide Process using Alkaline Earth Metal Compound-supported Silver Catalysts. US 5763630, 1998
    [82] Cooker B, Gaffney A M, Jewson J D, et al. Epoxidation Process using Supported Silver Catalysts Treated with Carbon Dioxide. US 5856534, 1999
    [83] Kahn A P, Gaffney A M. Propylene Oxide Process using Alkaline Earth Metal Compoundsupported Silver Catalysts Containing Tungsten and Potassium Promoters. US 5861519, 1999
    [84] Gaffney A M. Propylene Oxide Process using Alkaline Earth Metal Compound-supported Silver Catalysts Containing Rhenium and Potassium Promoters. US 5864047, 1999
    [85] Cooker B, Gaffney A M, Jewson J D, et al. Chloride Containing Silver Catalysts for Propylene Epoxidation. US 5965480, 1999
    [86] Kahn A P, Gaffney A M, Pitchai R. Alkaline Earth Metal Compound-supported Silver Catalysts. US 6083870, 2000
    [87] Lu G Zh, Zuo X B. Epoxidation of Propylene by Air over Modified Silver Catalyst. Catal. Lett., 1999, 58(1): 67-70
    [88] 卢冠忠,金国杰,郭杨龙等.一种丙烯气相一步氧化制环氧丙烷用催化剂及其制备方法.CN 1446626A
    [89] 金国杰,卢冠忠,王新宏.丙烯气相一步氧化制环氧丙烷用Ag-Mo催化剂的研究.催化学 报,2002,23(5):405-407
    [90] Jin G J, Lu G Z, Guo Y L, et al. Epoxidation of Propylene by Molecular Oxygen over Modified Ag-MoO_3 Catalyst. Catal. Lett., 2003, 87(3-4): 249-252
    [91] Jin G J, Lu G Z, Guo Y L, et al. Direct Epoxidation of propylene with Molecular Oxygen over Ag-MoO_3/ZrO_2 Catalyst. Catal. Today., 2004, 93-95: 171-180
    [92] Lu J Q, Luo M F, Lei H, et al. Epoxidation of Propylene on NaCl-Modified Silver Catalysts with Air as the Oxidant. Appl. Catal. A: Gen, 2002, 237: 11-19
    [93] Luo M F, Lu J Q, Li C. Epoxidation of Propylene over Ag-CuCl Catalysts Using Air as the Oxidant. Catal. Lett., 2003, 86(1-3): 43-46
    [94] Pennington B T. Alkylene Oxides Production using Molten Nitrate Salt Catalyst and a Co Catalyst. US 4883889, 1989
    [95] Pennington B T, Timothy B. Alkylene Oxides Production from Alkanes or Alkylaromatics Using Molten Nitrate Salt Catalyst. US 4885374, 1989
    [96] Pennington B T, Timothy B, Fullington M C. Molten Salt Catalyzed Oxidation of Epoxidation from Alkanes or Olefins Using Lower Temperature Nitrate Salts. US 4943643, 1990
    [97] Pennington B T. Alkylene Oxides Production Using Molten Nitrate Salt Catalyst. Eu 268870, 1988
    [98] Meyer J L, Pennington B T. Alkylene Oxide Production Using Vapor Phase Oxidation of an Alkane or Olefin in Molten Salt and Recirculation of Aldehyde By-products. US 4992567, 1991
    [99] Pennington B T, Fullington M C. Process for the Direct Oxidation of Propylene to Propylene Oxide. WO 92/09588, 1992
    [100] Monnier J R. The Direct Epoxidation of Higher Olefins Using Molecular Oxygen. Appl, Catal. A: Gen, 2001, 22: 73-91
    [101] Murata K, Liu Y, Mimura N, et al. Direct Vapor Phase Oxidation of Propylene by Molecular Oxygen over MCM-41 or MCM-22 Based Catalysts. Catal. Commun., 2003, 4: 385-391
