高突发性自相似网络业务流量理论及建模分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着各种网络多媒体应用的不断开展,网络业务流量建模理论研究以及以此为基础的网络流量分析研究得到了当前计算机网络通信研究领域相关研究者的广泛关注。本文在国家自然科学基金项目“基于共变正交和联合优化的多媒体网络性能预测模型(60502023)”和与珠海移动公司合作项目“城域网数据业务接入网络拓扑实验研究”的资助下,对网络业务流量特性的精确刻画以及基于此的网络流量分析等核心问题进行了研究,其中的关键问题包括对网络业务流量的建模、对相应分布参数的准确估计以及流量模型的分析方法等等。
     “自相似”是当前网络业务流量模型研究中不得不提的一个概念。自相似性是多媒体网络业务流量不同于电话网业务流量的本质特性。对于现代网络业务流量,采用具有自相似特性的模型比传统的泊松模型更接近实际网络业务流的特性。因而以自相似性为突破口深入研究,将有助于深刻理解互联网业务流的本质特性,同时从根本上保证研究的可行性和准确性。
     本文首先深入研究了自相似的基本理论,并对比分析了当前各种真实网络环境的网络业务流量数据研究结论,从而确立了通过自相似理论研究网络业务流量的研究方向。本文亦将此作为全文的主线。紧接着,本文深入研究讨论了当前主要的自相似Hurst参数估计方法。在绪论最后一部分,结合网络业务流量模型和网络业务流量突发性、长相关、自相似性的特性,确定了Alpha-stable分布及与之对应的自相似随机过程作为本文研究的主要理论基础,并分析了当前Alpha-stable分布用于网络流量建模,网络资源调度等领域的研究现状。
     为了更好的刻画描述网络业务流量的特性,本文对Alpha-stable分布的定义,概率密度函数PDF、Alpha-stable分布基本性质等进行了详细的研究,其中着重解决了无闭形式的Alpha-stable分布PDF的表示,服从Alpha-stable分布的随机数模拟等问题。Alpha-stable分布基础理论的研究为解决网络流量的模拟,研究网络流量高突发特性等问题奠定了基础。
     对Alpha-stable分布理论和性质的研究解决了理论分析的需要,但是对实际网络业务流量的分析需要对其分布进行深入研究。对网络业务流量分布的研究,必须借助参数估计理论工具。因此,本文特别对Alpha-stable分布参数估计进行了着重研究。通过研究分析,本文将Alpha-stable分布的参数估计方法归纳为五大类:特征函数估计方法、分位数法、极大似然估计法、极大值估计法和矩估计方法。紧接着,通过理论研究和实验比较分析,对各种方法的优、缺点进行了详细讨论,并得到了关于极大似然估计法、极大值估计法的两个新结论。
     针对发现的Alpha-stable分布参数估计极大值估计方法的新结论,在充分分析了Alpha-stable分布拖尾的渐进Pareto特性和不对称性的基础之上,本文提出了一种新的Alpha-stable分布极大值估计方法。该方法通过极大值截尾和偏斜分类提高了的Alpha-stable分布极大值估计方法性能。仿真实验结果分析表明该方法提高了参数估计的准确性、一致性和稳定性。
     在具备了相关理论研究方法的基础之上,本文分析比较了基于平稳增量的自相似网络业务流量模型,针对网络业务流量高突发性的特点,利用平稳增量服从Alpha-stable分布的线性分形稳定过程对高突发性网络业务流量进行了自相似模型建模分析。这种一般化自相似网络流量分析新方法无需对网络业务流量分布进行假设,从而更具普遍意义。实验结果分析验证了该方法的有效性。
     最后一部分为对全文主要研究成果的总结和概括,并综合分析了网络业务流量建模研究领域中需要进一步研究的问题和最新的研究探索方向。
Recently, with kinds of mass multi-media applications being carried over the network, theories of network traffic model and researches on network traffic analysis have caught researchers’attentions in the fields of computer network and communication. With the support of project of National Nature Science Foundation of China(NSFC),“Based on Covariation-orthogonality and Combined Optimization multimedia network performance prediction model (60502023)”and project of“experiment research of access network topology of MAN data service”carried out by the department of electronics and information engineering of Huazhong University of Science and Technology(HUST) and Zhuhai mobile company, this dissertation is focused on modeling and analysising the network traffic. The key problems in this research field, such as the network traffic modeling, parameter estimation and model analysis are studied in this dissertation.
