酞菁—二氧化硅纳米材料的制备与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文共分为五章,包括绪论、四羧基铝酞菁纳米粒子、四羧基铁酞菁纳米粒子及多功能磁性二氧化硅纳米管的制备与应用和展望。
     第一章为绪论,介绍了不断发展的纳米科技,对用作标记物的荧光纳米材料做了小结,着重讲述了二氧化硅纳米粒子的应用与合成,并对多功能纳米材料-超顺磁性二氧化硅纳米粒子和纳米管的应用做了简介,并在此基础上提出了本论文选题依据、研究目标、和研究内容。
     第二章主要研究四羧基铝酞菁纳米粒子的制备与应用。本章分为两节,第一节主要通过四乙氧基硅烷在反向胶束构成的纳米水池中水解首次制备出非共价四羧基铝酞菁纳米粒子,该荧光纳米颗粒能用于指示溶液pH的变化。第二节主要通过四羧基铝酞菁修饰的硅烷前体和四乙氧基硅烷在反向胶束构成的纳米水池中共水解制备出共价四羧基铝酞菁纳米粒子。以这些荧光纳米粒子作为荧光探针,建立了一个灵敏的检测痕量人IgG的荧光免疫分析新方法。
     第三章报道了四羧基铁酞菁纳米粒子的制备与应用。分为两节,第一节通过将四羧基铁酞菁共价包埋到纳米粒子中,制备四羧基铁酞菁-二氧化硅纳米粒子并用于硫胺素的测定。第二节通过将四羧基铁酞菁偶联到氨基化磁性二氧化硅纳米粒子的表面制备出磁性四羧基铁酞菁纳米粒子,并应用于催化水溶液中有机污染物的降解反应。
     第四章初步探讨了利用模板法合成了内、外表面功能化的磁性二氧化硅纳米管的制备与应用。将四羧基铝酞菁与磁性二氧化硅纳米管相结合,制备出对pH敏感的磁性二氧化硅纳米管。四羧基铝酞菁分别共轭到磁性二氧化硅纳米管的内、外表面后,仍然保持了其水溶液的荧光强度随溶液的pH的增加而增强的特性,可以用于溶液体系中的pH值的检测。同时,更有为意义的是,结合其它表征手段,发现四羧基铝酞菁的性质并未发生改变,所以该方法制备的表面功能化磁性二氧化硅纳米管不仅可以用做pH值的检测,还可以用来作为新型纳米材料载体,在细胞标记、药物运输、DNA转染、选择性分离,或作为催化剂载体等方面大有用途。
     第五章对下一步的研究工作提出了设想。
This dissertation consists of five chapters, including introduction, synthesis and application of tetra-substituted carboxyl aluminum phthalocyanine (AlC_4Pc)-silica nanoparticles, synthesis and applicantion of tetra-substituted carboxyl iron phthalocyanine(TCFePc)-silica nanoparticles, synthesis and applicantion of multifunctional magnetic silica nanotubes, and the conclusion and prospect of the present research work.
     In chapter one, the progress and development of nanotechnology was introduced. The fluorescent nanomaterials which can be used as markers were summarized briefly. And how to synthsize and apply the silica nanoparticles was described in details. The research proposal for this dissertation was also presented.
     In chapter two, the preparation and application of AlC_4Pc-silica nanoparticles were reported. This chapter was divided into two sections. The content of the first section was about using the microemulsion method to synthesize non-covalent fluorescent nanoparticles, AlC_4Pc-silica nanopartices. And the possibility of using the fluorescent nanoparticles as new fluorescent indicator for pH determination was also investigated. In the second section, covalent fluorescent nanoparticles were prepared by controlling the cohydrolysis of AlC_4Pc silylanization precursor and TEOS and APTEOS in W/O microemulsion. A fluoroimmunoassay method using the fluorescent nanoparticles was proposed for the determination of trace amount of IgG.
     In chapter three, two different methods were used to synthesize the TCFePc catalyst-supported silica nanoparticles. In the first section, by controlling the cohydrolysis of TCFePc silylanization precursor and TEOS in W/O microemulsion, the TCFePc-silica nanoparticles were formed and used to highly sensitive determinate thiamine. In the second section, TCFePc were covalently attached to the surface amino-functionalized magentic silica nanoparticles to form the TCFePc-magnetic SiO_2 nanoparticles, which used to catalyze the degradation reaction of organic pollutants in water. Compared with free TCFePc, the magnetic supported-catalyst has the advantages of ready separation by external magnetic field and can be directly used for the next run.
     The chapter four was about the preliminary investigation of the preparation and application of the surface-functionalized magnetic silica nanotubes. Combining AlC_4Pc with modified magnetic silica nanotubes which synthesized by alumina template membrane method, the AlC_4Pc-magnetic nanotubes were firstly synthesized and characterized. From the experimental results, the inner- or outer-AlC_4Pc magnetic silica nanotubes had the similar feature with free AlC_4Pc. These results indicated that the amino surface-functionalized magnetic silica nanotubes will be a promising platform for the applications of targeting drug delivery, DNA transfection, selective separation, catalyst carriers and so on.
     In chapter five, the final part of the dissertation, the prospect of this research was discussed.
引文
[1] Paull, Robert; Wolfe, Josh; Hebert, Peter; Sinkula, Michael. Investing in nanotechnology. Nature Biotechnology (2003), 21(10), 1144-1147.
    [2] McNeil, Scott E. Nanotechnology for the biologist. Journal of Leukocyte Biology (2005), 78(3), 585-594.
    [3] Pellegrino, Teresa; Kudera, Stefan; Liedl, Tim; Javier, Almudena Munoz; Manna, Liberato; Parak, Wolfgang J. On the development of colloidal nanoparticles towards multifunctional structures and their possible use for biological applications. Small (2005), 1(1), 48-63.
    [4] West, Jennifer L.; Halas, Naomi J. Applications of nanotechnology to biotechnology. Current Opinion in Biotechnology (2000), 11(2), 215-217.
    [5] Parak, Wolfgang J.; Gerion, Daniele; Pellegrino, Teresa; Zanchet, Daniela; Micheel, Christine; Williams, Shara C.; Boudreau, Rosanne; Le Gros, Mark A.; Larabell, Carolyn A.; Alivisatos, A. Paul. Biological applications of colloidal nanocrystals. Nanotechnology (2003), 14(7), R15-R27.
    [6] Levy, Laurent; Sahoo, Yudhisthira; Kim, Kyoung-Soo; Bergey, Earl J.; Prasad, Paras N.Nanochemistry: synthesis and characterization of multifunctional nanoclinics for biological applications. Chemistry of Materials (2002), 14(9), 3715-3721.
    [7] Lu, Huachang; Yi, Guangshun; Zhao, Shuying; Chen, Depu; Guo, Liang-Hong; Cheng, Jing. Synthesis and characterization of multi-functional nanoparticles possessing magnetic, up-conversion fluorescence and bio-affinity properties. Journal of Materials Chemistry (2004), 14(8), 1336-1341.
    [8] Kircher, Moritz F.; Mahmood, Umar; King, Raymond S.; Weissleder, Ralph; Josephson, Lee. A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. Cancer Research (2003), 63(23), 8122-8125.
    [9] Koltover, Ilya; Salditt, Tim; Radler, Joachim O.; Safinya, Cyrus R. An inverted hexagonal phase of cationic liposome-DNA complexes related to DNA release and delivery. Science (Washington, D. C.) (1998), 281(5373), 78-81.
    [10] Uhrich, Kathryn E.; Cannizzaro, Scott M.; Langer, Robert S.; Shakesheff, Kevin M. Polymeric systems for controlled drug release. Chemical Reviews (Washington, D. C.) (1999), 99(11), 3181-3198.
    [11] Haag, Rainer. Supramolecular drug-delivery systems based on polymeric core-shell architectures. Angewandte Chemie, International Edition (2004), 43(3), 278-282.
    [12] Zhao, Xiaojun; Hilliard, Lisa R.; Mechery, Shelly John; Wang, Yanping; Bagwe, Rahul P.; Jin, Shouguang; Tan, Weihong. A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proceedings of the National Academy of Sciences of the United States of America (2004), 101(42), 15027-15032.
    [13] Weiss, Shimon. Fluorescence spectroscopy of single biomolecules. Science (Washington, D. C.) (1999), 283(5408), 1676-1683.
    [14] Fang, Xiaohong; Liu, Xiaojing; Schuster, Sheldon; Tan, Weihong. Designing a novel molecular beacon for surface-immobilized DNA hybridization studies. Journal of the American Chemical Society (1999), 121(12), 2921-2922.
    [15] Zhao, Xiaojun; Tapec-Dytioco, Rovelyn; Tan, Weihong. Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles. Journal of the American Chemical Society (2003), 125(38), 11474-11475.
    [16] Zhou, Xichun; Zhou, Jizhong. Improving the signal sensitivity and photostability of DNAhybridizations on microarrays by using dye-Doped core-shell silica nanoparticles. Analytical Chemistry (2004), 76(18), 5302-5312.
    [17] Wang, Lin; Yang, Chaoyong; Tan, Weihong. Dual-luminophore-doped silica nanoparticles for multiplexed signaling. Nano Letters (2005), 5(1), 37-43.
    [18] Yao, Gang; Wang, Lin; Wu, Yanrong; Smith, Josh; Xu, Jinsheng; Zhao, Wenjun; Lee, Eunjung; Tan, Weihong. FloDots: luminescent nanoparticles. Analytical and Bioanalytical Chemistry (2006), 385(3), 518-524.
    [19] Wang, Lin; Wang, Kemin; Santra, Swadeshmukul; Zhao,Xiaojun; Hilliard,Lisa R; Smith,Joshua E; Wu,Yanrong; Tan,Weihong; Watching silica nanopargicles glow in the biological world. Analytical chemistry(Washington, DC), (2006), 78(33), 646-654.