    [102] Lu J Q, Luo M F, Li C. Propylene Epoxidation on NaCl-modified VCe_XCu_(1-X) Oxides Catalysts with Air as Oxidant. 223rd ACS National Meeting, Orlando, Florida, USA, 2002
    [103] Lu J Q, Luo M F, Li C, et al. Epoxidation of Propylene on NaC1-Modified VCe_(1-x)Cu_x Oxide Catalysts with Direct Molecular Oxygen as the Oxidant. J. Catal., 2002, 211: 552-555
    [104] 鲁继青,罗孟飞,李灿.Cu/SiO_2催化剂上丙烯在空气中的直接环氧化反应.催化学报, 2004,25(1):5-9
    [105] 陆仕灿,陶坚铭,邱蔚然等.固定化甲烷氧化菌Z201催化丙烯合成环氧丙烷.华东理工大学学报,1994,20(1):21-26
    [106] Rolisen D R, Stemple J Z. Electrified Microheterogeneous Catalysis in Low Ionic Strength Media. J. Chem. Soc. Chem: Commun., 1993, 25-27
    [107] Otsuba K, Ushiyama T, Yamanaka I, et al. Electrocatalytic Synthesis of Propylene Oxide during Water Electrolysis. J. Catal., 1995, 157(2): 450-460
    [108] Pichat P, Herrmann I M, Disdier J. Photocatalytic Oxidation of Propene over Various Oxides at 320K Selectivity. J. Phys. Chem., 1979, 83: 122-126
    [109] Tanaka T, Nojima H, Yoshida H. Preparation of Highly Dispersed Niobium Oxide on Silica by Equilibrium Adsorption Method. Catal. Today., 1993, 16: 297
    [110] Yoshida H, Tanaka T, Yamamoto M. Photooxidation of Propene by O_2 over Silica and Mg-loaded Silica. Chem.Commun., 1996, 2125
    [111] Blatter F, Sun H, Frei H. Selective Oxidation of Propylene by O_2 with Visible Light in a Zeolite. Catal. Lett., 1995, 35(1): 1-12
    [112] Yoshida H, Tanaka T, Yamamoto M, et al. Epoxidation of Propene by Gaseous Oxygen over Silica and Mg-loaded Silica under Photoirradation. J. Catal., 1997, 171(2): 351-357
    [113] Yoshida H, Murata C, Hattori Y. Photooxidation of Propene Oxide by Molecular Oxygen over Zinc Oxide Dispersed on Silica. Chem. Lett., 1990, 901-902
    [114] Ohno T, Nakabeya K, Matsumura M. Epoxidation of Olefins on Photoirradiated Titanium Dioxide Powder Using Molecular Oxygen as an Oxidant. J. Catal., 1998, 176(1): 76-81
    [115] Yoshida H, Murata C, Hattori T. Screening Study of Silica-Supported Catalysts for Photoepoxidation of Propene by Molecular Oxygen. J. Catal., 2000, 194(2): 364-372
    [116] 崔小明.丙醛的生产应用及市场前景.化工中间体,2003,8/9:14-20
    [117] 王彦伟,刘晓欣,徐舒言.催化干气稀乙烯基丙醛及丙醛市场前景.石油化工技术经济,2002,18(4):42-46
    [118] 杨富,陈兴娟,王正平.干气氢甲酰化合成丙醛研究进展.化学工程师 2005,2:42-43
    [119] Davis J C. Propionaldehyde Unit Exceeds Expections. Chem. Eng., 1975, 82(23): 59
    [120] Falbe J.一氧化碳化学.王杰等译.北京:化学工业出版社,1985
    [121] Sagami Chemical Research Center. Rhodium Carbnyl Complex-polymer Catalysis for Hydroformylation. JP 7941984, 1979
    [122] Arakwa Chem Ind Co Ltd. Hydroformylation Method of Olefinic Compound. JP 05246925, 1993
    [123] Sagami Chemical Research Center, Nissan Chemical Industries Ltd. Oxo Reaction Catalyst. JP 7941292, 1979
    [124] Huang L. Formation of Bimetallic RhCo_3 Clusters from Monometallic Carbonyl Clusters on SiO_2 as Probed by Hydroformylation. J. Mol. Catal. A: Chem, 1997, 125(1): 47-52
