滇池流域油麦菜种植区氮磷分布、迁移格局与环境效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在蔬菜生产过程中大量的氮磷投入,导致土壤氮磷大量盈余,其结果导致土壤氮磷不断流失,造成水体养分过剩而形成水体富营养化污染。过量使用氮肥,不仅造成水体污染,而且蔬菜的产量和品质也受到一定影响,对蔬菜生产带来很大压力。基于这些问题,对蔬菜生产中养分差异化管理的研究有着极为重要的意义。
     本文选取了滇池流域蔬菜设施保护地油麦菜种植区进行研究。油麦菜是滇池流域开始大面积种植的一种新蔬菜作物,而对油麦菜养分迁移状况的研究未见到报道。在2008年8月到9月进行油麦菜田间试验,分为高量施肥和低量施肥两个组别进行,每个组9个施肥处理水平,并在试验过程中对植株样和土样进行采集,对油麦菜产量、油麦菜硝酸盐含量,植株样总氮、总磷,土壤总氮、总磷、有效磷、碱解氮和有机质进行测定,结合养分差异来讨论油麦菜对土壤氮磷的吸收,油麦菜产量、硝酸盐含量和土壤氮磷迁移变化特征及环境社会效应。其主要结果表明:
     1.氮磷投入量比高量施肥减少46.4%,油麦菜增产32.4%。适宜的氮磷投入量和施用比例是油麦菜高产的重要因素,产量较高时氮的施用范围为180-225kg·ha-1,磷肥可以少量施用,施磷量控制在63 kg·ha-1左右,可以达到经济效益和环境效益的协调。在适宜的氮施用量范围内,油麦菜对氮的平均吸收率达到25%,最高达到了28%,成熟期氮吸收量比生长期高。油麦菜对磷的吸收率很低,在适量施磷范围内,对磷的吸收率也只有10%左右。
     2.油麦菜硝酸盐含量随氮素水平的提高呈递增趋势,磷素具有能够抑制硝酸盐的积累的作用。油麦菜产量达到较高水平,而油麦菜食用部分硝酸盐含量符合中国叶菜类硝酸盐含量标准。控制氮磷的合理配施只是有效降低硝酸盐含量的一个重要方面,并不是一个根本因素,只能在一定程度上对蔬菜硝酸盐含量有影响。
     3.短期内土壤总氮在各施肥处理之间并没有规律性变化;0-20cm碱解氮和施氮量表现出了正相关;总磷在0-40cm土层随施磷量的增加而增加,表现出显著线性正相关(P<0.05);有效磷和总磷的变化趋势一致,0-40cm有效磷和施磷量显著线性正相关(P<0.05);有机质在短期内变化不大。在垂直梯度上,土壤养分随深度增加而递减。
     4.土壤总氮积累量和施氮量呈现了显著线性正相关(P<0.05),这是农业施肥处理中一个普遍现象,与种植何种作物关系不大。磷在土壤中积累效益比较显著,积累量达到80%以上。在0-20cm和20-40cm土层总磷和施磷量都表现出了显著线性正相关(P<0.05)。适量施氮量土壤氮积累量表现出了减少,而过量施氮则表现出了盈余;施磷处理都表现出了磷积累量的盈余。
     5.适量施肥和过量施肥相比氮磷化肥投入减少58.5%,油麦菜产量增加24.2%,单季每公顷油麦菜,农户可节约化肥投入1814.2元,增加收入13275元。滇池流域油麦菜种植区,适量施肥每年将减少氮损失101.53t,减少磷损失60.86t,每公顷油麦菜在适量施肥时将获得直接环境经济效益401.14元,滇池流域油麦菜种植区每年将获得直接环境经济效益84.2万元。
     综合以上研究结果,土壤氮磷的损失量和积累量与氮磷施用量直接相关,与种植蔬菜作物关系不大。从结合农户的经济效益和环境效益的综合考虑,建议实施“控氮少磷”的养分差异化管理,油麦菜种植过程中氮素控制在现有施肥量的1/2以内,其适宜施用量为180-225 kg·ha-1,油麦菜对磷素的吸收比较少,可以采用“少磷”措施,将磷肥的施用量减少在63 kg·ha-1左右。
In the vegetable production, as the use of chemical fertilizer is increasing constantly, a large number of farmland nutrients aggravates a huge surplus of soil nitrogen and phosphorus, which inflow water bodies and resulted in environmental pollutions. The loss use of nitrogen fertilizers will not only cause water pollutions, but also impact the yield and quality of vegetables, which brought a lot of pressure on vegetable production. Because of these problems, differences of Nutrient Management research has significant importance in vegetable production.