    [20] Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum Dots for live cells, in vivo imaging, and diagnostics. Science (Washington, DC, United States) (2005), 307(5709), 538-544.
    [21] Parak, Wolfgang J.; Pellegrino, Teresa; Plank, Christian. Labelling of cells with quantum dots. Nanotechnology (2005), 16(2), R9-R25.
    [22] Charreyre, Marie-Therese; Zhang, Ping; Winnik, Mitchell A.; Pichot, Christian; Graillat, Christian. Adsorption of Rhodamine 6G onto polystyrene latex particles with sulfate groups at the surface. Journal of Colloid and Interface Science (1995), 170(2), 374-382.
    [23] Gao, Haifeng; Zhao, Yiqiang; Fu, Shoukuan; Li, Bin; Li, Minqian. Preparation of a novel polymeric fluorescent nanoparticle. Colloid and Polymer Science (2002), 280(7), 653-660.
    [24] Haugland, R. P. Handbook of Fluorescent Probes; http://probes.invitrogen.com/handbook.
    [25] Zhao, Xiaojun; Bagwe, Rahul P.; Tan, Weihong. Development of organic-dye-doped silica nanoparticles in a reverse microemulsion. Advanced Materials (Weinheim, Germany) (2004), 16(2), 173-176.
    [26] Wang, Lin; Tan, Weihong. Multicolor FRET silica nanoparticles by single wavelength excitation. Nano Letters (2006), 6(1), 84-88.
    [27] Roy, Indrajit; Ohulchanskyy, Tymish Y.; Pudavar, Haridas E.; Bergey, Earl J.; Oseroff, Allan R.; Morgan, Janet; Dougherty, Thomas J.; Prasad, Paras N. Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. Journal of the American Chemical Society (2003), 125(26),7860-7865.
    [28] Tada, Dayane B.; Vono, Lucas L. R.; Duarte, Evandro L.; Itri, Rosangela; Kiyohara, Pedro K.; Baptista, Mauricio S.; Rossi, Liane M. Methylene blue-containing silica-coated magnetic particles: a potential magnetic carrier for photodynamic therapy. Langmuir (2007), 23(15), 8194-8199.
    [29] Wang, Shizhong; Gao, Ruomei; Zhou, Feimeng; Selke, Matthias. Nanomaterials and singlet oxygen photosensitizers: potential applications in photodynamic therapy. Journal of Materials Chemistry (2004), 14(4), 487-493.
    [30] Barbe, Christophe; Bartlett, John; Kong, Linggen; Finnie, Kim; Lin, Hui Qiang; Larkin, Michael; Calleja, Sandrine; Bush, Alexandra; Calleja, Gerard. Silica particles: a novel drug-delivery system. Advanced Materials (Weinheim, Germany) (2004), 16(21), 1959-1966.
    [31] Roy, Indrajit; Ohulchanskyy, Tymish Y.; Bharali, Dhruba J.; Pudavar, Haridas E.; Mistretta, Ruth A.; Kaur, Navjot; Prasad, Paras N. Optical tracking of organically modified silica nanoparticles as DNA carriers: A nonviral, nanomedicine approach for gene delivery. Proceedings of the National Academy of Sciences of the United States of America (2005), 102(2), 279-284.
    [32] Santra, Swadeshmukul; Zhang, Peng; Wang, Kemin; Tapec, Rovelyn; Tan, Weihong. Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers. Analytical Chemistry (2001), 73(20), 4988-4993.
    [33] He, Xiao-Xiao; Wang, Kemin; Tan, Weihong; Liu, Bin; Lin, Xia; He, Chunmei; Li, Du; Huang, Shasheng; Li, Jun. Bioconjugated nanoparticles for DNA protection from cleavage. Journal of the American Chemical Society (2003), 125(24), 7168-7169.
    [34] Ow, Hooisweng; Larson, Daniel R.; Srivastava, Mamta; Baird, Barbara A.; Webb, Watt W.; Wiesner, Ulrich. Bright and stable core-shell fluorescent silica nanoparticles. Nano Letters (2005), 5(1), 113-117.
    [35] Santra, Swadeshmukul; Yang, Heesun; Dutta, Debamitra; Stanley, Jessie T.; Holloway, Paul H.; Tan, Weihong; Moudgil, Brij M.; Mericle, Robert A. TAT conjugated, FITC doped silica nanoparticles for bioimaging applications. Chemical Communications (Cambridge, United Kingdom) (2004), (24), 2810-2811.
    [36] Farokhzad, Omid C.; Jon, Sangyong; Khademhosseini, Ali; Tran, Thanh-Nga T.; LaVan, DavidA.; Langer, Robert. Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Research (2004), 64(21), 7668-7672.
    [37] Tan, Weihong; Wang, Kemin; He, Xiaoxiao; Zhao, Xiaojun Julia; Drake, Timothy; Wang, Lin; Bagwe, Rahul P. Bionanotechnology based on silica nanoparticles. Medicinal Research Reviews (2004), 24(5), 621-638.
    [38] Hench, Larry L.; West, Jon K. The sol-gel process. Chemical Reviews (Washington, DC, United States) (1990), 90(1), 33-72.
    [39] Avnir, David. Organic chemistry within ceramic matrixes: doped sol-gel materials. Accounts of Chemical Research (1995), 28(8), 328-334.
    [40] Geffcken, W., Berger, E.. German Patent, 1939 736411
    [41] Mackenzie, John D.. Glasses from melts and glasses from gels, a comparison. Journal of Non-Crystalline Solids (1982), 48(1), 1-10.
    [42] Hoar, T. P.; Schulman, J. H.. Transparent water-in-oil dispersions: the oleopathic hydro-micelle. Nature (London, United Kingdom) (1943), 152, 102-103.
    [43] Schulman, Jack H.; Stoeckenius, Walther; Price, Leon M. Mechanism of formation and structure of micro emulsions by electron microscopy. Journal of Physical Chemistry (1959), 63, 1677-1680.
    [44] Boutonnet, Magali; Kizling, Jerzy; Stenius, Per; Maire, Gilbert. The preparation of monodisperse colloidal metal particles from microemulsions. Colloids and Surfaces (1982), 5(3), 209-225.
    [45] Angel, Lindsay R.; Evans, D. Fennell; Ninham, B. W. Three-component ionic microemulsions. Journal of Physical Chemistry (1983), 87(4), 538-540.
    [46] Klier, John; Tucker, Christopher J.; Kalantar, Thomas H.; Green, D. P. Properties and applications of microemulsions. Advanced Materials (Weinheim, Germany) (2000), 12(23), 1751-1757.
    [47] Lopez-Quintela, M. Arturo. Synthesis of nanomaterials in microemulsions : formation mechanisms and growth control. Current Opinion in Colloid & Interface Science (2003), 8(2), 137-144.
    [48] Santra, Swadeshmukul; Tapec, Rovelyn; Theodoropoulou, Nikoleta; Dobson, Jon; Hebard, Arthur; Tan, Weihong. Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants. Langmuir (2001), 17(10), 2900-2906.
    [49] Esquena, J.; Tadros, Th. F.; Kostarelos, K.; Solans, C. Preparation of narrow size distribution silica particles using microemulsions. Langmuir (1997), 13(24), 6400-6406.
    [50] Towey, Thomas F.; Khan-Lodhi, Abid; Robinson, Brian H. Kinetics and mechanism of formation of quantum-sized cadmium sulfide particles in water-Aerosol OT-oil microemulsions. Journal of the Chemical Society, Faraday Transactions (1990), 86(22), 3757-3762.
    [51] Jain, Tapan Kumar; Roy, Indrajit; De, Tapas K.; Maitra, Amarnath. Nanometer silica particles encapsulating active compounds: a novel ceramic drug carrier. Journal of the American Chemical Society (1998), 120(43), 11092-11095.
    [52] Hota, G.; Jain, Shikha; Khilar, Kartic C. Synthesis of CdS-Ag2S core-shell/composite nanoparticles using AOT/n-heptane/water microemulsions. Colloids and Surfaces, A: Physicochemical and Engineering Aspects (2004), 232(2-3), 119-127.
    [53] Althues, Holger; Kaskel, Stefan. Sulfated zirconia nanoparticles synthesized in reverse microemulsions : preparation and catalytic properties. Langmuir (2002), 18(20), 7428-7435.
    [54] Zhang, Jun; Sun, Lingdong; Liao, Chunsheng; Yan, Chunhua. Size control and photoluminescence enhancement of CdS nanoparticles prepared via reverse micelle method. Solid State Communications (2002), 124(1-2), 45-48.
    [55] Huang, Jiaxing; Xie, Yi; Li, Bin; Liu, Yu; Lu, Jun; Qian, Yitai. Ultrasound-induced formation of CdS nanostructures in oil-in-water microemulsions. Journal of Colloid and Interface Science (2001), 236(2), 382-384.
    [56] Stoeber, Werner; Fink, Arthur; Bohn, Ernst. Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science (1968), 26(1), 62-69.
    [57] Van Helden, A. K.; Jansen, J. W.; Vrij, A. Preparation and characterization of spherical monodisperse silica dispersions in nonaqueous solvents. Journal of Colloid and Interface Science (1981), 81(2), 354-368.
    [58] Tan, C. G.; Bowen, B. D.; Epstein, N. Production of monodisperse colloidal silica spheres: effect of temperature. Journal of Colloid and Interface Science (1987), 118(1), 290-293.
    [59] Nyffenegger, Rene; Quellet, Christian; Ricka, Jaroslav. Synthesis of fluorescent, monodisperse, colloidal silica particles. Journal of Colloid and Interface Science (1993), 159(1), 150-157.
