生物炭改良白浆土的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白浆土的亚表层-白浆层结构致密,易导致表旱表涝和严重的耕层水土流失,是我国典型的低产田。生物炭孔隙结构丰富、容重低,可通过改善土壤水肥气热条件等多方面功能发挥改土增产作用。为探讨生物炭在我国东北地区广泛分布的白浆土改良工作中的应用潜力,本研究采用盆栽实验,通过向白浆土白浆层施入不同用量的生物炭(0、10、30、50t.hm-2),重点研究了生物炭对白浆层孔隙结构、持水能力等理化性质的影响,分析了生物炭对白浆土大豆根系生长和产量的作用规律,提出了改良白浆土白浆层的适宜生物炭用量,旨在为使用生物炭技术改良白浆土提供理论依据。主要研究结果如下:
     1.生物炭可有效降低白浆层容重,改善其塑性及各级孔隙分布
     当生物炭用量为10t·hm-2时,白浆层的容重为1.00g·cm-3,接近适宜的容重标准(1.1-1.3g·cm-3),若继续增加生物炭用量,白浆层的容重值过低,不利于植物根系的固定。随着生物炭用量的增加,白浆层的比重同样呈现下降趋势。当生物炭用量为10、30t·hm-2时,白浆层的塑性指数分别为24.37、28.64%,接近于适宜机械耕作的土壤塑性指数。尤其在生物炭用量为10t-hm-2时,白浆层总孔隙度达62.27%,接近适宜作物生长的孔隙度(50~60%)。生物炭还增加了通气孔隙度和毛管孔隙度,有效改善了白浆层的三相比例,当生物炭用量为10t·hm-2时,固相率:液相率:气相率=37.72%:38.81%:23.47%。综合看来,当生物炭用量为10t·hm-2时,白浆层的容重、塑性指数、总孔隙度接近适宜水平,可以作为大型机械作业的参考标准。
     2.生物炭通过改善白浆层孔隙结构提高了其水分渗透性能
     生物炭可显著降低白浆层粗孔隙数、粗孔隙度(p<0.05),增加了白浆层的大孔隙数、大孔隙度、总孔隙度,并在各个层次上均表现出随生物炭用量增加而递增的趋势。白浆层的总孔隙度在生物炭用量为50t·hm-2时达到最大值27.58%,较CK增加539.91%。生物炭显著降低了白浆层孔隙的成圆率,但增加了孔隙周长。当生物炭用量为50t·hm-2时,成圆率最小,仅为0.80,但孔隙周长达到最大值,为17.72mm。白浆层的水分入渗性能也表现为50t·hm-2>30t·hm-2>10t·hm-2>CK。当生物炭用量为50t-hm-2时,初渗率、平均渗透率、稳渗率、100min渗透总量、饱和渗透系数分别为CK的17.8、12.08、13.12、12.76、12.76倍。使用Kostiakov模型可以较好地模拟生物炭添加后白浆层的水分入渗过程,但对CK的拟合效果差,说明生物炭添加形成的孔隙与白浆层原始孔隙的存在形式是有差异的。
     3.生物炭对白浆层的持水、释水能力均有正向作用
     生物炭处理增加了白浆层各级土壤吸力下的质量含水量,且均表现为50t·hm-2>30t·hm-2>10t·hm-2>CK。模拟结果表明,生物炭增加了Gardner的幂函数经验公式SWC=Aψ-B中A、B的值,也增加了白浆层的各级土壤当量孔径,说明生物炭可以增加白浆层的持水能力。同时,生物炭还增加了各级吸力下的比水容量,表现为50t·hm-2>30t·hm-2>10t·hm-2>CK,说明生物炭可以有效的增强白浆层的释水能力。综合分析结果表明,生物炭同时提高了毛管持水量、饱和持水量、田间持水量和永久萎蔫系数,但由于田间持水量的增幅大于永久萎蔫系数,故有效含水量大幅提高,进一步说明了生物炭添加对白浆层理化性质改良的正向效果。
     4.生物炭增加了白浆层的微生物数量并提高了土壤酶活性
     细菌数量在30、50t·hm-2生物炭添加量时达到最大值,为CK的6.20倍。氨化细菌、固氮菌、放线菌、微生物总数量均在50t·hm-2时达到最大值,分别为CK的24.29倍、12.09倍、7.83倍、7.10倍。真菌在30t·hm-2时达到最大值,为CK的8.33倍。白浆层中的脲酶、过氧化氢酶、蛋白酶、纤维素酶的含量也随之提高,但蔗糖酶含量有所下降。不同种类微生物的数量与白浆层中的各种酶活性存在复杂的相关关系。其中均蔗糖酶含量与白浆层微生物数量呈极显著负相关,脲酶与真菌、放线菌数量呈极显著正相关,过氧化氢酶与细菌、真菌、放线菌呈数量显著正相关,蛋白酶含量与放线菌数量呈显著正相关,纤维素酶与氨化细菌、细菌、真菌、放线菌数量呈显著正相关。
     5.生物炭对白浆层养分状况有显著影响并促进了大豆对养分的吸收
     生物炭增加了分枝期、开花期的白浆层的全N量,增加了各时期白浆层的全P、全S量,均表现为50t·hm-2>30t·hm-2>10t·hm-2>CK。生物炭也增加了白浆层中速效磷、速效钾的含量,但对白浆层的碱解氮含量有所抑制。生物炭对EC、pH的影响未呈现明显规律性,但可能间接促进了大豆对N、P、K、Ca、S等养分的吸收,大豆单株对的吸收总量均表现为50t·hm-2>30t·hm-2>10t·hm>CK。随着生物炭用量的增加,大豆植株中N、P、K、Ca、S元素在根系中分配的比例逐渐增加。
     6.生物炭不同程度地促进了大豆根系的形态建成和产量形成
     生物炭增加了大豆各生育时期的根干重、根长、根体积、根直径、根表面积、根尖数。成熟期的根干重、根长、根体积在30t·hm-2达到最大值,分别较CK增加164.10%、51.50%、120.95%。虽然在成熟期时耕层的根干重密度、根长密度、根体积密度、根表面积、根尖数在50t·hm-2达到最大值,但主成分分析结果表明,当生物炭用量为30t.hm2时,根系的生长状况最好。生物炭还增加了大豆比吸收表面、比活跃吸收表面和根系还原强度等生理性状,并对大豆的株高、单株粒数、单株粒重、生物产量表现出显著的促进作用,表现为30t·hm-2>10t·hm-2>50t·hm-2>CK,30t·hm-2处理的单株粒重较CK增加21.89%。上述结果表明,对当季作物而言,生物炭的用量的最适范围在30t·hm-2上下。
     7.生物炭可提高白浆层质量评级
     进一步对白浆层质量进行了评价,结果表现为50t·hm-2>30t·hm-2>10t·hm-2>CK。其中,白浆层(CK)的质量指数为0.06,属于低(Ⅵ)级;生物炭用量为10t·hm-2的质量指数为0.50,属于中(Ⅲ)级,生物炭用量为30t·hm-2的质量指数为0.75,属于较高(Ⅱ)级,生物炭用量为50t·hm-2的质量指数为0.84,属于高(Ⅰ)级。通过综合质量指标的敏感度分级、各评价指标相关性分析和主成分分析,确定白浆层质量评价指标最小数据集为有效水含量、速效P、速效K、氨化细菌、细菌、真菌、放线菌、纤维素酶、稳定渗透速率、固氮菌。该数据集和综合指标评价结果相关性达0.95,具有较高的代表性。