     This paper selected lettuce vegetable areas of facilities vegetable soil in Dianchi Lake basin. Lettuce bengined planting widely and was not studied on Metastaic Characteristics of N、P. From August to september in 2008, through lettuce field experiment of high fertilization level and low fertilization level, the Indicators of lettuce yield and nitrate content, lettuce TN and TP, soil TN and TP, soil available phosphorus, soil available nitrogen and organic matter had been analyzed. The experiment set 9 fertilizer treatments. The behavior characteristics of lettuce absorption, lettuce yield, nitrate content, soil nitrogen and phosphorus transfer and ecological benefit law had been probed into combining with discussion of Differences of Nutrient. The results of our study are as follows:
     1. The yield of Lettuce was increased by 32.4%, when the rates of N and P were reduced to 46.4% of high fertilizer. N、P, applied in proper combinations, is an important factor for high yield of lettuce. The optimal nitrogen level for high Lettuce yield was 180-270 kg·ha-1, and the optimal phosphorus level was small and about 63 kg·ha-1, in order to coordination economic benefits and environmental benefits. On appropriate nitrogen application, the absorption rate of lettuce reached over 20%, while the highest value 28%. In maturing stage, the nitrogen absorption amount of lettuce was higher than that in growing stage. The phosphorus absorption rate of lettuce was low. On appropriate phosphorus application, the phosphorus absorption rate was only about 10%.
     2. The content of nitrate increased with the increasing of nitrogen levels. Appropriate phosphorus levels could restrain nitrate accumulation in Lettuce. Proper N、P combinations could improve the quality of lettuce and increase yield. The nitrate content of edible parts of lettuce accorded with the standard of nitrate pollution in China. The control of nitrogen and phosphorus fertilizer is a important aspect of decreasing nitrate content. It is important that nitrate content was reduced by reasonable control of nitrogen and phosphorus fertilizers.
     3. Soil total nitrogen had no law in treatment level. The correlation analysis showed that the available nitrogen within 0-20cm soil layer was significantly positively related with the nitrogen application(P<0.05). In 0-40cm soil layer, the total phosphorus increased with phosphorus application amount. The trend of available phosphorus was consistent with the total phosphorus. The total phosphorus and available phosphorus in 0-40cm soil layer showed significant positive linear correlation with phosphorus application amount(P<0.05). Organic matter had little change in a short period. In the vertical gradients, the soil nutrients decreased with depth decrements.
     4. The correlation analysis showed that the total nitrogen accumulation was significantly positively linear related with the nitrogen application(P<0.05). This was an common phenomenon and had little relationship with crop. In the soil phosphorus accumulation was more significant than nitrogen and reached over 80%. In 0-20cm and 20-40cm soil layer, total phosphorus showed significant positive linear correlation with phosphorus application amount(P<0.05). The soil nitrogen accumulation decreased in appropriate nitrogen application and increased in excess nitrogen application. P-fertilizer showed a surplus of phosphorus accumulation.
     5. In appropriate nitrogen application, the yield of lettuce was increased by 32.4%,when the rates of N and P were reduced to 46.4% of high fertilizer. Farmers could save fertilizer of 1814.2yuan per hectare and the income increased by 13275yuan per hectare by applying appropriate fertilizers. In lettuce-growing areas of Dianchi Lake Basin, the appropriate nitrogen application would reduce nitrogen loss of 101.53t and phosphorus loss 60.86t. There would be direct environmental economic benefit 401.14yuan per hectare lettuce in appropriate nitrogen application and in lettuce-growing areas of Dianchi Lake Basin there was direct environmental economic benefit 842,000yuan per year.
     Based on the above result, the loss and accumulation of soil nitrogen and phosphorus was related to the amount of nitrogen and phosphorus. Involving farmers' economic benefits and environmental benefits, this paper proposed implementing differences of nutrient management about "control of nitrogen and little phosphorus".the optimal nitrogen level was 1/2 of current level and was 180-225 kg·ha-1. Phosphorus absorption of lettuce was little and farmers could apply a little and the application of phosphorus was about 63 kg·ha-1.
引文
[1]Addiscott T. Farmers, fertilizers and the nitrate flood [J]. New Scientist,1988, 8(10):50-54.