    [60] Coenen, S.; De Kruif, C. G. Synthesis and growth of colloidal silica particles. Journal of Colloid and Interface Science (1988), 124(1), 104-110.
    [61] Van Blaaderen, A.; Imhof, A.; Hage, W.; Vrij, A. Three-dimensional imaging of submicrometer colloidal particles in concentrated suspensions using confocal scanning laser microscopy. Langmuir (1992), 8(6), 1514-1517.
    [62] Van Blaaderen, A.; Vrij, A. Synthesis and characterization of colloidal dispersions of fluorescent, monodisperse silica spheres. Langmuir (1992), 8(12), 2921-2931.
    [63] Verhaegh, Nynke A. M.; Van Blaaderen, A. Dispersions of rhodamine-labeled silica spheres: synthesis, characterization, and fluorescence confocal scanning laser microscopy. Langmuir (1994), 10(5), 1427-1438.
    [64] Imhof, A.; Megens, M.; Engelberts, J. J.; De Lang, D. T. N.; Sprik, R.; Vos, W. L. Spectroscopy of Fluorescein (FITC) dyed colloidal silica spheres. Journal of Physical Chemistry B (1999), 103(9), 1408-1415.
    [65] Lindberg, Ritva; Sjoeblom, Johan; Sundholm, Goeran. Preparation of silica particles utilizing the sol-gel and the emulsion-gel processes. Colloids and Surfaces, A: Physicochemical and Engineering Aspects (1995), 99(1), 79-88.
    [66] Osseo-Asare, K.; Arriagada, F. J. Preparation of silica nanoparticles in a non-ionic reverse micellar system. Colloids and Surfaces (1990), 50, 321-339.
    [67] Arriagada, F. J.; Osseo-Assare, K. Synthesis of nanosize silica in aerosol OT reverse microemulsions. Journal of Colloid and Interface Science (1995), 170(1), 8-17.
    [68] Bagwe, Rahul P.; Yang, Chaoyong; Hilliard, Lisa R.; Tan, Weihong. Optimization of Dye-Doped Silica Nanoparticles Prepared Using a Reverse Microemulsion Method. Langmuir (2004), 20(19), 8336-8342.
    [69] Ye, Zhiqiang; Tan, Mingqian; Wang, Guilan; Yuan, Jingli. Preparation, characterization, and time-resolved fluorometric application of silica-coated terbium(III) fluorescent nanoparticles. Analytical Chemistry (2004), 76(3), 513-518.
    [70] Chang, Song-Yuan; Liu, Lei; Asher, Sanford A. Preparation and properties of tailored morphology, monodisperse colloidal silica-Cadmium sulfide nanocomposites. Journal of the American Chemical Society (1994), 116(15), 6739-6744.
    [71] Gerion, Daniele; Pinaud, Fabien; Williams, Shara C.; Parak, Wolfgang J.; Zanchet, Daniela;Weiss, Shimon; Alivisatos, A. Paul. Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. Journal of Physical Chemistry B (2001), 105(37), 8861-8871.
    [72] Hyeon, Taeghwan; Lee, Su Seong; Park, Jongnam; Chung, Yunhee; Na, Hyon Bin. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. Journal of the American Chemical Society (2001), 123(51), 12798-12801.
    [73] Lai, Jr-Iuan; Shafi, Kurikka V. P. M.; Ulman, Abraham; Loos, Katja; Lee, Yongjae; Vogt, Thomas; Lee, Wei-Li; Ong, N. P. Controlling the size of magnetic nanoparticles using Pluronic block copolymer surfactants. Journal of Physical Chemistry B (2005), 109(1), 15-18.
    [74] Sun, Shouheng; Zeng, Hao. Size-controlled synthesis of magnetite nanoparticles. Journal of the American Chemical Society (2002), 124(28), 8204-8205.
    [75] Sun, Shouheng; Zeng, Hao; Robinson, David B.; Raoux, Simone; Rice, Philip M.; Wang, Shan X.; Li, Guanxiong. Monodisperse MFe2O4 (M = Fe, Co, Mn) Nanoparticles. Journal of the American Chemical Society (2004), 126(1), 273-279.
    [76] Fried, Tcipi; Shemer, Gabriel; Markovich, Gil. Ordered two-dimensional arrays of ferrite nanoparticles. Advanced Materials (Weinheim, Germany) (2001), 13(15), 1158-1161.
    [77] Kang, Young Soo; Risbud, Subhash; Rabolt, John F.; Stroeve, Pieter. Synthesis and Characterization of Nanometer-Size Fe3O4 and Fe2O3 Particles. Chemistry of Materials (1996), 8(9), 2209-2211.
    [78] Hong, Chin-Yih; Jang, I. J.; Horng, H. E.; Hsu, C. J.; Yao, Y. D.; Yang, H. C. Ordered structures in Fe3O4 kerosene-based ferrofluids. Journal of Applied Physics (1997), 81(8, Pt. 2A), 4275-4277.
    [79] Liao, Min-Hung; Chen, Dong-Hwang. Preparation and characterization of a novel magnetic nano-adsorbent. Journal of Materials Chemistry (2002), 12(12), 3654-3659.
    [80] Vaqueiro, Paz; Lopez-Quintela, M. Arturo; Rivas, Jose. Synthesis of yttrium iron garnet nanoparticles via coprecipitation in microemulsion. Journal of Materials Chemistry (1997), 7(3), 501-504.
    [81] Shi, Jingyu; Verweij, Henk. Synthesis and Purification of Oxide Nanoparticle dispersions by modified emulsion precipitation. Langmuir (2005), 21(12), 5570-5575.
    [82] Zhou, Z. H.; Wang, J.; Liu, X.; Chan, H. S. O. Synthesis of Fe3O4 nanoparticles fromemulsions. Journal of Materials Chemistry (2001), 11(6), 1704-1709.
    [83] Xu, Chenjie; Xu, Keming; Gu, Hongwei; Zheng, Rongkun; Liu, Hui; Zhang, Xixiang; Guo, Zhihong; Xu, Bing. Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles. Journal of the American Chemical Society (2004), 126(32), 9938-9939.
    [84] Gu, Hongwei; Xu, Keming; Xu, Chenjie; Xu, Bing. Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chemical Communications (Cambridge, United Kingdom) (2006), (9), 941-949.
    [85] Zhao, Xiaojun; Tapec-Dytioco, Rovelyn; Wang, Kemin; Tan, Weihong. Collection of trace amounts of DNA/mRNA molecules using genomagnetic nanocapturers. Analytical Chemistry (2003), 75(14), 3476-3483.
    [86] Widder, Kenneth J.; Senyei, Andrew E.; Scarpelli, Dante G. Magnetic microspheres: a model system for site specific drug delivery in vivo. Proceedings of the Society for Experimental Biology and Medicine (1978), 158(2), 141-146.
    [87] Song, Ho-Taek; Choi, Jin-sil; Huh, Yong-Min; Kim, Sungjun; Jun, Young-wook; Suh, Jin-Suck; Cheon, Jinwoo. Surface modulation of magnetic nanocrystals in the development of highly efficient magnetic resonance probes for intracellular labeling. Journal of the American Chemical Society (2005), 127(28), 9992-9993.
    [88] Weissleder, Ralph; Moore, Anna; Mahmood, Umar; Bhorade, Rajeev; Benveniste, Helene; Chiocca, E. Antonio; Basilion, James P. In vivo magnetic resonance imaging of transgene expression. Nature Medicine (New York) (2000), 6(3), 351-354.
    [89] Zhao, Ming; Beauregard, Daniel A.; Loizou, Louiza; Davletov, Bazbek; Brindle, Kevin M. Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent. Nature Medicine (New York, NY, United States) (2001), 7(11), 1241-1244.
    [90] Lee, Jae-Hyun; Jun, Young-wook; Yeon, Soo-In; Shin, Jeon-Soo; Cheon, Jinwoo. Dual-mode nanoparticle probes for high-performance magnetic resonance and fluorescence imaging of neuroblastoma. Angewandte Chemie, International Edition (2006),45(48), 8160-8162.
    [91] Hu, Aiguo; Yee, Gordon T.; Lin, Wenbin. Magnetically Recoverable Chiral Catalysts Immobilized on Magnetite Nanoparticles for Asymmetric Hydrogenation of Aromatic Ketones. Journal of the American Chemical Society (2005), 127(36), 12486-12487.
    [92] Yi, Dong Kee; Lee, Su Seong; Ying, Jackie Y. Synthesis and applications of magnetic nanocomposite catalysts. Chemistry of Materials (2006), 18(10), 2459-2461.
    [93] Phan, Nam T. S.; Jones, Christopher W.. Highly accessible catalytic sites on recyclable organosilane-functionalized magnetic nanoparticles: An alternative to functionalized porous silica catalysts. Journal of Molecular Catalysis A: Chemical (2006), 253(1-2), 123-131.
    [94] Ding, Shijie; Xing, Yangchuan; Radosz, Maciej; Shen, Youqing. Magnetic nanoparticle supported catalyst for atom transfer radical polymerization. Macromolecules (2006), 39(19), 6399-6405.
    [95] Kawamura, Masato; Sato, Kazuhiko. Magnetically separable phase-transfer catalysts. Chemical Communications (Cambridge, United Kingdom) (2006), (45), 4718-4719.
    [96] Stevens, Philip D.; Li, Guifeng; Fan, Jinda; Yen, Max; Gao, Yong. Recycling of homogeneous Pd catalysts using superparamagnetic nanoparticles as novel soluble supports for Suzuki, Heck, and Sonogashira cross-coupling reactions. Chemical Communications (Cambridge, United Kingdom) (2005), (35), 4435-4437.