     综上所述,生物炭还入白浆土白浆层,可通过对孔隙结构的改善提高土壤通透性,提高土壤有效含水量,并通过丰富土壤微生物群系、提高养分供给能力等促进作物根系形态建成,乃至促进作物产量提高。因此,使用向白浆层混入生物炭的方式改良白浆土具有较高的可行性。但同时也发现,生物炭还田后作物当季产量水平与土壤质量级别并非一一对应,其原因有待进一步探讨。
Density of Albic soils is high, which leads drought and logging on surface of soils and loss of water and soil from topsoil, and could be classified into low-productive soil. High porosity and low bulk density of biochar provide multiple services including ameliorating soil condition, which helps improve soil productivity. To explore potential function of biochar on ameliorating Albic soils in northeast of China, a pot study was conducted. We applied different rates of biochar (O、10、30、50t-hm-2) into albic horizon, examined change of soil porosity and water holding capacity, and response of root growth of soybean and yield. Finally, an appropriate application rate was proposed. Results are as bellow:
     1.Biochar reduced bulk density, improved soil structure and allocation of porosity:
     At rate of1Ot·hm-2, bulk density of Albic soils arrived at1.00g·cm-3, which got to ideal standard of1.1~1.30g·cm-3. When application rate continued, bulk density was too low for root to settle. It was the same for specific gravity of Albic soils. At10and30t-hm'2, plasticity index arrived at24.37and28.64%, which was apt for cultivation.
     Meanwhile, application rate of10t·hn-22was the best with total porosity of62.27%, similar to ideal ones for plant growth (50%to60%). Meanwhile, aeration porosity.
     2. Permeability of water was increased because of improving soil structure and porosity of albic-layer by adding biochar.
     The results showed that a significant reduction of numbered porosity of albic-layer, big porosity were observed at increase of biochar, while it also increased numbered big pores of albic horizon, big porosity and total numbers of pores (p<0.05). Total porosity of albic horizon at50t·hm-2of biochar reaching up to maximum (27.58%),539.91%higher than control treatments. Biochar significantly decreased the preferred ratio of albic-layer while increased pores, girth. When biochar was50t-hm"2, the peferred ration of blbic-layer reached to minimum (0.80), pores girth reached to maximum(17.72). The results showed that a sinnificant increase of permeability of water in albic-layer were observed as50t-hm"2>30t·hm-2>10t·hm-2>CK. When biochar was50t·hm-2, the primary permeability rate, mean permeability, and stable permeability,100min total permeability and index of saturated permeability were17.8,12.08,13.12,12.76and12.76fold higher than CK. The process of water infiltration after applying biochar into the soil could be fairly simulated by using Kostiakov, but it was not appropriate for CK. The results indicated that soil pore space is different from original porosity to secondary porosity which was formed by adding biochar.