    [125] Huang L, Xu Y D. On the Preparation of Bimetallic Rh-Co Hydroformylation Catalysts from [Rh(CO)_2Cl]_2 and Cobalt Carbonyls on the Surface of SiO_2. Bull. Chem. Soc. Jpn, 1999, 72(2): 199-206
    [126] Malcol L H G, Shik C T, Patrich D F V, et al. High Yield Synthesis of Propanal from Methane and Air. Catal. Lett., 1992, 13(4): 341-347
    [127] Kiss G, Mozeleski E J, Madler K C, et al. Hydroformylation of Ethene with Triphenylphosphine Modified Rhodium Catalyst: Kinetic and Mechanistic Studies. J. Mol. Catal. A: Chem, 1999, 138(2): 155-176
    [128] Union Carbide Chemicals and Plastics Technology Corporation. Hydroformylation Process. US 5087763, 1992
    [129] Hershkowitz F, Matturro M G, Cook R A, et al. Direct Hydroformylation of a Multi-component Synthesis Gas Containing Carbon Monoxide, Hydrogen, Ethylene, and Acetylene. US 5675041, 1997
    [130] Horvath I T, Kiss G, Matturro M G, et al. Hydroformylation of a Multi-component Feed Stream. EP0804400B1, 1997
    [131] David J H S. The Production of Ethylene-derived Chemicals from Gaseous Paraffins. EP 0225143A3, 1987
    [132] 瞿美臻,王先忠,陶家林等.一种天然气旋焰乙炔炉余热喷油产混合气的使用方法.CN1298859A,2001
    [133] 李贤均,陈华,黎耀忠等.一种乙烯制丙醛的方法.CN 1434015A,2003
    [134] 王彦宾,姚晓明.利用天然气和轻油制丙醛新工艺开发.天然气化工,2003,28(1):8-14
    [135] Hiromichi A, Takashi K, Taiseke K. Catalytic Vapor Phase Hydroformylation of Olefins over Polymer-immobilized Rhodium Complexes. Chem. Lett., 1975, 39(3): 265-268
    [136] Hiromichi A. Hydroformylation, Hydrogenation and Isomerization of Olefins over Polymer-immobilized Rhodium Complexes. J. Catal., 1978, 51(2): 135-142
    [137] 吴戈,钱新荣.炼厂干气综合利用方案评选.化学进展,1994,6(2):161-163
    [138] 殷元骐,特木勒,胡斌等.低浓度烯烃经羰基合成制备正异构醛的过程.CN 1125712A,1996
    [139] 魏音,周焕文,徐杰等.乙烯氢甲酰化催化合成丙醛的研究进展.现代化工,2001,21(3):27-30
    [140] Izumi Y, Asakura K, Iwasawa Y. Promoting Effects of Se on Rh/SiO_2 Catalysts of Ethene Hydroformylation. J. Catal., 1991, 132(2): 566-570
    [141] Lenarda M, Genzerla R, et al. Catalysis by the Rh/B System Part 1: Vapour Phase Hydroformylation of Ethylene at Atmospheric Pressure on Rh/B on Silica. J. Mol. Catal. A: Chem, 1993, 78(3): 339-350
    [142] Chuang S S C, Pien S I. Role of Silver Promoter in Carbon Monoxide Hydrogenation and Ethylene Hydroformylation over Rh/SiO_2 Catalysis. J. Catal., 1992, 138(2): 536-546
    [143] Fukuoka A, Rao L, Kosugy N, et al. Selective Hydroformylation of Ethylene and Propene Catalysed on NaY Zeolite-Entrapped Rh6 and Bimetallic RhFe clusters and Their Structral Characterization by Extended X-rays Absorption Fine Structure and Fourier transform Infrared Sepectroscopy. Appl. Catal., 1989, 50(3): 295-301
    [144] Sachler W M H, Ichikawa M. Catalytic Site Requirements for Elementary Steps in Syngas Conversion to Oxygenates over Promoted Rhodium. J. Phys. Chem., 1986, 90(20): 4752-4758