    [97] Xu, Xiangling; Friedman, Gary; Humfeld, Keith D.; Majetich, Sara A.; Asher, Sanford A. Superparamagnetic photonic crystals. Advanced Materials (Weinheim, Germany) (2001), 13(22), 1681-1684.
    [98] Narain, Ravin; Gonzales, Marcela; Hoffman, Allan S.; Stayton, Patrick S.; Krishnan, Kannan M. Synthesis of monodisperse biotinylated p(NIPAAm)-coated iron oxide magnetic nanoparticles and their bioconjugation to streptavidin. Langmuir (2007), 23(11), 6299-6304.
    [99] Vestal, Christy R.; Zhang, Z. John. Atom transfer radical polymerization synthesis and magnetic characterization of MnFe2O4/Polystyrene core/shell nanoparticles. Journal of the American Chemical Society (2002), 124(48), 14312-14313.
    [100] Liu, Qingxia; Xu, Zhenghe; Finch, J. A.; Egerton, R. A Novel two-step silica-coating process for engineering magnetic nanocomposites. Chemistry of Materials (1998), 10(12), 3936-3940.
    [101] Zhao, Lijun; Yang, Hua; Cui, Yuming; Zhao, Xueping; Feng, Shouhua. Study of preparation and magnetic properties of silica-coated cobalt ferrite nanocomposites. Journal of Materials Science (2007), 42(11), 4110-4114.
    [102] Choi, Jungkweon; Kim, Jin Chul; Lee, Yong Bok; Kim, In Seon; Park, Yong Ki; Hur, Nam Hwi. Fabrication of silica-coated magnetic nanoparticles with highly photoluminescentlanthanide probes. Chemical Communications (Cambridge, United Kingdom) (2007), (16), 1644-1646.
    [103] Vestal, Christy R.; Zhang, Z. John. Synthesis and magnetic characterization of Mn and Co spinel ferrite-silica nanoparticles with tunable magnetic core. Nano Letters (2003), 3(12), 1739-1743.
    [104] Lin, Yu-Shen; Wu, Si-Han; Hung, Yann; Chou, Yi-Hsin; Chang, Chen; Lin, Meng-Liang; Tsai, Chih-Pin; Mou, Chung-Yuan. Multifunctional composite nanoparticles: magnetic , luminescent, and mesoporous. Chemistry of Materials (2006), 18(22), 5170-5172.
    [105] Mendoza-Resendez, Raquel; Pozas, Raul; Morales, M. Puerto; Bonville, Pierre; Ocana, Manuel; Serna, Carlos J. FeCo magnetic nanoneedles obtained by Co-coating haematite. Nanotechnology (2005), 16(6), 647-654.
    [106] Nunez, Nuria O.; Tartaj, Pedro; Morales, M. Puerto; Bonville, Pierre; Serna, Carlos J. Yttria-coated FeCo magnetic nanoneedles. Chemistry of Materials (2004), 16(16), 3119-3124.
    [107] Kouassi, Gilles K.; Irudayaraj, Joseph. Magnetic and gold-coated magnetic nanoparticles as a DNA Sensor. Analytical Chemistry (2006), 78(10), 3234-3241.
    [108] Kim, Jaeyun; Park, Sungjin; Lee, Ji Eun; Jin, Seung Min; Lee, Jung Hee; Lee, In Su; Yang, Ilseung; Kim, Jun-Sung; Kim, Seong Keun; Cho, Myung-Haing; Hyeon, Taeghwan. Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy. Angewandte Chemie, International Edition (2006), 45(46), 7754-7758,
    [109] Lo, Chung Keung; Xiao, Dan; Choi, Martin M. F. Homocysteine-protected gold-coated magnetic nanoparticles: synthesis and characterisation. Journal of Materials Chemistry (2007), 17(23), 2418-2427.
    [110] Ulman, Abraham. Formation and structure of self-assembled monolayers. Chemical Reviews (Washington, D. C.) (1996), 96(4), 1533-1554.
    [111] Perez, J. Manuel; Simeone, F. Joseph; Saeki, Yoshinaga; Josephson, Lee; Weissleder, Ralph. Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media. Journal of the American Chemical Society (2003), 125(34), 10192-10193.
    [112] Gu, Hongwei; Ho, Pak-Leung; Tsang, Kenneth W. T.; Wang, Ling; Xu, Bing. Using biofunctional magnetic nanoparticles to capture vancomycin-resistant enterococci and othergram-positive bacteria at ultralow concentration. Journal of the American Chemical Society (2003), 125(51), 15702-15703.
    [113] Rondinone, Adam J.; Samia, Anna C. S.; Zhang, Z. John. Superparamagnetic relaxation and magnetic anisotropy energy distribution in CoFe2O4 spinel ferrite nanocrystallites. Journal of Physical Chemistry B (1999), 103(33), 6876-6880.
    [114] Tago, Teruoki; Hatsuta, Takatoshi; Miyajima, Kanta; Kishida, Masahiro; Tashiro, Shizuka; Wakabayashi, Katsuhiko. Novel synthesis of silica-coated ferrite nanoparticles prepared using water-in-oil microemulsion. Journal of the American Ceramic Society (2002), 85(9), 2188-2194.
    [115] Tartaj, Pedro; Serna, Carlos J. Synthesis of monodisperse superparamagnetic Fe/silica nanospherical composites. Journal of the American Chemical Society (2003), 125(51), 15754-15755.
    [116] Lu, Chen-Wen; Hung, Yann; Hsiao, Jong-Kai; Yao, Ming; Chung, Tsai-Hua; Lin, Yu-Shen; Wu, Si-Han; Hsu, Szu-Chun; Liu, Hon-Man; Mou, Chung-Yuan; Yang, Chung-Shi; Huang, Dong-Ming; Chen, Yao-Chang. Bifunctional magnetic silica nanoparticles for highly efficient human stem cell labeling. Nano Letters (2007), 7(1), 149-154.
    [117] Kim, Jaeyun; Lee, Ji Eun; Lee, Jinwoo; Yu, Jung Ho; Kim, Byoung Chan; An, Kwangjin; Hwang, Yosun; Shin, Chae-Ho; Park, Je-Geun; Kim, Jungbae; Hyeon, Taeghwan. Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals. Journal of the American Chemical Society (2006), 128(3), 688-689.
    [118] Yi, Dong Kee; Selvan, S. Tamil; Lee, Su Seong; Papaefthymiou, Georgia C.; Kundaliya, Darshan; Ying, Jackie Y. Silica-coated nanocomposites of magnetic nanoparticles and quantum dots. Journal of the American Chemical Society (2005), 127(14), 4990-4991.
    [119] Selvan, S. Tamil; Patra, Pranab K.; Ang, Chung Yen; Ying, Jackie Y. Synthesis of silica-coated semiconductor and magnetic quantum dots and their use in the imaging of live cells. Angewandte Chemie, International Edition (2007), 46(14), 2448-2452.
    [120] Deng, Yong-Hui; Wang, Chang-Chun; Hu, Jian-Hua; Yang, Wu-Li; Fu, Shou-Kuan. Investigation of formation of silica-coated magnetite nanoparticles via sol-gel approach. Colloids and Surfaces, A: Physicochemical and Engineering Aspects (2005), 262(1-3), 87-93.
    [121] Lu, Yu; Yin, Yadong; Mayers, Brian T.; Xia, Younan. Modifying the surface properties ofsuperparamagnetic iron oxide nanoparticles through a sol-gel approach. Nano Letters (2002), 2(3), 183-186.
    [122] Zhao, Wenru; Gu, Jinlou; Zhang, Lingxia; Chen, Hangrong; Shi, Jianlin. Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure. Journal of the American Chemical Society (2005), 127(25), 8916-8917.
    [123] Tovmachenko, Oleg G.; Graf, Christina; van den Heuvel, Dave J.; van Blaaderen, Alfons; Gerritsen, Hans C. Fluorescence enhancement by metal-core/silica-shell nanoparticles. Advanced Materials (Weinheim, Germany) (2006), 18(1), 91-95.
    [124] Liz-Marzan, Luis M.; Giersig, Michael; Mulvaney, Paul. Synthesis of nanosized gold-silica core-shell particles. Langmuir (1996), 12(18), 4329-4335.
    [125] Salgueirino-Maceira, Veronica; Correa-Duarte, Miguel A.; Spasova, Marina; Liz-Marzan, Luis M.; Farle, Michael. Composite silica spheres with magnetic and luminescent functionalities. Advanced Functional Materials (2006), 16(4), 509-514.
    [126] Chen, Minghai; Gao, Lian; Yang, Songwang; Sun, Jing. Fabrication of well-defined water-soluble core/shell heteronanostructures through the SiO2 spacer. Chemical Communications (Cambridge, United Kingdom) (2007), (12), 1272-1274.
    [127] Yager, Paul; Schoen, Paul E. Formation of tubules by a polymerizable surfactant. Molecular Crystals and Liquid Crystals (1984), 106(3-4), 371-381.
    [128] Schnur, Joel M. Lipid tubules: a paradigm for molecularly engineered structures. Science (Washington, DC, United States) (1993), 262(5140), 1669-1676.
    [129] Iijima, Sumio. Helical microtubules of graphitic carbon. Nature (London, United Kingdom) (1991), 354(6348), 56-58.
    [130] Ajayan, P. M. Nanotubes from carbon. Chemical Reviews (Washington, D. C.) (1999), 99(7), 1787-1799.
    [131] Rueckes, Thomas; Kim, Kyoungha; Joselevich, Ernesto; Tseng, Greg Y.; Cheung, Chin-Li; Lieber, Charles M. Carbon nanotube-based nonvolatile random access memory for molecular computing. Science (Washington, D. C.) (2000), 289(5476), 94-97.
    [132] Bachtold, Adrian; Hadley, Peter; Nakanishi, Takeshi; Dekker, Cees. Logic circuits with carbon nanotube transistors. Science (Washington, DC, United States) (2001), 294(5545), 1317-1320.