    [2]Beckwith C P, Cooper J, Smith K A, et al. Nitrate leaching-loss following application of organic manures to sandy soils in arable cropping. I. Effects of application time, manure type, over winter crop cover and nitrification inhibition [J]. Soil Use and Management.1998,14:123-130.
    [3]Boers P C M. Nutrient emissions from agriculture in the Netherlands:causes and remedies [J]. Water Science and Technology,1996,33:183-189..
    [4]Daniel T C, Sharpley A N, Lemunyon J L. Agricultural phosphorus and eutrophication:A symposium overview [J]. Journal of Environment Quality, 1998,27(1):251-257.
    [5]Martens D A, Dick W. Recovery of fertilizer nitrogen from continuous corn soils under contrasting tillage management [J]. Biology and Fertility of Soils,2003,3.8: 144-153.
    [6]Goulding K. Nitrate leaching from arable and horticultural land [J]. Soil Use and Management,2000.16,145-151.
    [7]Haygarth P M, Sharpley A N. Terminology for phosphorus transfer [J]. Journal of Environment Quality,2000,29:10-15.
    [8]Hogh-Jensen H and Schjoerring J K. Rhizodeposition of nitrogen by red clover,white clover and ryegrass leys [J]. Soil Biology and Biochemistry,2001,33: 439-448.
    [9]Hyde J E, Morris T F. Phosphorus availability in soils amended with dewatered water treatment residual and metal concentrations with time in residual [J]. Journal of Environment Quality,2000,29:1896-1904.
    [10]Granlund G, Rekolainen S, Gronroos J, et al. Estimation of the impact of fertilisation rate on nitrate leaching in Finland using amathematical simulation model Agriculture [J]. Ecosystems and Environment,2000,80:1-13.
    [11]Lee K H, Jose S. Nitrate leaching in cottonwood and loblolly pine biomass plantations along a nitrogen fertilization gradient [J]. Agriculture Ecosystems and Environment,2005,105:615-623.
    [12]Lena B V. Nutrient preserving in riverine transitional strip [J]. Journal of Human Environment,1994,3(6):342-347.
    [13]Stenberg M, Aronsson H, Linden B, et al. Soil mineral nitrogen and nitrate leaching losses in soil tillage systems combined with a catch crop [J]. Soil and Tillage Research,1999,50:115-125.
    [14]Monteith D T, Evans C D, Reynolds B. Are temporal variations in the nitrate concentration of UK upland freshwaters linked to the North Atlantic Oscillation [J]. Hydrological Processes,2000,14,1745-1749.
    [15]Beaudoin N, Saad J K, Laethem C V, et al. Nitrate leaching in intensive agriculture in Northern France:Effect of farming practices, soils and crop rotations [J]. Agriculture, Ecosystems and Environment,2005,111:292-310.
    [16]Nash D M, Halliwell D J. Fertilzer and phosphorus loss from productive grazing system [J]. Australian Journal of Soil Research,1999,37(3):403-429.
    [17]Nemeth T. Nitrogen in Hungarian soils-nitrogen management relation to groundwater protection [J]. Journal of Contaminant Hydrology.1995,20: 185-208.
    [18]Ottman M J, Tickes B R, Husman S H. Nitrogen-15 and bromide tracers of nitrogen fertilizer movement in irrigated wheat production [J]. Journal of Environment Quality.2000,29,1500-1508.
    [19]Rashid A, Khan R U and Ullah H. Influence of Nitrogen Levels and Application Methods on Yield and Quality of Sorghum [J]. Pedosphere,2008,18(2): 236-241.
    [20]Lemus R, Brummer E C, Burrasc C L, et al. Effects of nitrogen fertilization on biomass yield and quality in large fields of established switchgrass in southern Iowa, USA [J]. Biomass and Bioenergy,2008,32:1187-1194
    [21]Rroco E and Mengel K. Nitrogen losses from entire plants of spring wheat Triticum aestivum from tillering to maturation [J]. European Journal Agronomy, 2000,13:101-110.
    [22]Sharpley A N, Chapra S C, Wedepohl R, et al. Managing agricultural phosphorus for protection of surface waters issues and options [J]. Journal of Environmental Quality,1994,23:427-451.
    [23]Sheehy J E, Mnzava M, Cassman G K, et al. Ferrer Uptake of nitrogen by rice studied with a 15N point-placement technique [J]. Plant and Soil,2004,259: 259-265.