    [145] Takahashi N, Sakauchi J, Kobayashi T, et al. Effects of Modification of Pd/SiO_2 with Rh on Catalytic Activity for Ethene Hydroformylation. J. Chem. Soc. FARADAY TRANS, 1995, 91(8): 1271-1276
    [146] Kainulainen T A, Niemela M K, Krause A D I. Rh/C Catalysis in Ethene Hydroformylation: the Effect of Different Supports and Pretreatments. J. Mol. Catal. A: Chem, 1999, 140(2): 173-184
    [147] 董永治,徐奕德,刘安明等.Rh/L和Rh-Zn/L分子筛催化剂上乙烯的氢甲酰化反应.催化学报,1994,15(3):207-210
    [148] Yoneda Y. Progress in Cl Chemistry in Japan. Amsterdam: Elsevier, 1989
    [149] Chuang S S C. Sulfided Group Ⅷ Metals for Hydroformylation. Appl. Catal., 1990, 66(1): L1-L6
    [150] Vit Z, Portefaix J L, Breysse M. Hydroformylation of Ethylene over Cobalt, Nickel, Molybdenum, CoMo and NiMo Alumina Supported Sulfide Catalysis. Appl. Catal., 1994, 116(2): 259-268
    [151] 化学工业出版社《化学百科全书》编辑部.化学百科全书.北京:化学工业出版社,1998
    [152] 化学工业部科学技术情报研究所.世界精细化工手册(续篇).北京:煤炭工业出版社,1986
    [153] Neher, Armin, Hass, et al. Process for the Production of Acrolein. US 5387720, 1995
    [154] Hearne G W, Adams M L. Unsaturated Carbonyl Compounds. US 2451485, 1948
    [155] 沈师孔,闵恩泽.烃类晶格氧选择氧化.化学进展,1998,10(2):137-145
    [156] Grasselli R K. Advances and Future Trends in Selective Oxidation and Ammoxidation Catalysis. Catalysis Today. 1999, 49(1-3): 141-153
    [157] 阿诺尔德H,尤沃里希特S,哈蒙U.催化气相氧化丙烯成丙烯醛的方法.CN00804784.7.2002
    [158] Umemura, Sumio, Ohdan. Process for the Catalytic Preparation of Acrolein and Metharolein. US 4267385, 1981
    [159] Karim, Khalid, Bhat, et al. Catalysts for Low Temperature Selective Oxidation of Propylene. US 6143928, 2000
    [160] Takata, Masahiro, Takamura, et al. Process for Production of Acrylic Acid. US 5218146, 1993
    [161] 照日格图,李文钊,于春英等.丙烷选择氧化制丙烯醛研究进展.天然气化工,2000,25(3):50-54
    [162] Kim Y C, Ueda W, Moro-oka Y. Selective Oxidation of Propane Involving Homogeneous and Heterogeous Steps over Multicomponent Metal Oxide Catalyst. Appl. Catal., 1991, 70: 175-187
    [163] Kim Y C, Ueda W, Moro-oka Y. Catalytic (ammo)Oxidation of Propane with Molecular Oxygen over Complex Metal Oxides: Involvement of Homogeneous Reaction in Gas Phase. Catal. Today., 1992, 13:673-678
    [164] 王贤高,杜鸿章,迟亚武等.丙烷部分氧化制取丙烯醛 Ⅱ:反应工艺条件和反应器结构与材质的影响.石油化工,1997,26(2):73-77
    [165] Teng Y, Kobayashi Y. Formation of Oxygenation in the Propane Oxidation over K~+ Modified Fe/SiO_2 Catalyst. Chem. Lett., 1998, 327-328
    [166] Yeng Y, Kobayashi Y. Reaction Pathway for the Oxygenates Formation from Propane and Oxygen over Potassium-modified Fe/SiO_2 Catalysts. Catal. Lett., 1998, 55:33-38
    [167] Battahar M M, Costentin G, Savary L, et al. On the Partial Oxidation of Propane and Propylene on Mixed Metal Oxide Catalysts. Appl. Catal. A: General, 1996, 145:1-48
    [168] Ai M. Oxidation of Propane to Acrylic Acid on V_2O_5-P_2O_5-based Catalysts. J. Catal., 1986, 101: 389-395
    [169] Ai M. Oxidation of Propane over V_2O_5-P_2O_5-based Catalysts at Relatively Low Temperature. Catal. Today., 1998, 42:297-301