     “Self-similarity”is a keyword in current network traffic model researches. Compared with telephone traffic, it is main characteristic of multi-media network traffic. Self-similar models are more suitable for current network traffic because the network traffic characteristics can be present better by these self-similar models. Thus network traffic research based on self-similarity theory can catch network traffic essences better.
     First of all, kinds of researches on network traffic in real network environments are analysised and self-similarity theory is introduced generally. Then research on network traffic by self-similarity theory is decided, which is focused on self-similarity definitions and Hurst parameter estimation methods. At the end of introduction, based on theory research and network traffic characteristics, burstiness, long correlation and self-similarity, Alpha-stable distribution and corresponding self-similar stochastic processes is thought of as theory foundation. Subsequently, applications of Alpha-stable distribution in traffic model and network resource scheduling fields are studied.
     To be more accurate on analyzing network traffic characteristics, definitions and PDF of Alpha-stable distribution and properties of Alpha-stable distribution are analysised and studied. Especially, problems, such as how to get expression for the PDF of Alpha-stable distribution and how to get random variables conforming to Alpha-stable distribution, are studied. These researches on Alpha-stable distribution are key for network traffic simulation and bursty network traffic research.
     Researches on Alpha-stable distribution theory and properties in sections above are for theory analysis. On the other hand, researches on characteristic of network traffic need their distributions, which are gotten by parameter estimation methoeds.Thus Alpha-stable distribution parameter estimation is studied respectively. There are many methods for parameter estimation of Alpha-stable distribution, each of which comes from different theory. Here, primary parameter estimation methods of Alpha-stable distribution are studied and classified into five types: Characteristic Function Method, Quantile Method, Maximum Likelihood Method, Extreme Value Method, Moment Method. By analysis and comparison, each type method is studied particularly. Two problems neglected in the past researches, the impact of sample numbers to maximum likelihood method based on FFT and approximation accuracy of extreme value method, have been gotten.
     With the conclusions above, based on analysis of Alpha-stable distribution and Alpha-stable distribution parameter estimation methods, a new Alpha-stable distribution parameter estimation method based on extreme value theory is advanced. The new method makes use of truncated extreme value and classifying skewness to improve performance. Simulation results show this new method is more precise and stable.
     Futher more, analysis of Alpha-stable distribution is used for analyzing self-similar network traffic model based on stable increasement. Because of the burstiness of network traffic, network traffic is analyzed based on linear fractional stable process whose increasement is stable. This new method without any hypothesis is a general method. Simulations show this new method could work well.
     In the last section, main research conclusions are summed up and listed. Also, The some new directions and further problems in network traffic research fields are given out and analyzed.
引文
[1] Leland W. E., Taqqu M. S., Willinger W., et al. On the self-similar nature of Ethernet traffic (extended version). IEEE/ACM Transactions on Networking, 1994, 2 (1): 1~15.
    [2] Leland W. E., Willinger W., Taqqu M. S., et al. On the self-similar nature of Ethernet traffic. Computer Communication Review, 1993, 23: 183~193.
    [3] Paxson V., Floyd S. Wide area traffic: the failure of Poisson modeling. IEEE/ACM Transactions on Networking, 1995, 3 (3): 226~244.
    [4] Erramilli A., Roughan M., Veitch D., et al. Self-similar traffic and network dynamics. Proceedings of the IEEE, 2002, 90 (5): 800~819.
    [5] Nakashima T., Sueyoshi T. Self-Similar Property for TCP Traffic under the Bottleneck Restrainment. in: 21st International Conference on Advanced Information Networking and Applications Workshops, 2007(AINAW '07). 2007. 228~233.
    [6] Beran J., Sherman R., Taqqu M. S., et al. Long-range dependence in variable-bit-rate video traffic. IEEE Transactions on Communications, 1995, 43 (234): 1566~1579.