    [24]Vighi M, Chiaudani-Rev G. Eutrophication in Europe, the role of agricultural activities. In:Hodgson E. Reviews of Environmental Toxicology [J]. Amsterdam: Elsevier,1987:213-257.
    [25]Gburek W J, Sharpley A N, Heathwaite L, et al. Phosphorus management at the watershed scale:a modification of the phosphorus index [J]. Journal of Environment Quality,2000,29:130-144.
    [26]艾绍英,唐拴虎,李生秀等.氮素供应水平对蔬菜硝酸盐累积与分布的影响[J].华南农业大学学报,2000,21(2):14-17.
    [27]曹林奎,朱江.黄浦江上游蔬菜田氮素流失规律测坑研究[J].环境污染与防治,2005,27(1):34-37.
    [28]曹巧红,龚元石.应用Hydrus-1D模型模拟分析冬小麦农田水分氮素运移特征[J].植物营养与肥料学报,2003,9(2):139-145.
    [29]陈国军,曹林奎,陆贻通等.稻田氮素流失规律测坑研究[J].上海交通大学学报(农业科学版),2003,21(4):320-324.
    [30]陈国军,陆贻通,曹林奎等.冬小麦氮素渗漏淋失规律测坑研究[J].农业环境科学学报,2004,23(3):494-498.
    [31]陈琨,赵小蓉,王昌全等.成都平原不同施肥水平下稻田地表径流氮、磷流失初探[J].西南农业学报,2009,22(3):685-689.
    [32]程文娟,史静,夏运生等.滇池流域农田土壤氮磷流失分析研究[J].水土保持学报,2008,22(5):52-55.
    [33]单保庆,尹澄清,白颖等.小流域磷污染物非点源输出的人工降雨模拟研究[J].环境科学学报,2000,20(1):33-37.
    [34]董维红,林学钰.浅层地下水氮污染的影响因素分析—以松嫩盆地松花江北部高平原为例[J].吉林大学学报(地球科学版),2004,34(2):231-235.
    [35]段昌群,王红华,杨双兰.无公害蔬菜生产理论与调控技术[M].北京:科学出版社,2006.
    [36]段永惠,张乃明,洪波.滇池流域农田土壤氮磷流失影响因素探析[J].中国生态 农业学报,2005,13(2):116-118.
    [37]高艳明,孙权,李建设.氮肥施用量对大白菜硝酸盐累积的影响研究[J].中国生态农业学报,2004,12(2):115-117.
    [38]候晶.浦东新区大田蔬菜地无机氮淋溶试验研究[D].上海:华东师范大学,2006.
    [39]胡万里,孔令明,段宗颜等.滇池流域西芹保护地氮流失分析[J].云南农业大学学报,2006,21(5):670-672.
    [40]黄东风,王果,李卫华等.不同施肥模式对蔬菜生长、氮肥利用及菜地氮流失的影响[J].应用生态学报,2009,20(3):631-638.
    [41]黄满湘,章申,张国梁等.北京地区冬小麦/夏玉米连连作条件下NO3--N淋失[J].地理研究,2002,21(4):425-433.
    [42]黄沈发,陆贻通,沈根祥等.上海郊区旱作农田氮素流失研究[J].农村生态环境,2005,21(2):50-53.
    [43]黄宗楚.上海旱地农田氮磷流失过程及环境效应研究[D].上海:华东师范大学,2005.
    [44]蒋鸿琨,高海鹰,张奇.农业面源污染最佳管理措施(BMPs)在我国的应用[J].农业环境与发展,2006(4):64-67.
    [45]焦少俊,胡夏民,潘根兴等.施肥对太湖地区青紫泥水稻土稻季农田氮磷流失的影响[J].生态学杂志,2007,26(4):495-500.
    [46]昆明市地方志编纂委员会.昆明年鉴.昆明:云南民族出版社,2006.
    [47]雷宝坤,段宗颜,张维理等.滇池流域保护地西芹施肥研究[J].西南农业学报,2004,17:121-126.
    [48]雷宝坤,张维理,段宗颜等.滇池流域设施条件下生菜氮磷减控研究[J].西南农业大学学报,2005,27(1):55-59.
    [49]李俊良,陈新平,李晓林等.大白菜氮肥施用的产量效应、品质效应和环境效应[J].土壤学报,2003,40(2):261-266.