     3. Biochar have positive effect on water holding and released ability of albic-layer.
     Biochar increases mass soil water content of all soil suction levels in albic-layer, and all showed that50t·hm-2>30t·hm-2>10t·hm-2>CK. Simulation results showed that bio-char increase the A、B value of empiric formulas of power function and equivalent crater of all soil suction levels in albic-layer, respectively, which indicated water holding ability of albic-layer increased greatly as the adding of biochar. Meanwhile, Biochar increases specific water capacity of all soil suction levels in albic-layer, and all showed that50t-hm-2>30t-hm"2>10t·hm-2>CK, indicating that water released ability of albic-layer was greatly increased. The comprehensive analysis showed that biochar increase the capillary water, saturated water content, field holding water, permanent wilting coefficient at the same time. Soil available water capacity was raised to a fairly high level because of field holding water increase greater than permanent wilting coefficient, indicating that Biochar have positive effect soil physical and chemical properties of albic-layer.
     4. biochar promote the numbers of microorganism and activities of soil enzyme
     Bacterium numbers as maximum when biochar were301hm-2and50t hm-2,6.2fold higher than CK. Aminated bacterium, nitrogen-fixing bacteria, actinomycetes and total bacterium were maximum when bioCaron was50t·hm-2,24.29,12.09,7.83,7.10fold higher than CK. While fungus was maximum at30t·hm-2of biochar,8.33-fold higher than CK. Biochar increased the amount of urease, catalase, protease and cellulose, while decreased the amount of sucrose. A significant correlation was observed among actinomycetes and activates of other enzymes. The amount of sucrose exhibited negative correlation with the numbers of microbial in albic-layer;in contrast, urease showed positive correlation with fungus and actinomycetes. Catalase was positive correlation with bacteria, fungus and actinomycetes, and amount of protein enzyme was postitive correlation with actinomycetes, cellulose enzyme was positive correlated with aminated microbial, bacteria, fungus and actinomycetes.
     5. Biochar has a significant influence on the nutrient status of Albic horizon and promote soybean nutrient absorption
     Biochar increased total N of the albic horizon in branching and flowering stage, and total P, S of albic horizon in every stage, the results have showed50t hm-2>30t hm-2>10t hm-2CK. The content of available phosphorus, potassium in albic horizon were increased by biochar, but the available nitrogen were decreased. Biochar did not show any obvious regularity that the impacts of EC and pH, but it might indirectly promote the soybean absorption of N, P, K, Ca, S and other nutrients, the total absorption of them of individual plant showed50t hm-2>30t hm-2>10t hm-2> CK. The distribution proportion of N, P, K, Ca, S in soybean root system gradually increased with the amount of biochar increased.
     6. Biochar promoted the soybean root morphology and yield formation in different extent
     Biochar increased dry weight, root length, volume, diameter, surface area, tip number of soybean at each growth stage. The root dry weight, root length, volume in mature stage reached its maximum at30t hm-2, increased164.10%,51.50%,120.95%, respectively that compared with CK. Although root dry weight density, length density, volume density, surface area, tip number of the topsoil in mature stage reached the maximum when the amount of biochar was50t hm-2, the principal analysis showed that root growth was the best when the amount of biochar was30t hm-2. Biochar also increased soybean specific absorbing area (absorbing area per gram root weight) and specific active-absorbing area (active-absorbing area per gram root weight) and deoxidization intensity and other physiological traits, it also promoted plant height, seed number per plant, grain weight per plant, biological yield and showed30t·hm-2>10t·hm-2>50t·hm-2>CK, grain weight per plant increased by21.89%compared with CK when the amount biochar was30t hm-2. These results indicated that the optimum range of biochar was about30t hm-2to the current crop.
     7. Biochar can improve the quality rating of albic horizon
     Making a further evaluation for albic horizon quality, the results showed that50t h m-2>30t hm"2> lOt hm-2> CK. The quality index of albic horizon (CK) is0.06, belo nging to the low level (Ⅵ); The amount of biochar was10t hm-2that its quality inde x was0.50, belongs to the level (Ⅲ), quality index was0.75when the biochar dosag e was30t hm-2that belongs to a higher level (Ⅱ), quality index was0.84when the b iochar dosage was50t hm-2that belongs to the highest level(Ⅰ). Determined the mini mum dataset of quality evaluation index of albic horizon are effective water content, a vailable P, available K, ammonifying bacteria, bacteria, fungi, actinomycetes, cellulase, stable nitrogen-fixing bacteria though sensitivity classification, evaluation of quality ind icators correlation analysis and principal component analysis of comprehensive quality indicators. The correlation was0.95of dataset and evaluating results,while it has a go od representativeness.
     In summary, improving the permeability, soil available water through the improvement of pore structure, improving nutrient supply capacity through rich soil microbial formations to promote crop root morphogenesis, and even promote crop yields improvement when biochar applied into the albic horizon. Therefore, the albic horizon mixed with biochar to improve albic high was feasibile. But it is also found that crop yield and soil quality level in the quarter have no correspondence after biochar applied into soil, its reason remains to be further discussed.
引文
1.曾昭顺,等.1963.论白浆土的形成和分类问题[J].土壤学报,11(2):111-129.