    [133] Robinson, Joshua A.; Snow, Eric S.; Badescu, Stefan C.; Reinecke, Thomas L.; Perkins, F. Keith.Role of Defects in Single- Walled Carbon Nanotube Chemical Sensors. Nano Letters (2006), 6(8), 1747-1751.
    [134] Cherukuri, Paul; Bachilo, Sergei M.; Litovsky, Silvio H.; Weisman, R. Bruce. Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. Journal of the American Chemical Society (2004), 126(48), 15638-15639.
    [135] Ghadiri, M. Reza; Granja, Juan R.; Milligan, Ronald A.; McRee, Duncan E.; Khazanovich, Nina. Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature (London, United Kingdom) (1993), 366(6453), 324-327.
    [136] Khazanovich, Nina; Granja, Juan R.; McRee, Duncan E.; Milligan, Ronald A.; Ghadiri, M. Reza. Nanoscale tubular ensembles with specified internal diameters. design of a self-assembled nanotube with a 13? pore. Journal of the American Chemical Society (1994), 116(13), 6011-6012.
    [137] Ghadiri, M. Reza; Granja, Juan R.; Buehler, Lukas K. Artificial transmembrane ion channels from self-assembling peptide nanotubes. Nature (London, United Kingdom) (1994), 369(6478), 301-304.
    [138] Fernandez-Lopez, Sara; Kim, Hul-Sun; Choi, Ellen C.; Delgado, Mercedes; Granja, Juan R.; Khasanov, Alisher; Kraehenbuehl, Karin; Long, Georgina; Weinberger, Dana A.; Wilcoxen, Keith M.; Ghadiri, M. Reza. Antibacterial agents based on the cyclic D,L?α-peptide architecture. Nature (London, United Kingdom) (2001), 412(6845), 452-456.
    [139] Amorin, Manuel; Brea, Roberto J.; Castedo, Luis; Granja, Juan R. Amorin, Manuel; Brea, Roberto J.; Castedo, Luis; Granja, Juan R. The Smallest,γ-Peptide Nanotubulet Segments: Cyclic,γ-Tetrapeptide Dimers. Organic Letters (2005), 7(21), 4681-4684.
    [140] Hulteen, John C.; Martin, Charles R. A general template-based method for the preparation of nanomaterials. Journal of Materials Chemistry (1997), 7(7), 1075-1087.
    [141] Cepak, Veronica M.; Martin, C. R. Preparation of polymeric micro- and nanostructures using a template-based deposition method. Chemistry of Materials (1999), 11(5), 1363-1367.
    [142] Satishkumar, B. C.; Govindaraj, A.; Nath, Manashi; Rao, C. N. R. Synthesis of metal oxide nanorods using carbon nanotubes as templates. Journal of Materials Chemistry (2000), 10(9), 2115-2119.
    [143] Schlottig, F.; Textor, M.; Georgi, U.; Roewer, G. Template synthesis of SiO2 nanostructures.Journal of Materials Science Letters (1999), 18(8), 599-601.
    [144] Lakshmi, Brinda B.; Dorhout, Peter K.; Martin, Charles R.. Sol-Gel template synthesis of semiconductor nanostructures. Chemistry of Materials (1997), 9(3), 857-862.
    [145] Huang, Jianguo; Kunitake, Toyoki. Nanotubings of titania/polymer composite: template synthesis and nanoparticle inclusion. Journal of Materials Chemistry (2006), 16(43), 4257-4264.
    [146] Cheng, Lifang; Zhang, Xingtang; Liu, Bin; Wang, Hongzhe; Li, Yuncai; Huang, Yabin; Du, Zuliang. Template synthesis and characterization of WO3/TiO2 composite nanotubes. Nanotechnology (2005), 16(8), 1341-1345.
    [147] Nielsch, K.; Castano, F. J.; Ross, C. A.; Krishnan, R. Magnetic properties of template-synthesized cobalt/polymer composite nanotubes. Journal of Applied Physics (2005), 98(3), 034318/1-034318/6.
    [148] Nakamura, Hidenori; Matsui, Yasushi. Silica gel nanotubes obtained by the Sol-Gel method. Journal of the American Chemical Society (1995), 117(9), 2651-2652.
    [149] Schlottig, F.; Textor, M.; Georgi, U.; Roewer, G. Template synthesis of SiO2 nanostructures. Journal of Materials Science Letters (1999), 18(8), 599-601.
    [150] Adachi, Motonari; Harada, Toshio; Harada, Makoto. Formation processes of silica nanotubes through a surfactant-assisted templating mechanism in laurylamine hydrochloride/ tetraethoxysilane system. Langmuir (2000), 16(5), 2376-2384.
    [151] Harada, Makoto; Adachi, Motonari. Surfactant-mediated fabrication of silica nanotubes. Advanced Materials (Weinheim, Germany) (2000), 12(11), 839-841.
    [152] Wang, Lianzhou; Tomura, Shinji; Ohashi, Fumihiko; Maeda, Masaki; Suzuki, Masaya; Inukai, Keiichi. Synthesis of single silica nanotubes in the presence of citric acid. Journal of Materials Chemistry (2001), 11(5), 1465-1468.
    [153] Ji, Qingmin; Iwaura, Rika; Shimizu, Toshimi. Regulation of silica nanotube diameters: Sol-Gel transcription using solvent-sensitive morphological change of peptidic lipid nanotubes as templates. Chemistry of Materials (2007), 19(6), 1329-1334.
    [154] Mitchell, David T.; Lee, Sang Bok; Trofin, Lacramioara; Li, Naichao; Nevanen, Tarja K.; Soederlund, Hans; Martin, Charles R. Smart nanotubes for bioseparations and biocatalysis. Journal of the American Chemical Society (2002), 124(40), 11864-11865.
    [155] Kovtyukhova, Nina I.; Mallouk, Thomas E.; Mayer, Theresa S. Templated surface sol-gel synthesis of SiO2 nanotubes and SiO2-insulated metal nanowires. Advanced Materials (Weinheim, Germany) (2003), 15(10), 780-785.
    [156] Chen, Chia-Chun; Liu, Yao-Chung; Wu, Chia-Hsuan; Yeh, Chun-Chia; Su, Ming-Tsan; Wu, Yi-Chun. Preparation of fluorescent silica nanotubes and their application in gene delivery. Advanced Materials (Weinheim, Germany) (2005), 17(4), 404-407.
    [157] Son, Sang Jun; Reichel, Jonathan; He, Bo; Schuchman, Mattan; Lee, Sang Bok. Magnetic nanotubes for magnetic-field-assisted bioseparation, biointeraction, and drug delivery. Journal of the American Chemical Society (2005), 127(20), 7316-7317.
    [158] Lee, Soo Jin; Lee, Shim Sung; Lah, Myoung Soo; Hong, Jae-Min; Jung, Jong Hwa. Organic-inorganic hybrid nanomaterial as a new fluorescent chemosensor and adsorbent for copper ion. Chemical Communications (Cambridge, United Kingdom) (2006), (43), 4539-4541.
    [1] Zen, Jyh Myng; Patonay, Gabor. Near-infrared fluorescence probe for pH determination. Analytical Chemistry (1991), 63(24), 2934-2938.
    [2] sgor, Yasemin G.; Akkaya, Engin U. Chemosensing in deep red: a squaraine-based fluorescent chemosensor for pH. Tetrahedron Letters (1997), 38(42), 7417-7420.
    [3] Li, Donghui(李东辉); Zhu, Qingzhi(朱庆枝); Chen Qiuying(陈秋影); Zheng, Hong(郑洪); Xu, Jingou(许金钩). Chemistry Online (supplement)(化学通报)(增刊)(1999), 262-265.
    [4] Clark H A; Kopelman R; Tjalkens R; Philbert M A Optical nanosensors for chemical analysis inside single living cells. 2. Sensors for pH and calcium and the intracellularapplication of PEBBLE sensors. Analytical chemistry (1999), 71(21), 4837-4843.
    [5] Duan, Jinghua(段菁华); Wang, Kemin(王柯敏); Tan, Weihong(谭蔚泓); He, Xiaoxiao(何晓晓); He, Chunmei(何春梅); Liu, Bin(刘 斌); Li, Du(李 杜); Huang, Shansheng(黄杉生);Yang, Xiaohai(羊小海); Mo, Yuanyao(莫远尧). A Study of a Novel Organic Fluorescent Core-shell Nanoparticle(新型有机荧光染料嵌合的核壳荧光纳米材料的研制), Chemical Journal of Chinese Universities (高等学校化学学报) (2003), 24(2), 255-259.
    [6] Zhao, Xiaojun; Bagwe, Rahul P.; Tan, Weihong. Development of organic-dye-doped silica nanoparticles in a reverse microemulsion. Advanced Materials (Weinheim, Germany) (2004), 16(2), 173-176.
    [7] Santra, Swadeshmukul; Yang, Heesun; Dutta, Debamitra; Stanley, Jessie T; Holloway, Paul H; Tan, Weihong; Moudgil, Brij M.; Mericle, Robert A. TAT conjugated, FITC doped silica nanoparticles for bioimaging applications. Chemical communications (Cambridge, England) (2004), (24), 2810-2811.
    [8] Su, Meihong(苏美红); Nie, Lihua(聂丽华); Ma, Huimin(马会民). Progress of pH Fluorescence Probes ( pH 荧光探针的研究进展), Journal of Analytical Science (分析科学学报) (2005), 21(2), 210-214.
    [9] Chen, Fapu(陈发普); Xu, Deyu (许德余). Synthesis of Water Soluble Phthalocyanines(水溶性酞菁化合物的合成), Chinese Journal of Organic Chemistry(有机化学) (1990), 10(6), 550-553.