    [170] Komatsu T, Uragami Y, Otsuka K. Partial Oxidation of Propane over B-P Mixed Oxide Catalysts. Chem. Lett., 1988, 1903-1906
    [171] 赵如松,徐铸德,王宗祥.VOP催化剂用于丙烷氧化制丙烯酸的研究.石油化工,1995,24(3),157-160
    [172] Abello M C, Gomez M F, Cadus L E. Oxidative Dehydrogenation of Propane over Molybdenum Supported on MgO-r-Al_2O_3. Ind. Eng. Chem. Res., 1996, 35:2137-2143
    [173] 陈明树,翁维正,许翩翩等.酸碱性和氧化还原性对负载型钒基催化剂丙烷氧化脱氢性能的影响.天然气化工,1998,23(5):17-20
    [174] 刘智勇,彭志民,崔湘浩等.钴铝氧化物催化刺对丙烷催化氧化脱氢反应的研究.分子催化,1998,12(3):193-198
    [175] 方智敏,翁维正,万惠霖等.丙烷氧化脱氢V/MgO催化剂活性位的研究.厦门大学学报(自然科学版),1998,37(4):525-531
    [176] 张伟德,沙开清,李基涛等.负载型V_2O_5/AlPO_4催化剂在丙烷氧化脱氢中的催化作用.天然气化工,1998,23(5):21-24
    [177] Parmaliana A, Sokolovskii V, Miceli D, et al. Highly Effective Vanadia-silica Catalyst for Propane Oxidation Dehydrogenation. Appl. Catal. A: General, 1996, 135:L1-L5
    [178] Ueda W, Lee K H, Yoon Y S, et al. Selective oxidative Dehydrogenation of Propane over Surface Molybdenum-enriched MgMoO4 Catalyst. Catal. Today., 1998, 44:199-203
    [179] Savary L, Costentin G, Bettahar M M, et al. Effects of the Structural and Cationic Properties of AV_2P_2O_(10) Solids on Propane Selective Oxidation. Catal. Today., 1996, 32:305-309
    [180] 于剑锋,吴通好,魏诠等.Bi_4PMo_(12)O_(49)催化剂的性质及其在丙烷选择氧化中的活性.催化学报,1995,16(6):470-475
    [181] 李静,宗伟,窦伯生.钼钒铋体系催化剂上丙烷的选择氧化反应.应用化学,1996,13(2):88-99
    [182] Eon J G, Olier R, Volta J C. Oxidative Dehydrogenation of Propane on r-Al_2O_3 Supported Vanadium odides. J. Catal., 1994, 145:318-326
    [183] Au C T, Zhang W D, Wan H L. Preparation and Characterization of Rare Earth Orthovanadates for Propane Oxidative Dehydrogenation. Catal. Lett., 1996, 37:241-246
    [184] Batiot C, Hodnett B K. The Role of Reactant and Product Bond Energies in Determining Limitations to Selective Catalytic Oxidations. Appl. Catal. A: General, 1996, 137:179-191
    [185] 杜鸿章,王贤高,迟亚武等.丙烷部分氧化制取丙烯醛Ⅰ.多组份氧化物催化剂的研究.石油化工,1997,26(1):1-4
    [186] Kim Y C, Ueda W, Moro-oka Y. Selective Oxidation of Propane to Acrolein over Ag-doped Bismuth Vanadomolybdate Catalysis. J. Chem. Soc. Chem. Commun., 1989, 652-653
    [187] Kim Y C, Ueda W, Moro-oka Y. Catalytic Activity of Mixed Metal oxides for Selective Oxidation of Propane to Acrolein. Chem. Lett., 1989, 531-534
    [188] Baerns M, Buyevskaya O V, Kubik M, et al. Catalytic Partial Oxidation of Propane to Acrolein. Catal. Today., 1997, 33:85-96
    [189] 林洪,伊晓东,韩智三等.Te掺杂对MoPO/SiO_2催化剂上丙烷选择氧化制丙烯醛反应的影响.催化学报,2005,26(6):497-502
    [190] 黄传敬,郭雯,金燕仙等.丙烷选择氧化制丙烯醛MoVTeO/SiO-2催化剂结构与性能研究.化学学报,2004,62(18):1701-1705
    [191] 于春梅.苯酚和丙酮生产消费现状与展望.化工技术经济,2005,23(6):31-35
    [192] 李雅丽.国内外丙酮生产现状与市场分析.精细与专用化学品,2005,13(17):27-29
    [193] 国家自然科学基金委员会.自然科学学科发展战略调研报告.等离子体物理学.北京: 科学出版社,1994
    [194] 赵化侨.等离子体化学与工艺.合肥:中国科学技术大学出版社,1993
    [195] 徐学基,诸定昌.气体放电物理.上海:复旦大学出版社,1996
    [196] 陈杰瑢.低温等离子体化学及其应用.北京:科学出版社,2001