    2.符素华.2005.土壤中砾石存在对入渗影响研究进展.水土保持学报,19(1):171-175.
    3.高子勤,宋玉芳,关熙铭.1988.白浆土形成过程中某些物理、化学性质的研究[J].土壤学报,25(1):13-21.
    4.韩凤鹏,郑继勇,张兴昌.2009.黄土退耕坡地植物根系分布特征及对土壤养分的影响[J].农业工程学报,25(2):50-55.
    5.黑龙江八一农垦大学白浆土研究课题组.1993.白浆土利用改良长期综合试验研究[M].(油印稿).
    6.侯春霞,骆东奇,魏朝富,等.2002.母岩风化与土壤肥力的关系.第六届环境地球化学学术讨论会论文摘要,P38.
    7.胡顺军,田长彦,宋郁东,等.2011.土壤渗透系数测定与计算方法的探讨.农业工程学报,5(27):68-71.
    8.黄承标,罗远周,张建华,等.2009.广西猫儿山自然保护区森林土壤化学性质垂直分布特征研究.安徽农业科学,37(1):245-247.
    9.霍云鹏,刘兴初,张宏.白浆土的水分物理性质与白浆土的改良[J].东北农学院学报.1983,3:69-75
    10.贾岩缝,李久生,饶敏杰.2006.滴灌施肥时水肥顺序对番茄根系分布和产量的影响[J].农业工程学报,22(7):205-207.
    11.雷廷武,潘英华,刘汗,等.2006.产流积水法测量降雨侵蚀影响下坡地土壤入渗性能.农业工程学报,22(8):7-11.
    12.黎积祥.1960.暗色草甸白浆土的发生特性[J].土壤学报,8(1):22-30.
    13.李春燕.1997.黑龙江省白浆土系统分类研究[J].哈尔滨师范大学自然科学学报,13(4):103-108.
    14.李邵,薛绪掌,郭文善.2010.不同供水吸力对温室黄瓜光合特性及根系活力的影响[J].应用生态学报,21(1):67-73.
    15.李晓林,陈新平,崔俊霞,等.1995.不同水分条件下表层施磷对小麦吸收下层土壤养分的影响[J].植物营养与肥料学报,7:40-45.
    16.刘峰,贾会彬,赵德林,等.1997.白浆土心土培肥效果的研究[J].黑龙江农业科学,(3):1-4.
    17.刘峰,张玉龙,贾会彬,等.2001.三段式心土混层犁及其改良白浆土效果的研究[J].农业工程学报,(3):57-61.
    18.刘峰.2003.白浆土混层改良的研究[D].沈阳农业大学.
    19.刘思春,张一平,高俊凤,等.1996.不同肥力水平下土壤植物大气连续系统水势温度效应研究[J].西北农业学报,5(4):47-53.
    20.刘孝义,周桂芹,依艳丽,等.1985.东北地区几种主要土壤持水性的研究.沈阳农业大学学报,16(2):31-37.
    21.律兆松,徐琪.1996.中国白浆土的研究[J].土壤,(3):113-118.
    22.律兆松,徐琪.1995.中国白浆土研究-无定形铁、锰、铝氧化物特征及其元素地球化学分异[J].土壤学报,32(1):33-40.
    23.律兆松,徐琪.1999.中国白浆土元素淋溶特点[J].土壤通报,30(5):203-205.
    24.吕伟波.2012.生物炭对微生物生态特征的影响.浙江大学硕士学位论文.
    25.马履一,翟明普,王勇,等.1999.京西山地棕壤和淋溶褐土饱和导水率的分析.林业科学,35(3):109-112.
    26.马晓刚.2008.缙云山不同植物群落类型土壤入渗性能研究.西南大学硕士学位论文.
    27.孟庆英.2012.白浆土不同层次土壤含水量及微生物研究[J].黑龙江农业科学,(1):40-41.
    28.史瑞和.1989.植物营养原理.南京:江苏科技出版社.
    29.宋达泉,程伯容,曾昭顺.1958.东北及内蒙东部土壤区划[J].土壤通报,4:1-9.
    30.宋海星,李生秀.2003.玉米生长空间对根系吸收特性的影响.中国农业科学,36(8):899-904.
    31.孙大荃,孟军,张伟明,等.2011.生物炭对棕壤大豆根系微生物的影响[J].沈阳农业大学学报,42(5):521-526
    32.王孟本,柴宝峰,李洪建,等.1999.黄土区人工林的土壤持水力与有效水状况[J].林业科学,35(2):7-14.
    33.王秋菊,李明贤,赵宏亮,等.2008.控水灌溉对水稻根系生长影响的试验研究[J].中国农学通报,42(8):206-208.
    34.文曼.2012.黄土高原地区生物炭的土壤水动力学效应[D].西北农林科技大学.
    35.吴华山,陈效民,陈璨.2007.利用CT扫描技术对太湖地区主要水稻土中大孔隙的研究.水土保持学报,21(2):175-178.
    36.吴鹏豹.2012.生物炭对花岗岩砖红壤团聚体稳定性及其总碳分布特征的影响[J].草地学报,20(4):643-649.
    37.武志杰,丁庆堂,于德清,等.1995.施用有机物料与深松对改良白浆土白浆层效应的研究.土壤通报,26(6):250-252.