    [7] Garrett M. W., Willinger W. Analysis, modeling and generation of self-similar VBR video traffic. in: ACM SIGCOMM'94. London,United Kingdom, 1994. 269~280
    [8] Duffy D. E., McIntosh A. A., Rosenstein M., et al. Statistical analysis of CCSN/SS 7 traffic data from working CCS subnetworks. IEEE Journal on Selected Areas in Communications, 1994, 12 (3): 544~551.
    [9] Crovella M. E., Bestavros A. Self-similarity in World Wide Web traffic: evidence and possible causes. IEEE/ACM Transactions on Networking, 1997, 5 (6):835-846.
    [10]于秦,毛玉明.自相似参数辨识与汇聚无线业务尺度特性分析.计算机研究与发展, 2007, 44 (1): 58~64.
    [11] Addie R. G., Zukerman M., Neame T. Fractal traffic: measurements, modelling and performance evaluation. in: Proc. IEEE INFOCOM. 1995. 977~984.
    [12] Park K., Willinger W. Self-Similar Network Traffic and Performance Evaluation. John Wiley & Sons, Inc., 2000.
    [13] Willinger W., Paxson V. Where Mathematics meets the Internet. Notices of the American Mathematical Society, 1998, 45 (8): 961~970.
    [14]石江涛,王永纲,戴雪龙等.自相似网络业务流量的研究与实现.通信学报, 2005, 26 (6): 112~117.
    [15]吴援明,黄际彦,李乐民等.自相似业务流HURST参数小波检测法的研究.信号处理, 2006, 22 (3): 353~356.
    [16] Jones O. D., Shen Y. Estimating the Hurst index of a self-similar process via the crossing tree. Signal Processing Letters, IEEE, 2004, 11 (4): 416~419.
    [17] Abry P., Veitch D. Wavelet analysis of long-range-dependent traffic. IEEE Transactions on Information Theory, 1998, 44 (1): 2~15.
    [18] Lau W., Erramilli A., Wang J. L., et al. Self-similar traffic parameter estimation: a semi-parametric periodogram-based algorithm. in: IEEE Global Telecommunications Conference, 1995 (GLOBECOM'95). 1995. 2225~2231.
    [19] Beran J. Statistics for Long-Memory Process. New York: Chapman & Hall, 1994.
    [20] Willinger W., Paxson V. Discussion: Heavy Tail Modeling and Teletraffic Data. The Annals of Statistics, 1997, 25 (5): 1856~1866.
    [21] Willinger W., Taqqu M. S., Sherman R., et al. Self-similarity through high-variability: statistical analysis of Ethernet LAN traffic at the source level. IEEE/ACM Transactions on Networking, 1997, 5 (1): 71~86.
    [22] Samorodnitsky G., Taqqu M. S. Stable Non-Gaussian Random Processes:Stochastic Models with Infinite Variance. New York: Chapman & Hall, 1994.
    [23] Norros I. On the use of fractional Brownian motion in the theory of connectionless networks. IEEE Journal on Selected Areas in Communications, 1995, 13 (6): 953~962.
    [24] Taqqu M. S., Willinger W., Sherman R. Proof of a Fundamental Result in Self-Similar Traffic Modeling. Computer Communication Review, 1997, 27 (2): 5~23.
    [25] Stallings W. High Speed Networks and Internets: Performance and Quality of Service. Prentice Hall PTR Upper Saddle River, NJ, USA, 2001.
    [26] Madden G., Tan J. Forecasting telecommunications data with linear models. Telecommunications Policy, 2007, 31 (1): 31~44.
    [27]王升辉,裘正定.结合多重分形的网络流量非线性预测.通信学报, 2007, 28 (2): 45~57.
    [28] Oruganti S. S., Devetsikiotis M. A study of robust active queue management schemes for correlated traffic. Computer Communications, 2005, 28 (1): 1~11.
    [29]温昱晖,朱祥华,张勇.自相似流量的主动队列管理算法.电子与信息学报, 2006, 28(7) : 1303~1307.
    [30] Tzeng S. Resource allocation for real-time and non-real-time traffic in wireless networks. Computer Communications, 2006, 29 (10): 1722~1729.
    [31]徐玉滨,宋立媛,沙学军.基于自相似业务模型的实时调度算法研究.电子与信息学报, 2006,28(1) : 158~162.