    [197] Steven L S, Richard P Z. A Direct Continuous Low-Power Catalytic Conversion of Methane to Higher Hydrocarbons via Microwave Plasmas. J. Catal., 1993, 139:383-391
    [198] Thanyachotpaiboon K, Chavadej S, Caldwell T A, et al. Conversion of Methane to Higher Hydrocarbons in AC Non-equilibrium Plasmas. AICHE Journal, 1998, 44(10): 2252-2257
    [199] 王保伟,许根慧,刘昌俊.等离子体技术在天然气化工中的应用.化工学报,2001,52(8):659-665
    [200] Zhu A M, Gong W M, Zhang X L. Coupling of Methane under Pulse Corona Plasma(1). Science China B, 2000, 43(2): 208-214
    [201] 陈栋梁,李庆,于作龙等.甲烷与氮气在微波等离子体下的转化研究.天然气化工,2000,25(4):28-33
    [202] 陈栋梁,白玉新,王真等.甲烷在氢气助解下的脱氢偶联研究.大然气化工,2001,26(2):18-22
    [203] 朱爱民,张秀玲,宫为民等.脉冲电晕等离子体作用下甲烷偶联反应的研究(11)反应添加气的影响.应用化学,1999,16(4):70-73
    [204] 朱爱民,张秀玲,宫为民等.有氧气氛下等离子体甲烷偶联反应的研究.物理化学学报,2000,16(9):839-843
    [205] Dai B, Zhang X L, Gong W M, et al. Effect of Hydrogen on the Methane Coupling under Non-equilibrium Plasma. Plasma Sci Technol, 2001, 3(1): 637-639
    [206] 代斌,张秀玲,张琳等.等离子体作用下甲烷氢化偶联.中国科学,2001,21(2):174-177
    [207] 代斌,张秀玲,张琳等.Study on the Hydrogenation Coupling of Methane.中国科学(B辑),2001,44(2):191-195
    [208] Liu C J, Marafee A, Hill B. Oxidative Coupling of Methane with ac and dc Corona Discharges. Ind. Eng. Chem. Rea., 1996, 35(10): 3295-3301
    [209] 陈栋梁,雷正兰,刘万槛等.二氧化碳和天然气经过微波等离子体直接转化成C_2烃.合成化学,1997,5(2):131-132
    [210] Kado S, Urasaki K, Sekine Y. Low temperature reforming of Methane to Synthesis Gas with Direct Current Pulse Discharge Method. Chem. Comm., 2001, 415-416
    [211] Hsieh L T, Lee W J, Chert C Y, et al. Converting Methane by Using an RF Plasma Reactor. Plasma Chemistry and Plasma Processing, 1998, 18(2): 215-239
    [212] Savinov S Y, Lee H, Song H H, et al. Decomposition of Methane and Carbon Dioxide in a Radio-Frequency Discharge. Ind. Eng. Chem. Res, 1999, 38(10):2540-2547
    [213] 陈栋梁,王真,洪品杰等.微波等离子体下甲烷脱氢偶联制C_2烃.石油与天然气化工,2000,29(1):1-4
    [214] 朱爱民,张秀玲,宫为民等.脉冲电晕等离子体下甲烷偶联反应的研究(Ⅲ)-金属氧化物的多相催化作用.高等化学学报,2000,21(1):120-123
    [215] 张秀玲.等离子体催化共活化CH_4-CO_2制C_2烃反应研究(博士学位论文).大连理工大学.2002.5
    [216] Marafee A, Liu C J, Xu G H et al. An Experimental Study on the Oxidative Coupling of Methane in a Direct Current Corona Discharge Reactor over Sr/La_2O_3 Catalyst. Ind. Eng. Chem. Res, 1997, 36:632-637
    [217] 宫为民,张秀玲,朱爱民等.用冷等离子体技术制备TiO_2/Al_2O_3催化剂的方法.催化学报,1999,20(5):565-568
    [218] Mizushima T, Matsumoto K, Sugoh J C, et al. Tubular Membrane-like Catalyst for Reactor with Dielectric-barrier-discharge Plasma and Its Performance in Ammonia Synthesis. Appl. Catal. A: General, 2004, 265(1): 53-59
    [219] Qiu H, Martus K, Lee W Y. Hydrogen Generation in a Microhollow Cathode Discharge in High-pressure Ammonia-argon Gas Mixtures. Int. J. Mass. Spectrometry., 2004, 233(1-3): 19-24
    [220] Gurevich A V, Borisov N D, Lukina N A, et al. Intense Growth of Ozone Concentration in Subcritical Fields in Oxygen Plasma. Phys. Lett. A., 1995, 201(2-3): 234-238