    38.徐小军,何丙辉,胡恒,等.2012.新生水土流失对汶川震区土壤水分入渗的影响.中国农业科学,45(12):2520-2529.
    39.许迪,Schmid R,Mermoud A.2000.夏玉米耕作方式对耕层土壤特性时间变异性的影响.水土保持学报,14(1):64-87.
    40.颜肖慈,罗明道.2004.界面化学[M].北京:化学工业出版社.
    41.张坚.1998.化肥使用和土壤环境污染.土壤农化通报,13(4):13-15.
    42.张俊民.1995.我国白浆土分类研究的进展[J].土壤学进展,23(4):19-24.
    43.张明月.2012.生物炭对土壤性质及作物生长的影响研究p].山东农业大学.
    44.张世熔,黄元仿,李保国,等.2003.黄淮海冲积平原区土壤速效磷、钾的时空变异特征.植物营养与肥料学报,9(1):3-8.
    45..张伟明.2012.生物炭的理化性质及其在作物生产上的应用[D].沈阳农业大学.
    46.张文玲,李桂花,高卫东.2009.生物质炭对土壤性状和作物产量的影响[J].中国农学通报,25(17):153-157.
    47.张旭东,梁超,诸葛玉平.2003.黑碳在土壤有机碳生物地球化学循环中的作用[J].土壤通报,34:349-355.
    48.张元福,张之一.1989.白浆土酸度状况及致酸原因的分析研究.黑龙江八一农垦大学学报,27(2):27-35.
    49.张之一.1996.利用牧草改良白浆土[M].中国农业科技出版社,P34-38.
    50.张之一,张元福.1984.白浆土氧化还原电位的季节动态[J].黑龙江八一农垦大学学报,(2):23-30.
    51.张之一,张元福.1987.黑江省白浆土形成机理及改良途径的研究报告[J].黑龙江八一农垦大学学报,(2):13-23.
    52.匡恩俊.2008.心土培肥改良白浆土效果及机理研究[D].黑龙江八一农垦大学.
    53.张志勇,田晓莉,李建民,等.2006.冠菌素在不同供钾水平下诱导棉花侧根发生的效应及机理[A].中国棉花学会2006年年会暨第七次代表大会论文汇编.
    54.张志勇,王清连,李召虎,等.2009.缺钾对棉花幼苗根系生长的影响及其生理机制[J].作物学报,35(4):718-723.
    55.张治伟,朱章熊,王燕,等.2010.岩溶坡地不同利用类型土壤入渗性能及其影响因素.农业工程学报,26(6):71-76.
    56.张忠河,林振衡,付娅琦,等.2010.生物炭在农业上的应用.安徽农业科学,38(22):11880-11882.
    57.赵德林,刘峰,贾会彬,等.1994.心土混层耕改良白浆土效果的研究[J].中国农业科学,27(4):37-44.
    58.徐琪.1979.《土壤学进展》,(1):21-39.
    59.中国科学院林业土壤研究所.1980.中国东北土壤[M].北京.科学出版社,P202-218.
    60.中国科学院南京土壤研究所.1978.中国土壤[M].科学出版社,P128-134.
    61.中国土壤系统分类课题研究协作组等.1995.中国土壤系统分类(修订方案).北京:中国农业科技出版,P111-120.
    62.中国棉花学会2006年年会暨第七次代表大会论文汇编[C].2006:250-253.
    63.邹琦. 植物生理学实验指导.2000.北京:中国农业出版社,P62-63.
    64. Asai, H, Samson, B. K., Stephan, H. M., et al..2009. Biochar amendment techniques for upland rice production in Northern Laos 1. Soil physical properties, leaf SPAD and grain yield [J]. Field Crops Research,111:81-84.
    65. AeiegoPietry, J. C., Brookes, P. C..2008. Relationships between siol pH and microbial properties in a UK arable soil. Soil Biology and Biochemistry 40:1896-1861.
    66.B.A柯夫达著.1960.中国之土壤与自然条件概论[M].科学出版社出版.
    67. Bengough, A. G., Young, I. M..1993. Root elongation of seeding peas through layered soil of different penetration resistances. Plant and Soil,149:129-139.
    68. Blackwell, P..2008. Can biochar help drive biological farming? [R], Western Mineral Fertilisers, Update,8-11.
    69. Bohrera, G., Kagan-Zurb, V., Roth-Bejerano, N., et al..2003. Effects of different Kalahari-desert VA mycorrhizal communities on mineral acquisition and depletion from the soil by host plants [J]. Journal ofArid Environments,55:193-208.
    70. Brinkman, R..1977. Problem hydromorphic soil in north-east Thailand [J]. Neth. J. agric. Sci.,25: 170-181.
    71. Cassie, A. B. D..1948. Contact angles [J]. Discuss Faraday Soc.,3:11-16.
    72. Chakravarty, D. H.1982. 《Pedologie)),32(1):39-51.
    73. Chan,K. Y., Van, Zwieten, V. L., Meszaros, I., et al..2007. Agronomic Value of Greenwaste Biochar as a Soil Amendment [J]. Soil Research,45(8):629-634.