    [1] Lakowicz J.R., (1999) Principles of fluorescence spectroscopy, 2nd ed. Kluwer Academic/Plenum Publishers, New York
    [2] Trau, Dieter; Yang, Wenjun; Seydack, Matthias; Caruso, Frank; Yu, Nai-Teng; Renneberg, Reinhard. Nanoencapsulated microcrystalline particles for superamplified biochemical assays. Analytical Chemistry (2002), 74(21), 5480-5486.
    [3] Aguilar-Caballos, M. P.; Gomez-Hens, A.; Perez-Bendito, D. Pesticide determination by stopped-flow fluoroimmunoassay using Cresyl Violet as label. Analytica Chimica Acta (1999), 381(2-3), 147-154.
    [4] Parak, Wolfgang J.; Gerion, Daniele; Pellegrino, Teresa; Zanchet, Daniela; Micheel, Christine; Williams, Shara C.; Boudreau, Rosanne; Le Gros, Mark A.; Larabell, Carolyn A.; Alivisatos, A. Paul. Biological applications of colloidal nanocrystals. Nanotechnology (2003), 14(7), R15-R27.
    [5] Wang, Feng; Tan, Wee Beng; Zhang, Yong; Fan, Xianping; Wang, Minquan. Luminescent nanomaterials for biological labelling. Nanotechnology (2006), 17(1), R1-R13.
    [6] Van Blaaderen, A.; Vrij, A. Synthesis and characterization of colloidal dispersions of fluorescent, monodisperse silica spheres. Langmuir (1992), 8(12), 2921-2931.
    [7] Verhaegh, Nynke A. M.; Blaaderen, Alfons van. Dispersions of rhodamine-labeled silica spheres: synthesis, characterization, and fluorescence confocal scanning laser microscopy. Langmuir (1994), 10(5), 1427-1438.
    [8] Yang, Huang-Hao; Qu, Hui-Ying; Lin, Peng; Li, Shun-Hua; Ding, Ma-Tai; Xu, Jin-Gou. Nanometer fluorescent hybrid silica particle as ultrasensitive and photostable biological labels. Analyst (Cambridge, United Kingdom) (2003), 128(5), 462-466.
    [9] Hai, Xiaodan; Tan, Mingqian; Wang, Guilan; Ye, Zhiqiang; Yuan, Jingli; Matsumoto, Kazuko. Preparation and a time-resolved fluoroimmunoassay application of new europium fluorescent nanoparticles. Analytical Sciences (2004), 20(2), 245-246.
    [10] Santra, Swadeshmukul; Yang, Heesun; Dutta, Debamitra; Stanley, Jessie T.; Holloway, Paul H.; Tan, Weihong; Moudgil, Brij M.; Mericle, Robert A. TAT conjugated, FITC doped silica nanoparticles for bioimaging applications. Chemical Communications (Cambridge, United Kingdom) (2004), (24), 2810-2811.
    [11] Ow, Hooisweng; Larson, Daniel R.; Srivastava, Mamta; Baird, Barbara A.; Webb, Watt W.; Wiesner, Ulrich. Bright and stable core-shell fluorescent silica nanoparticles. Nano Letters (2005), 5(1), 113-117.
    [12] Arriagada, F. J.; Osseo-Asare, K. Controlled hydrolysis of tetraethoxysilane in a nonionic water-in-oil microemulsion: a statistical model of silica nucleation. Colloids and Surfaces, A: Physicochemical and Engineering Aspects (1999), 154(3), 311-326.
    [13] Arriagada, F. J.; Osseo-Asare, K. Synthesis of nanosize silica in a nonionic water-in-oil microemulsion: effects of the water/surfactant molar ratio and ammonia concentration. Journal of Colloid and Interface Science (1999), 211(2), 210-220.
    [14] Yi, Dong Kee; Selvan, S. Tamil; Lee, Su Seong; Papaefthymiou, Georgia C.; Kundaliya, Darshan; Ying, Jackie Y. Silica-coated nanocomposites of magnetic nanoparticles and quantum dots. Journal of the American Chemical Society (2005), 127(14), 4990-4991.
    [15] Lakowicz JR (1999) Principles of Fluorescence spectroscopy, Chap 16, 2nd ed.KluwerAcademic/Plenum Publishers, NewYork
    [16] Chen, Fapu(陈发普); Xu, Deyu (许德余). Synthesis of water soluble phthalocyanines(水溶性酞菁化合物的合成), Chinese Journal of Organic Chemistry(有机化学) (1990), 10(6), 550-553.
    [17] Harlow E, Lane DP (1988) Antibodies: a laboratory manual, Chap 13. Cold Spring Harbor Laboratory, New York
    [18] He, Xiaoxiao; Wang, Kemin; Tan, Weihong; Chen, Jiyun; Duan, Jinghua; Yuan, Yin; Lin, Xia. Study on the effect of electrostatic interaction on core-shell nanoparticles preparation with microemulsion technique. Chinese Science Bulletin (2005), 50(24), 2821-2826.
    [19] Lin, Xueyan (林学颜), Immunology foundation (免疫学基础) (1980) Science and Technology Press of Fujian (福建科学技术出版社), 30
    [1] Martin, Charles R.; Mitchell, David T. Nanomaterials in analytical chemistry. Analytical Chemistry (1998), 70(9), 322A-327A.
    [2] Paull, Robert; Wolfe, Josh; Hebert, Peter; Sinkula, Michael. Investing in nanotechnology. Nature Biotechnology (2003), 21(10), 1144-1147.
    [3] Whitesides, George M.. The 'right' size in nanobiotechnology. Nature Biotechnology (2003), 21(10), 1161-1165.
    [4] Portney, Nathaniel G.; Ozkan, Mihrimah. Nano-oncology: drug delivery, imaging, and sensing. Analytical and Bioanalytical Chemistry (2006), 384(3), 620-630.
    [5] Maesaki, Shigefumi. Drug delivery system of anti-fungal and parasitic agents. Current Pharmaceutical Design (2002), 8(6), 433-440.
    [6] Prokop, Ales; Kozlov, Evgenii; Carlesso, Gianluca; Davidson, Jeffrey M. Hydrogel-based colloidal polymeric system for protein and drug delivery: physical and chemical characterization, permeability control and applications. Advances in PolymerScience (2002), 160 (Filled Elastomers Drug Delivery Systems), 119-173.
    [7] Wang, Yajun; Caruso, Frank. Enzyme encapsulation in nanoporous silica spheres. Chemical Communications (Cambridge, United Kingdom) (2004), (13), 1528-1529.
    [8] Qhobosheane, Monde; Santra, Swadeshmukul; Zhang, Peng; Tan, Weihong. Biochemically functionalized silica nanoparticles. Analyst (Cambridge, United Kingdom) (2001), 126(8), 1274-1278.
    [9] Naik, Rajesh R.; Tomczak, Melanie M.; Luckarift, Heather R.; Spain, Jim C.; Stone, Morley O. Communications (Cambridge, United Kingdom) (2004), (15), 1684-1685.
    [10] Collinson, Maryanne M.. Recent trends in analytical applications of organically modified silicate materials. TrAC, Trends in Analytical Chemistry (2002), 21(1), 30-38.
    [11] Raja, Robert; Ratnasamy, Paul. Direct conversion of methane to methanol. Applied Catalysis, A: General (1997), 158(1-2), L7-L15.
    [12] Parton, Rudy F.; Neys, Patricia E.; Jacobs, Peter A.; Sosa, Rosario C.; Rouxhet, Paul G. Iron-phthalocyanine immobilized on activated carbon black: a selective catalyst for alkane oxidation. Journal of Catalysis (1996), 164(2), 341-346.
    [13] Hara, Tadashi; Tsukagoshi, Kazuhiko. Chemiluminescence analyses of biological constituents using metal-complex catalysts. A review. Analytical Sciences (1990), 6(6), 797-806.
    [14] Zhu, Qing-Zhi; Zheng, Xue-Ying; Xu, Jin-Gou; Liu, Feng-Hua; Li, Qing-Ge. Application of o-hydroxyphenylfluorone as a fluorogenic indicator to the determination of hydrogen peroxide and oxidase substrates based on the catalytic effect of hemin. Microchemical Journal (1997), 57(3), 332-338.
    [15] Chen, Qiu-ying; Li, Dong-hui; Zhu, Qing-zhi; Zheng, Hong; Xu, Jin-Gou. Application of iron-tetrasulfonatophthalocyanine as a new mimetic peroxidase in the determination of hydrogen peroxide with p-hydroxyphenylpropionic acid as a substrate. Analytica Chimica Acta (1999), 381(2-3), 175-182.
    [16] Zhu, Chang-Qing; Zhuo, Shu-Juan; Chen, Jin-Long; Wu, Yu-Qin; Li, Yong-Xin; Li, Dong-Hui; Zheng, Hong; Xu, Jin-Gou. A kinetic fluorometric method for the determination of nucleic acids using a ternary equilibrium system of nucleic acids-iron (III) tetracarboxy phthalocyanine-polylysine coupled with the oxidation reactionbetween hydrogen peroxide and DL-tyrosine. Analytica Chimica Acta (2004), 514(2), 247-252.
    [17] Arriagada, F. J.; Osseo-Asare, K. Synthesis of nanosize silica in a nonionic water-in-oil microemulsion: effects of the water/surfactant molar ratio and ammonia concentration. Journal of Colloid and Interface Science (1999), 211(2), 210-220.
    [18] Yi, Dong Kee; Selvan, S. Tamil; Lee, Su Seong; Papaefthymiou, Georgia C.; Kundaliya, Darshan; Ying, Jackie Y. Silica-coated nanocomposites of magnetic nanoparticles and quantum dots. Journal of the American Chemical Society (2005), 127(14), 4990-4991.