    [32] Yu J., Petropulu A. P. Study of the Effect of the Wireless Gateway on Incoming Self-Similar Traffic. IEEE Transactions on Signal Processing, 2006, 54 (10): 3741~3758.
    [33] Zhang B., Sun Y. Fractional alpha stable network traffic model and its application in QoS routing. Journal of Network and Computer Applications, 2006, 29 (1): 1~10.
    [34] Pucha H., Das S. M., Hu Y. C. The performance impact of traffic patterns on routing protocols in mobile ad hoc networks. Computer Networks, 2007, 51 (12): 3595~3616.
    [35] Cetinkaya C. Improving the efficiency of multipath traffic via opportunistic traffic scheduling. Computer Networks, 2007, 51 (8): 2181~2197.
    [36] Mandelbrot B. B., Ness J. W. V. Fractional Brownian Motions, Fractional Noises and Applications. SIAM Review, 1968, 10 (4): 422~437.
    [37] Kolmogorov A. N. The Wiener spiral and some other interesting curves in Hilbert space. Dokl. Akad. Nauk SSSR, 1940, 26 (2): 115~118.
    [38] Ma S., Ji C. Modeling heterogeneous network traffic in wavelet domain. IEEE/ACM Transactions on Networking, 2001, 9 (5): 634~649.
    [39]李永利,刘贵忠,王海军等.自相似数据流的Hurst指数小波求解法分析.电子与信息学报, 2003, 25 (1): 100~105.
    [40] Schwefel H. P., Lipsky L. Impact of aggregated, self-similar ON/OFF traffic on delay in stationary queueing models (extended version). Performance Evaluation, 2001, 43 (4): 203~221.
    [41] Mikosch T., Resnick S., Rootzen H., et al. Is Network Traffic Approximated by Stable Levy Motion or Fractional Brownian Motion?. The Annals of Applied Probability, 2002, 12 (1): 23~68.
    [42] Dasgupta A. Fractional Brownian motion: its properties and applications to stochastic integration: University of North Carolina at Chapel Hill, 1997.
    [43] Gripenberg G., Norros I. On the Prediction of Fractional Brownian Motion. Journal of Applied Probability, 1996, 33 (2): 400~410.
    [44] Vehel J. L., Riedi R. Fractional Brownian motion and data traffic modeling: The other end of the spectrum. Fractals in Engineering, 1997.
    [45] Norros I. A storage model with self-similar input. Queueing Systems, 1994, 16 (3): 387~396.
    [46] Taqqu M. S. Fractional Brownian Motion and Long-Range Dependence. Theory and Applications of Long-Range Dependence, 2003.
    [47] Karasaridis A. Broadband network traffic modeling, management and fast simulation based on alpha-stable self-similar processes: [Ph.D]. University of Toronto (Canada). , 1999.
    [48] Karasaridis A., Hatzinakos D. Network heavy traffic modeling usingα-stable self-similar processes. IEEE Transactions on Communications, 2001, 49 (7): 1203~1214.
    [49] Karasaridis A., Hatzinakos D. On the modeling of network traffic and fast simulation of rare events usingα-stable self-similar processes. in. Banff, Can:IEEE, Los Alamitos, CA, USA, 1997. 268~272.
    [50] Gallardo J. R., Makrakis D., Orozco-Barbosa L. Use ofα-stable self-similar stochastic processes for modeling traffic in broadband networks. Performance Evaluation, 2000, 40 (1-3): 71~98.
    [51] Wen Y., Zhu G. A Hybrid Prediction for Non-Gaussian Self-Similar Traffic. in: 2007 IEEE International Conference on Automation and Logistics. 2007. 508~511.
    [52] Box G. E. P., Jenkins G. Time Series Analysis, Forecasting and Control. Holden-Day, Incorporated, 1990.
    [53] Box G. E. P., Jenkins G. M. Time series analysis. Holden-Day San Francisco, 1970.
    [54]舒炎泰, Yang O.基于FARIMA模型的Internet网络业务预报.计算机学报, 2001, 24 (1): 46~54.