    74. Coelho, E. L., Or Dan. Root distribution and water uptake patterns of corn under surface and subsurface drip irrigation. Plant and Soil,1999,206:123-126.
    75. Cohen-Ofri I., Weiner, L., Boaretto, E., et al..2006. Modern and fossil charcoal:aspects of structure and diagenesis [J]. Journal of Archaeological Science,33:428-439.
    76. Deenik, J. L., McClellan, A. T., Uehara, G..2009. Biochar volatile matter content effects on plant growth and nitrogen and nitrogen transformations in a tropical soil[C].Western Nutrient Management Conference, Vol.8. Salt Lake City, UT, USA,26-31.
    77. Ding Y., Liu Y. X., Wu W. X., et al..2010. Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns [J]. Water Air Soil Poll,213(1/4):47-55.
    78. Doran, J. W., Parkin, T. B..1994. Defining and assessing soil quality. Soil Science Society of American, Inc, M adison, Wisconsin, USA,3-21
    79. Doran, J. W., Coleman, D. C., Stewart, B. A..1994. Defining Soil Quality for a Sustainable Environment. Soil Science Society of America, Inc., American Society of Agronomy, Inc. Madison, Wisconsin, USA.
    80. Downie, A., Crosky, A., Munroe, P..2009. Physical properties of biochar [M]. London:Earthscan.
    81. Drew Myers.2004.吴大成等译.表面、界面和胶体—原理及应用[M].北京:化学工业出版社.
    82. Drosdoff, M..1974. Soil Sci,117:156-164.
    83. Feng Y. Z., Xu Y. P., Yu Y. C., et al..2012. Mechanisms of biochar decreasing methane emission from Chinese paddy soils [J]. Soil Biology and Bio- chemistry,46:80-88.
    84. Fitter, A. H..2002. Characteristics and functions of root systems. In:Waisel Y, Eshel A, Kafkafi U, eds. Plant Roots:The Hidden Half,3rd edn. New York:Marcel Dekker Inc, pp 15-32.
    85. Fraitas, P. L., Zobel, R. W., Snyder, V. A..1999. Corn root growth in soil columns with artificially constructed aggregates. Crop Science,39:725-730.
    86. Frcdlund, D. G., Rahardjo, H..1993. Soil mechanics for unsaturated soil mechanics [M]. New York: Wiley Inter.
    87. Gantzer, C. J., Anderson, S. H.1978. Computed tomographic measurement of macroporosity in chisel-disk and no-tillage seedbeds. Soil Till Res,127:385-392.
    88. Gardner, W. R., Hillel, D., Benyamin, Y..1970. Post irrigation of soil water:Ⅰ. Redistribution [J]. Water Resour,6:851-861.
    89. Gardner, W. R., Hillel, D., Benyamin, Y..1970. Post irrigation of soil water:Ⅱ. Simultaneous redistribution and evaporation [J]. Water Resour,6:148-153.
    90. Gathorne-Hardy, A., Knight, J., Woods, J..2008. The use of bio-char to reduce summer water stress in cereal crops [J]. Aspects of Applied Biology,88:57.
    91. German, D. F., Beven, K..1985. Kimematic wave approximation to infiltration into soils with sorbing .macropores [J]. Water Resource Res,21:990-994.
    92. Germann, P. F., Edwards, W. M., Owens, L. B..1984. Profiles of bromide and increased soil moisture after infiltration into soils with macropores [J]. Soil Sci. Soc. Am,48:237-244.
    93. Gheorghe, C., Marculescu, C., Badea, A., et al..2009. Effect of pyrolysis conditions on biochar production from biomass [C]. Proceedings of the 3rd WSEAS international conference on Renewable .Energy Sources. Bucharest, Romania.
    94. Glaser, B., Haumaier, L., Guggenberger, G, et al..2001. The 'Terra Preta' phenomenon:a model for sustainable agriculture in the humid tropics [J]. Naturwissenschaften,88(1):37-41.
    95. Glaser, B., Lehmann, J., Zech, W..2002. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal-a review. Biology Fertility of Soils,35:219-230.
    96. Goodman, A. M., Ennds, A. P..1999. The effects of soil bulk density on the morphology and anchorage mechanics of the root systems of sunflower and maize. Annals of Botany,83:293-302.
    97. Graber, E. R., Harel, Y. M., Kolton, M., et al..2010. Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media [J]. Plant Soil,337(1/2):481-496.
    98. Grossman, J. M., O'Neill, B. E., Tsai, S. M., et al..2010. Amazonian anthrosols support similar microbial communities that differ distinctly from those extant in adjacent, unmodified soils of the same mineralogy [J]. Microb Ecol,60(1):192-205.
    99. Hamer, U., Marschner, B., Brodowski, S., et al..2004. Interactive priming of black carbon and glucose mineralization [J]. Organic Geochemistry,35(7):823-830.
    100. Han Fengpeng, Zheng Jiyong, Zhang Xingchang.2009. Plant root system distribution and its effect on soil nutrient on slope land converted from farmland in the Loess Plateau [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),25(2):50-55.