    [19] Bohrer, Denise; Cicero do Nascimento, Paulo; Ramirez, Adrian G.; Mendonca, Jean Karlo A.; de Carvalho, Leandro M.; Pomblum, Solange Cristina G. Determination of thiamine in blood serum and urine by high-performance liquid chromatography with direct injection and post-column derivatization. Microchemical Journal (2004), 78(1), 71-76.
    [20] Monferrer-Pons, Llorenc; Elisa Capella-Peiro, M.; Gil-Agusti, Mayte; Esteve-Romero, Josep. Micellar liquid chromatography determination of B vitamins with direct injection and ultraviolet absorbance detection. Journal of Chromatography, A (2003), 984(2), 223-231.
    [21] Lynch, P. L. M.; Young, I. S. Determination of thiamine by high-performance liquid chromatography. Journal of chromatography. A (2000), 881(1-2), 267-284.
    [22] Ren, Yiping(任一平); Chen, Hengwu(陈恒武); Chen, Qingjun(陈青俊); Bao, Lianbin(包敛彬); Huang, Baifen(黄百芬); He, Qiaohong(何巧红). Determination of thiamine in foods by high performance liquid chromatography with post-column photochemical derivatization and fluorescence detection (柱后光化学衍生荧光检测高效液相色谱法测定食品中的维生素B 1). Chinese Journal of Analytical Chemistry (分析化学) (2000), 28(5), 554-558.
    [23] Liu, Shaopu; Zhang, Zhuyuan; Liu, Qin; Luo, Hongqun; Zheng, Wenxu. Spectrophotometric determination of vitamin B1 in a pharmaceutical formulation using triphenylmethane acid dyes. Journal of Pharmaceutical and Biomedical Analysis (2002), 30(3), 685-694.
    [24] Aniceto, Clezio; Pereira, Airton Vicente; Costa-Neto, Cicero Oliveira; Fatibello-Filho, Orlando. Flow-injection spectrophotometric determination of vitamin B1 (thiamine) inmultivitamin preparations. Laboratory Robotics and Automation (1999), 11(1), 45-50.
    [25] Wasielczuk, A.; Icardo, M. Catala; Garcia Mateo, J. V.; Calatayud, J. Martinez. Flow-injection chemiluminescent determination of thiamine in pharmaceutical samples by on-line photodegradation. Analytical Letters (2004), 37(15), 3205-3218.
    [26] Song, Zhenghua; Hou, Shuang. Flow through sensor for the chemiluminescence determination of thiamine. Chemia Analityczna (Warsaw, Poland) (2002), 47(5), 747-757.
    [27] Du, Jianxiu; Li, Yinhuan; Lu, Jiuru. Flow injection chemiluminescence determination of thiamine based on its enhancing effect on the luminol-hydrogen peroxide system. Talanta (2002), 57(4), 661-665.
    [28] Zhang, Chengxiao; Zhou, Guojun; Zhang, Zhujun; Aizawa, M. Highly sensitive electrochemical luminescence determination of thiamine. Analytica Chimica Acta (1999), 394(2-3), 165-170.
    [29] Song, Zhenghua; Hou, Shuang. Determination of picomole amounts of thiamin through flow-injection analysis based on the suppression of luminol-KIO4 chemiluminescence system. Journal of Pharmaceutical and Biomedical Analysis (2002), 28(3-4), 683-691.
    [30] He, Hong-Zhi; Li, Hua-Bin; Chen, Feng. Determination of vitamin B1 in seawater and microalgal fermentation media by high-performance liquid chromatography with fluorescence detection. Analytical and Bioanalytical Chemistry (2005), 383(5), 875-879.
    [31] Lopez-Flores, Javier; Fernandez-De Cordova, Maria L.; Molina-Diaz, Antonio. Implementation of flow-through solid phase spectroscopic transduction with photochemically induced fluorescence: determination of thiamine. Analytica Chimica Acta (2005), 535(1-2), 161-168.
    [32] Vinas, Pilar; Lopez-Erroz, Carmen; Cerdan, Francisco Jose; Campillo, Natalia; Hernandez-Cordoba, Manuel. Flow-injection fluorimetric determination of thiamine in pharmaceutical preparations. Mikrochimica Acta (2000), 134(1-2), 83-87.
    [33] Chen, Fapu( 陈 发 普 ); Xu, Deyu ( 许 德 余 ). Synthesis of Water Soluble Phthalocyanines(水溶性酞菁化合物的合成), Chinese Journal of Organic Chemistry(有机化学) (1990), 10(6), 550-553.
    [34] Guo, Xiang-Qun; Xu, Jin-Gou; Wu, Yu-Zhou; Zhao, Yi-Bing; Huang, Xian-Zhi; Chen,Guo-Zhen. Determination of thiamine (vitamin B1) by in situ sensitized photochemical spectrofluorimetry. Analytica Chimica Acta (1993), 276(1), 151-60.
    [35] Yang, Wei; Zheng, Hong; Yuan, Wen-Tao; Xu, Jin-Gou. Silica-hemin composite nanoparticles as new biocatalyst to highly sensitive determination of glucose in human serum. Analytical Sciences (2004), 20(9), 1265-1270.
    [36] Nimesh, Surendra; Manchanda, Romila; Kumar, Rupesh; Saxena, Amit; Chaudhary, Preeti; Yadav, Veena; Mozumdar, Subho; Chandra, Ramesh. Preparation, characterization and in vitro drug release studies of novel polymeric nanoparticles. International Journal of Pharmaceutics (2006), 323(1-2), 146-152.
    [37] Saxena, Anita; Sachin, Kumar; Bohidar, H. B.; Verma, Anita Kamra. Effect of molecular weight heterogeneity on drug encapsulation efficiency of gelatin nano-particles. Colloids and Surfaces, B: Biointerfaces (2005), 45(1), 42-48.
    [38] Santra, Swadeshmukul; Zhang, Peng; Wang, Kemin; Tapec, Rovelyn; Tan, Weihong. Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers. Analytical Chemistry (2001), 73(20), 4988-4993.
    [39] Ow, Hooisweng; Larson, Daniel R.; Srivastava, Mamta; Baird, Barbara A.; Webb, Watt W.; Wiesner, Ulrich. Bright and stable core-shell fluorescent silica nanoparticles. Nano Letters (2005), 5(1), 113-117.
    [40] Li, Jianzhong; Zhang, Zhujun; Li, Ling. A simplified enzyme-based fiber optic sensor for hydrogen peroxide and oxidase substrates. Talanta (1994), 41(11), 1999-2002.
    [41] Briggs, G. E.; Haldane, J. B. S. Note on the kinetics of enzyme action. Biochemical Journal (1925), 19, 338-339.
    [42] Lineweaver, Hans; Burk, Dean. Determination of enzyme dissociation constants. Journal of the American Chemical Society (1934), 56, 658-666.
    [1] Sorokin, Alexander; Meunier, Bernard. Efficient H2O2 oxidation of chlorindated phenols catalyzed by supported iron phthalocyanines. Journal of the Chemical Society, Chemical Communications (1994), (15), 1799-1800.
    [2] Sorokin, Alexander; Seris, Jean-Louis; Meunier, Bernard. Efficient oxidative dechlorination and aromatic ring cleavage of chlorinated phenols catalyzed by iron sulfophthalocyanine. Science (Washington, D. C.) (1995), 268(5214), 1163-1166.
    [3] Sorokin, Alexander; De Suzzoni-Dezard, Sophie; Poullain, Didier; Noeel, Jean-Pierre; Meunier, Bernard. CO2 as the ultimate degradation product in the H2O2 oxidation of 2,4,6-Trichlorophenol catalyzed by iron tetrasulfophthalocyanine. Journal of the American Chemical Society (1996), 118(31), 7410-7411.
    [4] Collins, Terrence J.. Designing Ligands for Oxidizing Complexes. Accounts of Chemical Research (1994), 27(9), 279-285.
    [5] Horwitz, Colin P.; Fooksman, David R.; Vuocolo, Leonard D.; Gordon-Wylie, Scott W.; Cox, Nathaniel J.; Collins, Terrence J. Ligand design approach for securing robust oxidation catalysts. Journal of the American Chemical Society (1998), 120(19), 4867-4868.
    [6] Sen Gupta, Sayam; Stadler, Matthew; Noser, Christopher A.; Ghosh, Anindya; Steinhoff, Bradley; Lenoir, Dieter; Horwitz, Colin P.; Schramm, Karl-Werner; Collins, Terrence J. Rapid total destruction of chlorophenols by activated hydrogen peroxide. Science (Washington, DC, United States) (2002), 296(5566), 326-328.
    [7] Walling, Cheves. Fenton's reagent revisited. Accounts of Chemical Research (1975), 8(4), 125-131.
    [8] Spadaro, Jack T.; Isabelle, Lorne; Renganathan, V. Hydroxyl radical mediated degradation of azo dyes: evidence for benzene generation. Environmental Science and Technology (1994), 28(7), 1389-1393.
    [9] Carey, John H.; Lawrence, John; Tosine, Helle M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions. Bulletin of Environmental Contamination and Toxicology (1976), 16(6), 697-701.
    [10] Hoffmann, Michael R.; Martin, Scot T.; Choi, Wonyong; Bahnemann, Detlef W. Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews (Washington, D. C.) (1995), 95(1), 69-96.
    [11] Zhao, Wei; Chen, Chuncheng; Li, Xiangzhong; Zhao, Jincai; Hidaka, Hisao; Serpone, Nick. Photodegradation of sulforhodamine-B dye in platinized titania dispersions under visible light irradiation: influence of platinum as a functional co-catalyst. Journal of Physical Chemistry B (2002), 106(19), 5022-5028.