    [221] Hayano H. Method and Apparatus for Synthesis of Ozone by Plasma Reaction. Zeolites, 1995, 15(4): 385
    [222] 张芝涛,韩慧,初庆东等.强电离放电产生臭氧气体的方法.环境科学,2001,22(2):126-128
    [223] Mok Y S, Ham S W. Conversion of NO to NO_2 in Air by a Pulsed Corona Discharge Process. Chem. Eng. Sci., 1998, 53 (9): 1667-1678
    [224] Moon J D, Lee G T, Geum S T. Discharge and NO_x Removal Characteristics of Nonthermal Plasma Reactor with a Heated Corona Wire. J. Electrostatics., 2000, 50: 1-15
    [225] Suarasan I, Ghizdavu L, Ghizdavu I. Experimental Characterization of Multi- point Corona Discharge Devices for Direct Ozonization of Liquids. J. Electrostatics., 2002, 54: 207-214
    [226] Chae J O. Non-thermal Plasma for Diesel Exhaust Treatment. J. Electrostatics., 2003, 57: 251-262
    [227] Guan P H, Hayashi N, Satoh S, et al. NOx Treatment by DC Streamer Corona Discharge with Series Gap. Vacuum, 2002, 65:469-474
    [228] Mok Y S, Lee H J, Dors M, et al. Improvement in Selective Catalytic Reduction of Nitrogen Oxides by Using Dielectric Barrier Discharge. Chem. Eng. J., 2005, 110(1-3): 79-85
    [229] Mok Y S, Koh D J, Shin D N, et al. Reduction of Nitrogen Oxides from Simulated Exhaust Gas by Using Plasma-catalytic Process. Fuel Processing Technology, 2004, 86(3): 303-317
    [230] Kim H H, Oh S M, Ogata A, et al. Decomposition of Gas-phase Benzene Using Plasma-driven Catalyst (PDC) Reactor Packed with Ag/TiO_2 Catalyst. Appl. Catal. B: Environ., 2005, 56(3): 213-220
    [231] 宫为民,朱爱民,张报安.干法加氨脱除SO_2中的温度效应.环境科学学报,1996,16(1):90-96
    [232] Bretagnol F, Tatoulian M, Khonsari F, et al. Surface Modification of Polyethylene Powder by Nitrogen and Ammonia Low Pressure Plasma in a Fluidized Bed Reactor. Reactive and Functional Polymers, 2004, 61 (2): 221-232
    [233] Wei Q F, Gao W D, Hou D Y, et al. Surface Modification of Polymer Nanofibres by Plasma Treatment. Appl. Surf. Sci., 2005, 245(1-4): 16-20
    [234] Doi T, Takeda K, Fukutsuka T, et al. Surface Modification of Graphitized Carbonaceous Materials by Electropolymerization of Thiophene and Their Effects on Electrochemical Properties. Carbon, 2005, 43(11): 2352-2357
    [235] Park Y W, Inagaki N. Surface Modification of Poly(vinylidene fluoride) Film by Remote Ar, H_2, and O_2 plasmas. Polymer, 2003, 44(5): 1569-1575
    [236] Yang S, Gupta M C. Surface Modification of Polyethylene Terephthalate by an Atmospheric Pressure Plasma Source. Surface and Coatings Technology, 2004, 187(2-3): 172-176
    [237] Yu H Y, Xie Y J, Hu M X, et al. Surface Modification of Polypropylene Microporous Membrane to Improve Its Antifouling Property in MBR: CO_2 Plasma Treatment. Journal of Membrane Science, 2005, 254(1-2): 219-227
    [238] Eley D D, Pines H, Weisz P B. Selective Oxidation and Ammoxidation of Propylene by Heterogeneous Catalysis. Adv. Catal., 1981, 130(1): 137
    [239] 罗渝然.化学键能数据手册.北京:科学出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700