    101. Hatfield, J. L., Stewart, B. A..1994. Soil Biology:Effects on Soil Quality. The United Staten of Americn:CRC Press.
    102. He Y., Liao H., Yan X.2003. Localized supply of phosphorus induces root morphological and archi-tectural changes of rice in split and stratified soil cultures. Plant and Soil,248:247-256
    103. Higash.T, F. De Coninck, Gelaude.1981.Characterization of some spodic horizons of the Campine (Belgium) with Dithionite-citrate, Prophosphate and Sodium Hadromide tetraborate. Geoderma, 25:131-142.
    104. Huntington.1995. Carbon sequestration in an aggrading forest e-cosystem in the southern USA [J]. Soil Science Society America Journal,59:1459-1467.
    105. lijima, M., Kono,Y., Yamauchi, A., Pardales, J. R..1991. Effects of soil compation on the development of rice and maize root systems. Enviromental and Experimental Botany,31(3):333-342.
    106. Jenkinson, D. S., Ladd, J. N.1981. Microbial biomass in soil:Measurement and turnover. In:Paul V E A, Ladd J N, eds. Soil Biochenistry. New York:Marcel Dekker, (5):415-471.
    107. Jones, J. AA.1971. Soil piping and stream channel initiation. Water Resour Res,7:602-610.
    108. Kimetu, J. M., Lehmann, J.2010. Stability and stabilisation of biochar and green manure in soil with different organic carbon contents [J]. Aust J Soil Res,48(7):577-585.
    109. Kishimoto, S., Sugiura, G.1985. Charcoal as a soil conditioner. Int Achieve Future, (5):12-23.
    110 Kolb, S. E., Fermanich, K. J., Dornbush, M. E.2009. Effect of charcoal quantity on microbial biomass and activity in temperate soils [J]. Soil Sci. Soc. Am. J.,73:1173-1181.
    111. Krull, E.S., Swanston, C.W., Skjemstad, J.O., et al..2006. Importance of charcoal in determining the age and chemistry of organic carbon in surface soils. Journal of Geophysical Research,111:G04001
    112. Krzic, M., Fortin, MC., Bomke, AA..2000. Short-term responses of soil physical properties to corn tillage-planting systems in a humid maritime climate. Soil and Tillage Research,54:171-178.
    113. KuhLmann, H., Baumgartel, G..1991.Potential importance of the subsoil for the P and Mg nutrition of wheat[J]. Plant and Soil,137:259-266.
    114. Laird, D. A., Brown, R. C., Amonette, J. E., et al..2009. Review of the pyrolysis platform for coproducing bio-oil and biochar [J]. Biofuel Bioprod Bior,3(5):547-562.
    115. Lehinann, J., Jose, Pereira, da, Silva, Jr., Steiner, C., et al..2003. Nutrient availability and leaching in an archaeological Antlirosol and a Ferralsol of the Central Amazon basin:fertilizer, manure and chareoal Amendments. Plant and soil,249:343-357.
    116. Lehmann, J., Joseph, S..2009. Biochar for Environmental Management:Science and Technology. London:Earthscan:1-448.
    117. Lehmann, J., Kern, D. C., German, L. A., et al..2003. Soil fertility and production potential [M]. The Netherlands:Kluwer, P105-124.
    118. Lehmann, J., Pereira, da., Sliva, J., Steiner, C., et al..2003. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of Central Am-azonia:fertilizer, and charcoal amendments [J]. Plant and Soil,249(2):343-357.
    119. Li Yanfeng, Li Jiusheng, Rao Minjie.2006. Effects of drip fertigation strategies on root distribution and yield of tomato [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),22(7):205-207.
    120. Liang, B., Lehmann, J., Sohi, S. P., et al..2010. Black carbon affects the cycling of non-black carbon in soil [J]. Org Geo Chem,41(2):206-213.
    121. Liang, B., Lehmann, J., Solomon, D., et al..2006. Black carbon increase cation, exchange capacity in soils [J]. Soil Sci Soc Am J,70(5):1719-1730.
    122. Liu X. Y., Yi Y. L..1996. Effect of magnetic field on enzyme activities in main soils of Northeast China. Pedosphere,4:341-348.
    123. Logsdon, S.D., Karlen, D.L..2004. Bulk density as a soil quality indicator during conversion to no-tillage. Soil and Till-age Research,78:143-149
    124. Major, J., Rondon, M., Molina, D., et al..2010. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol [J]. Plant and Soi,333(1-2):117-128.
    125. Mooney, S. J..1982. Three-dimensional visualization and quantification of soil macroporosity and water flow patterns using computed tomography. Mosley MP.
    126. Ogawa, M..1994. Symbiosis of people and nature in the tropics. Farming Japan,128:10-34.
    127. Oguntunde, P. G, Abiodun, B. J., Ajayi, A., et al..2008. Effects of charcoal production on soil physical properties in Ghana[J]. J. Plant Nutr. Soil Sci.,171(4):591-596.
    128. Omoti, U., Wild, A..1979. Use of fluorescent dyes to mark t he pat hways of solute movement t hrough soils under leaching conditions,2. Field experiments. Soil Sci,128(2):98-104.
    129. Ozpinar, S., Cay. A..2006. Effect of different tillage systems on the quality and crop productivity of a clay-loam soil in semi-arid north-western Turkey. Soil and Tillage Research,88:95-106.