    [55] Ilow J. Parameter estimation in FARIMA processes with applications tonetwork traffic modeling. in: Proceedings of the Tenth IEEE Workshop on Statistical Signal and Array Processing. 2000. 505~509.
    [56]刘嘉煙,金志刚,薛飞.基于FARIMA过程的网络业务预报与应用.电子与信息学报, 2001, (4): 403~407.
    [57] Shu Y., Jin Z., Wang J., et al. Prediction-based admission control using FARIMAmodels. Proc. IEEE ICC’00, 2000, 3: 1325~1329.
    [58]罗恒端,吴诗其.数据分组网中自相似业务模型的研究进展.通信学报, 2002, 23 (7): 107~115.
    [59] Feldmann A., Gilbert A. C., Willinger W. Data networks as cascades : investigating the multifractal nature of Internet WAN traffic in: Proceedings of the ACM SIGCOMM '98 conference on Applications, technologies, architectures, and protocols for computer communication Vancouver, British Columbia, Canada:ACM Press, 1998. 42~55
    [60] Gilbert A. C., Willinger W., Feldmann A. Scaling analysis of conservative cascades, with applications to network traffic. IEEE Transactions on Information Theory, 1999, 45 (3): 971~991.
    [61] Riedi R. H., Crouse M. S., Ribeiro V. J., et al.Baraniuk R. G. A multifractal wavelet model with application to network traffic. IEEE Transactions on Information Theory, 1999, 45 (3): 992~1018.
    [62] Gao J., Rubin I. Multifractal modeling of counting processes of long-range dependent network traffic. Computer Communications, 2001, 24 (14): 1400~1410.
    [63]陈惠民,蔡弘,李衍达.突发业务的多重分形建模及其参数估计.电子学报, 1999, 27 (4): 19~23.
    [64] Nolan J. P., "UNIVARIATE STABLE DISTRIBUTIONS," in Stable Distributions: Models for Heavy-Tailed Data: Birkhauser, 2003.
    [65] Embrechts P., Schmidli H. Modeling of extremal events in insurance and finance. Mathematical Methods of Operations Research (ZOR), 1994, 39 (1): 1~34.
    [66] Rachev S. T., Mittnik S. Stable Paretian Models in Finance. Wiley New York, 2000.
    [67] McCulloch J. H., "The Risk-Neutral Measure under Log-Stable Uncertainty," Technical Report, Department of Economics, Ohio State University 2003.
    [68] Stuck B. W., Kleiner B. A statistical analysis of telephone noise. Bell Syst. Tech. J,1974, 53 (7): 1263~1320.
    [69]邱天爽,张旭秀,李小兵.统计信号处理-非高斯信号处理及其应用.北京:电子工业出版社, 2004.
    [70] Lombardi M. Simulation-based Estimation Methods forα-Stable Distributions and Processes: [Ph.D.]. Italy, Universitàdi Firenze Applied Statistics, 2004.
    [71] Nolan J. P. An Algorithm for Evaluating Stable Densities in Zolotarev's (M) Parameterization. Mathematical and Computer Modelling, 1999, 29 (10): 229~233.
    [72] Zolotarev V. M. One-Dimensional Stable Distributions. Providence RI: American Mathematical Society, 1989.
    [73] Nolan J. P. Parameterizations and modes of stable distributions Statistics & Probability Letters 1998, 38 (2): 187~195.
    [74] Fofack H., Nolan J. P. Tail Behavior, Modes and other Characteristics of Stable Distributions. Extremes, 1999, 2 (1): 39-58.
    [75] Weron R. On the Chambers-Mallows-Stuck method for simulating skewed stable random variables. Statistics and Probability Letters, 1996, 28 (2): 165~171.
    [76] Bergstrom H. On some expansions of stable distribution functions. Ark. Math., 1952, 2 (4): 375~378.
    [77] S.MITTNIK, T.DOGANOGLU. Computing the Probability Density Function of the Stable Paretian Distribution. MATHEMATICAL AND COMPUTER MODELLING, 1999, 29: 235~240.
    [78] Menn C., Rachev S. T. Calibrated FFT-based density approximations forα-stable distributions. Computational Statistics and Data Analysis, 2006, 50 (8): 1891~1904.