    [50]李林红.滇池流域可持续发展动态投入产出最优控制模型[J].控制与决策,2001,16:685-688.
    [51]李世清,李生秀.半干旱地区农田生态系统中硝态氮的淋失[J].应用生态学报,2006,11(2):240-242.
    [52]李晓林,张福锁,米国华等编.平衡施肥与可持续优质蔬菜生产[C].北京: 中国农业大学出版社,2000.
    [53]李裕元,邵明安.土壤翻耕影响坡地磷流失实验研究[J].应用生态学报,2004,15(3):443-448.
    [54]刘玉生,郑炳辉,戴树桂等编.滇池富营养化及其综合治理技术研究[C].北京:海洋出版社,2004.
    [55]刘忠翰,彭江燕.滇池流域农业区排水水质状况的初步调查[J].云南环境科学,1997,16(2):6-9.
    [56]吕耀.苏南太湖地区水稻土中硝态氮淋溶的定位研究[J].土壤通报,1999,30(3):113-114.
    [57]马朝红,方建坤.蔬菜土壤养分积累状况与环境风险[J].长江蔬菜,2000,(12):43-45.
    [58]马文奇.山东省作物施肥现状、问题与对策[D].北京:中国农业大学,1999.
    [59]钱海燕,王兴祥,黄国勤等.施肥对连作蔬菜地蔬菜产量和土壤氮素含量的影响[J].中国农学通报,2008,24(7):270-275.
    [60]全国农业技术推广中心.土壤分析技术规范[M].北京:中国农业出版社,2006.
    [61]沈明珠,翟宝杰等.蔬菜硝酸盐累积的研究[J].园艺学报,1982,9(4):41-48.
    [62]沈善敏.中国土壤肥力[M].北京:中国农业出版社,1998,4-6.
    [63]司友斌,王慎强,陈怀满.农田氮、磷的流失与水体富营养化[J].土壤,2000(4):188-193.
    [64]孙兴祥,王健,周毅等.不同氮素水平对菠菜生长和品质的影响[J].南京农业大学学报,2005,28(3):126-128.
    [65]王朝辉,田霄鸿,李生秀.土壤水分对蔬菜硝态氮积累的影响[J].西北农业大学学报,2000,25(6):15-20.
    [66]王朝辉,宗志强,李生秀等.蔬菜的硝态氮累积及菜地土壤的硝态氮残留[J].环境科学.2002,23(2):79-83.
    [67]王红梅,陈燕.滇池近20a富营养化变化趋势及原因分析[J].环境科学导刊,2009,28(3):57-60.
    [68]王强,姜丽娜,符建荣等.氮素形态、用量及施用时期对小青菜产量和硝酸盐含量的影响[J].植物营养与肥料学报,2008,14(1):126-131
    [69]王晓燕.非点源污染及其管理[M].北京:海洋出版社,2003
    [70]夏天翔,李文朝.抚仙湖北岸有机与常规种植菜地土壤氮、磷流失及积累特征[J].中国生态农业学报,2008,16(3):560-564.
    [71]续勇波,郑毅,刘宏斌等.设施栽培种生菜养分吸收和氮磷肥料利用率研究[J].云南农业大学学报,2003,18(3):221-227.
    [72]姚春霞.上海市郊旱作农田化肥施用的环境影响研究[D].上海:华东师范大学,2005.
    [73]于红梅,龚元石,李子忠等.不同水氮管理对苋菜和菠菜的产量及硝酸盐含量的影响[J].植物营养与肥料学报,2004,10(3):302-305.
    [74]袁旭音.中国湖泊污染状况的基本评价[J].火山地质与矿产,2000,21(2):128-136.
    [75]张庆忠,陈欣,沈善敏.农田土壤硝酸盐积累与淋失研究进展[J].应用生态学报,2002,13(2):233-238.
    [76]张维理,武淑霞,冀宏杰等.中国农业面源污染形势估计及控制对策Ⅰ.21世纪初期中国农业面源污染的形势估计[J].中国农业科学,2004,37(7):1008-1017.
    [77]张维理,冀宏杰,Kolbe H.等.中国农业面源污染形势估计及控制对策Ⅱ.欧美国家农业面源污染状况及控制[J].中国农业科学,2004,37(7):1018-1025.
    [78]朱兆良,David Norse,孙波.中国农业面源污染控制对策[M].北京:中国环境科学出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700