    130. Pietikainen, J., Kiikkila, O., Fritze, H., et al..2000. Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus [J]. Oikos,89:231-242
    131.R:Brinkman..1870. Ferrolysis a hydromorphic soil forming process [J]. Geoderma,3(3):199-206.
    132. R.S.Russelli(田中典幸訳).1981.作物の根系と土壤.農山漁村文化栛会,241-247
    133. Rasiah, V., Alymore, L. A. G.1998. The topology of pore structure in cracking clay soil:I. The estimation of numerical density. J Soil Sci,39:303-314.
    134. Rondon, M. A., Lehmann, J., Ramirez, J., et al..2007. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions [J]. Biology and Fertility of Soils,43: 699-708.
    135.Russel,E.W.,谭世文译.1979.土壤条件与植物生长,科学出版社,北京,P231.
    136. Sander, T., Gerke, H. H., Rogasik, H..2008. Assessment of Chinese paddy-soil structure using X-ray computed tomography. Geoderma,145:303-314.
    137. Schmidt, M.W.I., Noack, A.G..2000. Black carbon in soils and sediments:Analysis distribution, implications, and current Challenges. Global Biogeochemical Cyeles,14(3):777-794.
    138. Sehippers, B., Bakker, A. W., Bakker, P. A. H. M.. 1987. Interaction of deleterious and beneficial rhizosphere microorganisms and the effect of corpping praetices [J]. Ann Rev Phytopathol,25(3): 339-358.
    139. Shierlaw, J., Alston, A. M.. 1984. Effect of soil compaction on root growth and uptake of phosphorous. Plant and Soil,77:15-28.
    140. Singh, B., Singh, B. P., Cowie, A. L..2010. Characterisation and evaluation of biochars for their application as a soil amendment [J]. Australian Journal of Soil Research,48(7):516-525.
    141. Singh, P., Rameshwar, K. S., Thompson, M. L..1991.Measurement and characterization od macropores by using AUTOCAD and automatic imageanalysis [J]. Environ Qual,20:289-290.
    142. Soil Use Manage,2002,18:142-151.
    143. Song H. X., Li S. X..2003. Effects of root growing space on its absorbing characteristics. Scientia Agricultura Sinica,36(8):899-904.
    144. Steiner, C..2008. Soil charcoal amendments maintain soil fertility and establish a carbon sink-research and prospects/Liu T X. Soil ecology research developments [M]. New York:Nova Science Publishers, P1-7.
    145. Steiner, C., Teixeira, W.G., Lehmann, Jetal.2007. Long term effeets of manure charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil,291:275-290.
    146. Stypa, M., Nunez-Barrios, A., Barry, D. A., et al..1987. Effects of subsoil bulk density, nutrient availability and soil moisture on root growth in the field. Soil Science,67:39-308.
    147. Subsurface flow velocities through selected forest soils, South Island, New Zealand. J Hydrol,35: 65-92.
    148. Trouse, A. C., and Humbert, R. P..1961. Some effects of soil compaction on the development of sugar cane roots, Pl. Soil.1(9):75-85.
    149. Udawatta, R. P., Anderson, S. H., Gantzer, C. J., et al..2006. Agroforestry and grass buffer influence on macropore characteristics:A computed tomography analysis. Soi Sci Soc Am J,70:1763-1773.
    150. Udawatta, R. P., Anderson, S. H..2008. CT-measured pore characteristics of surface and subsurface soils influenced by agroforestry and grass buffers. Geoderma,145:381-389.
    151. Udawatta, R. R., Anderson, S. H., Gantzer, C. J., et al..2008. Influence of prairie restoration on CT-measured soil pore characteristics. J Environ Qual,37:219-228.
    152. Van, Zwieten. L., Kimber, S., Morris, S., et al..2010. Effects of biochar from slow pyrolysis of paper mill waste on agronomic performance and soil fertility. Plant and Soil,327(1-2):235-246.
    153. Chunlei Wang, Hangjun Lu, Zhigang Wang, et al.2009. Stable Liquid Water Droplet on a Water Monolayer Formed at Room Temperature on Ionic Model Substrates. Phys. Rev. Lett.,103,137801.
    154. Wardle, D. A., Zackrisson, O., Nilsson, M. C.1988. The charcoal effect in Boreal forests: Mechanisms and ecological consequences [J]. Oecologia, (3),115:419-426.
    155. WEAVERJE.1924. Development of root and Shoot of winter wheat under field environment [J]. Ecology,5:26-50.
    156. Wenzel, R.N..1936. Resistance of solid surfaces to wetting by water [J]. Ind Eng Chem,28(8): 988-994.
    157. Wenzel, R.N..1949. Surface roughness and contact angle(letter) [J].Phys Colloid Chem,53: 1466-1467.
    158. Yan, G. Z., Kazuto, S., Satoshi, R, et al..2004. The effects of bamboo charcoal and phosphorus fertilization on mixed planting with grasses and soil improving species under the nutrients poor condition [J]. Journal of the Japanese Society of Revegetation Technology,30(1):33-38.
    159. Uzoma, K.C., Inoue, M., Andry, H., et al..2011. Effect of cow manure biochar on maize productivity under sandy soil condition, Soil Use and Management,27,205-212.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700