    [79] Nolan J. P. Numerical calculation of stable densities and distribution functions. Stochastic Models, 1997, 13 (4): 759~774.
    [80] Feller W. An introduction to probability theory and its applications. Vol II. New York, 1971.
    [81] Kuruoglu E. E. Signal Processing inα-stable Noise Environments a Least Lp-norm Approach: University of Cambridge, 1998.
    [82] J.M.CHAMBERS, C.L.MALLOWS, B.W.STUCK. A Method for Simulating Stable Random Variables. Journal of the American Statistical Association, 1976, 71 (354): 340~344.
    [83] I.A.Koutrouvelis. Regression-type estimation of the parameters of stable laws. Journal of the American Statistical Association, 1980, 75 (4): 918~928.
    [84] S.Kogon, Williams D., "Characteristic function based estimation of stable distribution parameters," in A practical guide to heavy tails Berlin: Birkh?user, 1998.
    [85] F.Fama E., Roll R. Parameter Estimates for Symmetric Stable Distribution. Journal of the American Statistical Association, 1971, 66: 331~338.
    [86] J.H.McCulloch. Simple consistent estimators of stable distributions. Communications in Statistics-Simulation and Computation, 1986, 15: 1109~1136.
    [87] W.Brorsen B., R.Yang S. Maximum likelihood estimates of symmetric stable distribution parameters. Communications in Statistics-Simulation and Computation, 1990, 19 (4): 1459~1464.
    [88] W.H.DuMouchel. On the asymptotic normality of the maximum likelihood estimate when sampling fromα-stable distribution. Journal of the American Statistical Association, 1973, 1: 948~957.
    [89] Nolan J. P., "Maximum likelihood estimaton and diagnostics for stable distributions," American University, Washington 2002.
    [90] S.MITTNIK, S.T.RACHEV, T.DOGANOGLU. Maximum Likelihood Estimation of Stable Paretian Models. MATHEMATICAL AND COMPUTER MODELLING, 1999, 29: 275~293.
    [91] Tsihrintzis G. A., Nikias C. L. Fast estimation of the parameters of alpha-stable impulsive interference. IEEE Transactions on Signal Processing, 1996, 44 (6):1492~1503.
    [92] Tsihrintzis G. A., Nikias C. L. Fast estimation of the parameters of alpha-stable impulsive interference using asymptotic extreme value theory. in: 1995 International Conference on Acoustics, Speech, and Signal Processing, 1995.(ICASSP-95). Detroit, MI, USA:IEEE, Piscataway, NJ, USA, 1995. 1840~1843.
    [93] Kuruoglu E. E. Density parameter estimation of skewedα-stable distributions. IEEE Transactions on Signal Processing, 2001, 49 (10): 2192~2201.
    [94] Press S. Estimation of univariate and multivariate stable distributions. Journal of the American Statistical Association, 1972, 67: 842~846.
    [95] Paulson A. S., Holcomb E. W., Leitch R. A. The Estimation of the Parameters of the Stable Laws. Biometrika, 1975, 62 (1): 163~170.
    [96] Koutrouvelis I. A. An iterative procedure for the estimation of the parameters of stable laws. Communications in Statistics-Simulation and Computation, 1981, 10 (1): 17~28.
    [97]陈希孺.概率论与数理统计.中国科学技术大学出版社, 1992.
    [98] Fama E. F., Roll R. Some Properties of Symmetric Stable Distributions. Journal of the American Statistical Association, 1968, 63 (323): 817~836.
    [99] W.H.DuMouchel. Stable Distributions in Statistical Inference: [Ph.D.]. Yale University Department of Statistics 1971.
    [100] DuMouchel W. H. Stable Distributions in Statistical Inference: 1. Symmetric Stable Distributions Compared to Other Symmetric Long-Tailed Distributions. Journal of the American Statistical Association, 1973, 68 (342): 469~477.
    [101] DuMouchel W. H. Stable Distributions in Statistical Inference: 2. Information from Stably Distributed Samples. Journal of the American Statistical Association, 1975, 70 (350): 386~393.
    [102] Ma X., Nikias C. L. Parameter estimation and blind channel identification in impulsive signal environments. IEEE Transactions on Signal Processing, 1995, 43(12): 2884~2897.
    [103] Sahmoudi M., Abed-Meraim K., Benidir M. Blind separation of impulsive alpha-stable sources using minimum dispersion criterion. IEEE Signal Processing Letters, 2005, 12 (4): 281~284.
    [104] Briassouli A., Tsakalides P., Stouraitis A. Hidden messages in heavy-tails: DCT-domain watermark detection using alpha-stable models. IEEE Transactions on Multimedia, 2005, 7 (4): 700~715.
    [105] Embrechts P., Kluppelberg C. Modelling Extremal Events for Insurance and Finance. Springer, Berlin, 1997.
    [106] Reiss R. D., Thomas M. Statistical analysis of extreme values. Birkhauser Verlag Basel, Switzerland, Switzerland, 1997.
    [107] Beirlant J., Teugels J. L., Vynckier P. Practical analysis of extreme values. Leuven University Press Leuven, Belgium, 1996.
    [108] Gencay R., Selcuk F. Extreme value theory and Value-at-Risk: Relative performance in emerging markets. International Journal of Forecasting, 2004, 20 (2): 287~303.
    [109] Bystrom H. Extreme value theory and extremely large electricity price changes. International Review of Economics and Finance, 2005, 14 (1): 41~55.
    [110] Meraghni D., Necir A. Estimating the Scale Parameter of a Lévy-stable Distribution via the Extreme Value Approach. Methodology and Computing in Applied Probability, 2007, 9 (4): 557~572.
    [111] Kotz S., Nadarajah S. Extreme Value Distributions: Theory and Applications.(1st edition ). World Scientific Publishing Company, 2001.
    [112] Coles S. An Introduction to Statistical Modeling of Extreme Values. Springer, 2001.
    [113] Pickands J. Statistical inference using extreme order statistics. Ann. Statist, 1975, 3 (1): 119~131.
    [114] Mood A. M., Graybill F. A., Boes D. C. Introduction to the theory of statistics. Singapore: McGraw-Hill, 1974.
    [115] Zolotarev V. M. Integral transformations of distributions and estimates of parameters of multidimensional spherically symmetric stable laws. Contributions to Probability, 1981: 283~305.
    [116] Ma X. APPLICATIONS OF THE NON-GAUSSIAN STABLE PROCESS TO COMMUNICATION ENGINEERING: [Master]. UNIVERSITY OF SOUTHERN CALIFORNIA, 1996.
    [117] Karasaridis A., Hatzinakos D. A non-Gaussian self-similar process for broadband heavy traffic modeling. in IEEE Global Telecommunications Conference, 1998. GLOBECOM 98, 1998: 2995~3000..
    [118] Ge X., Zhu G., Zhu Y. A new model for network traffic based on alpha-stable self-similar processes. in: The 11th IEEE International Conference on NetworksI(ICON2003). 2003. 1~5.
    [119] C.L.Nikias, M.Shao. Signal processing with Alpha-Stable distributions and applications. New York: Wiley, 1995.
    [120] Lambert P., Lindsey J. K. Analysing Financial Returns by Using Regression Models Based on Non-Symmetric Stable Distributions. Applied Statistics, 1999, 48 (3): 409~424.
    [121] Ge X., Shaokai Y., Won-Sik Y., et al. A new prediction method of alpha-stable processes for self-similar traffic. in: Global Telecommunications Conference, 2004. GLOBECOM '04. 2004. 675~679.
    [122] Harmantzis F. C., Hatzinakos D., Lambadaris I. Effective bandwidths and tail probabilities for Gaussian and stable self-similar traffic. in: IEEE International Conference on Communications, 2003(ICC '03). 2003. 1515~1520.
    [123] Karasaridis A., Hatzinakos D. Bandwidth allocation bounds forα-stable self-similar Internet traffic models. in: Proceedings of the IEEE SignalProcessing Workshop on Higher-Order Statistics 1999. 214~218.
    [124] Bates S., McLaughlin S. The effective bandwidth of stable distributions. in: Proceedings of the 1998 IEEE International Conference on Acoustics, Speech, and Signal Processing, 1998(ICASSP '98). 1998. 2281~2284.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700