    [12] Ge, Lei; Xu, Mingxia; Fang, Haibo. Photocatalytic degradation of Methyl orange and formaldehyde by Ag/InVO4-TiO2 thin films under visible-light irradiation. Journal of Molecular Catalysis A: Chemical (2006), 258(1-2), 68-76.
    [13] Wang, X. H.; Li, J.-G.; Kamiyama, H.; Moriyoshi, Y.; Ishigaki, T. Wavelength-sensitive photocatalytic degradation of methyl orange in aqueous suspension over iron(III)-doped TiO2 nanopowders under UV and visible light irradiation. Journal of Physical Chemistry B (2006), 110(13), 6804-6809.
    [14] Tokunaga, Saimi; Kato, Hideki; Kudo, Akihiko. Selective preparation of monoclinic and tetragonal BiVO4 with Scheelite structure and their photocatalytic properties. Chemistry of Materials (2001), 13(12), 4624-4628.
    [15] Chen, Chuncheng; Wang, Qi; Lei, Pengxiang; Song, Wenjing; Ma, Wanhong; Zhao, Jincai. Photodegradation of dye pollutants catalyzed by porous K3PW12O40 under visible irradiation. Environmental Science & Technology (2006), 40(12), 3965-3970.
    [16] Kim, Hyun Gyu; Hwang, Dong Won; Lee, Jae Sung. An undoped, single-phase oxide photocatalyst working under visible light. Journal of the American Chemical Society (2004), 126(29), 8912-8913.
    [17] Chen, Fapu(陈发普); Xu, Deyu (许德余). Synthesis of Water Soluble Phthalocyanines(水溶性酞菁化合物的合成), Chinese Journal of Organic Chemistry(有机化学) (1990), 10(6), 550-553.
    [18] Chang, Song-Yuan; Liu, Lei; Asher, Sanford A. Creation of Templated Complex TopologicalMorphologies in Colloidal Silica. Journal of the American Chemical Society (1994), 116(15), 6745-6747.
    [19] Arriagada, F. J.; Osseo-Asare, K. Synthesis of nanosize silica in a nonionic water-in-oil microemulsion: effects of the water/surfactant molar ratio and ammonia concentration. Journal of Colloid and Interface Science (1999), 211(2), 210-220.
    [20] Van Blaaderen, A.; Vrij, A. Synthesis and characterization of colloidal dispersions of fluorescent, monodisperse silica spheres. Langmuir (1992), 8(12), 2921-2931.
    [21] Yi, Dong Kee; Selvan, S. Tamil; Lee, Su Seong; Papaefthymiou, Georgia C.; Kundaliya, Darshan; Ying, Jackie Y. Silica-coated nanocomposites of magnetic nanoparticles and quantum dots. Journal of the American Chemical Society (2005), 127(14), 4990-4991.
    [22] Udenfriend S; Stein S; Bohlen P; Dairman W; Leimgruber W; Weigele M Fluorescamine: a reagent for assay of amino acids, peptides, proteins, and primary amines in the picomole range. Science (New York, N.Y.) (1972), 178(63), 871-872.
    [23] Buettner, Garry R.; Oberley, Larry M. Considerations in the spin trapping of superoxide and hydroxyl radical in aqueous systems using 5,5-dimethyl-1-pyrroline-1-oxide. Biochemical and Biophysical Research Communications (1978), 83(1), 69-74.
    [24] Yamazaki, Isao; Piette, Lawrence H. EPR spin-trapping study on the oxidizing species formed in the reaction of the ferrous ion with hydrogen peroxide. Journal of the American Chemical Society (1991), 113(20), 7588-7593.
    [25] Sawyer, Donald T.; Valentine, Joan S. How super is superoxide? Accounts of Chemical Research (1981), 14(12), 393-400.
    [26] Rohde Jan-Uwe; In Jun-Hee; Lim Mi Hee; Brennessel William W; Bukowski Michael R; Stubna Audria; Munck Eckard; Nam Wonwoo; Que Lawrence Jr Crystallographic and spectroscopic characterization of a nonheme Fe(IV)-O complex. Science (New York, N.Y.) (2003), 299(5609), 1037-1039.
    [27] Pignatello, Joseph J.; Liu, Di; Huston, Patrick. Evidence for an additional oxidant in the photoassisted Fenton reaction. Environmental Science and Technology (1999), 33(11), 1832-1839.
    [28] Groves, John T.; Lee, Jinbo; Marla, Sudhakar S. Detection and characterization of an oxomanganese(V) porphyrin complex by rapid-mixing stopped-flow spectrophotometry.Journal of the American Chemical Society (1997), 119(27), 6269-6273.
    [29] Koppenol, W. H.; Liebman, Joel F. The oxidizing nature of the hydroxyl radical. A comparison with the ferryl ion (FeO2+). Journal of Physical Chemistry (1984), 88(1), 99-101.
    [1] Wang, Lin; Wang, Kemin; Santra, Swadeshmukul; Zhao,Xiaojun; Hilliard,Lisa R; Smith,Joshua E; Wu,Yanrong; Tan,Weihong; Watching silica nanopargicles glow in the biological world. Analytical chemistry(Washington, DC), (2006), 78(33), 646-654.
    [2] McNeil, Scott E.. Nanotechnology for the biologist. Journal of Leukocyte Biology (2005), 78(3), 585-594.
    [3] Pellegrino, Teresa; Kudera, Stefan; Liedl, Tim; Javier, Almudena Munoz; Manna, Liberato; Parak, Wolfgang J. On the development of colloidal nanoparticles towards multifunctional structures and their possible use for biological applications. Small (2005), 1(1), 48-63.
    [4] West, Jennifer L.; Halas, Naomi J. Applications of nanotechnology to biotechnology. Current Opinion in Biotechnology (2000), 11(2), 215-217.
    [5] Haag, Rainer. Supramolecular drug-delivery systems based on polymeric core-shell architectures. Angewandte Chemie, International Edition (2004), 43(3), 278-282.
    [6] Parak, Wolfgang J.; Gerion, Daniele; Pellegrino, Teresa; Zanchet, Daniela; Micheel, Christine; Williams, Shara C.; Boudreau, Rosanne; Le Gros, Mark A.; Larabell, Carolyn A.; Alivisatos, A. Paul. Biological applications of colloidal nanocrystals. Nanotechnology (2003), 14(7), R15-R27.
    [7] Mitchell, David T.; Lee, Sang Bok; Trofin, Lacramioara; Li, Naichao; Nevanen, Tarja K.; Soederlund, Hans; Martin, Charles R. Smart nanotubes for bioseparations and biocatalysis. Journal of the American Chemical Society (2002), 124(40), 11864-11865.
    [8] Chen, Chia-Chun; Liu, Yao-Chung; Wu, Chia-Hsuan; Yeh, Chun-Chia; Su, Ming-Tsan; Wu, Yi-Chun. Preparation of fluorescent silica nanotubes and their application in gene delivery. Advanced Materials (Weinheim, Germany) (2005), 17(4), 404-407.
    [9] Son, Sang Jun; Reichel, Jonathan; He, Bo; Schuchman, Mattan; Lee, Sang Bok. Magnetic nanotubes for magnetic-field-assisted bioseparation, biointeraction, and drug delivery. Journal of the American Chemical Society (2005), 127(20), 7316-7317.
    [10] Martin, Charles R. Nanomaterials: a membrane-based synthetic approach. Science (Washington, D. C.) (1994), 266(5193), 1961-1966.
    [11] Huang, Jianguo; Kunitake, Toyoki. Nanotubings of titania/polymer composite: template synthesis and nanoparticle inclusion. Journal of Materials Chemistry (2006), 16(43), 4257-4264.
    [12] Satishkumar, B. C.; Govindaraj, A.; Nath, Manashi; Rao, C. N. R. Synthesis of metal oxide nanorods using carbon nanotubes as templates. Journal of Materials Chemistry (2000), 10(9), 2115-2119.
    [13] Schlottig, F.; Textor, M.; Georgi, U.; Roewer, G. Template synthesis of SiO2 nanostructures. Journal of Materials Science Letters (1999), 18(8), 599-601.
    [14] Lakshmi, Brinda B.; Dorhout, Peter K.; Martin, Charles R.. Sol-gel template synthesis of semiconductor nanostructures. Chemistry of Materials (1997), 9(3), 857-862.
    [15] Kovtyukhova, Nina I.; Mallouk, Thomas E.; Mayer, Theresa S. Templated surface sol-gel synthesis of SiO2 nanotubes and SiO2-insulated metal nanowires. Advanced Materials (Weinheim, Germany) (2003), 15(10), 780-785.
    [16] Cheng, Lifang; Zhang, Xingtang; Liu, Bin; Wang, Hongzhe; Li, Yuncai; Huang, Yabin; Du, Zuliang. Template synthesis and characterization of WO3/TiO2 composite nanotubes. Nanotechnology (2005), 16(8), 1341-1345.
    [17] Nielsch, K.; Castano, F. J.; Ross, C. A.; Krishnan, R. Magnetic properties of template-synthesized cobalt/polymer composite nanotubes. Journal of Applied Physics (2005), 98(3), 034318/1-034318/6.
    [18] Wang, Lin; Wang, Kemin; Santra, Swadeshmukul; Zhao,Xiaojun; Hilliard,Lisa R; Smith,Joshua E; Wu,Yanrong; Tan,Weihong; Watching silica nanopargicles glow in the biological world. Analytical chemistry(Washington, DC), (2006), 78(33), 646-654.
    [19] Lu, A.-H.; Salabas, E. L.; Schueth, F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angewandte Chemie, International Edition (2007), 46(8), 1222-1244.
    [20] Lu, Chen-Wen; Hung, Yann; Hsiao, Jong-Kai; Yao, Ming; Chung, Tsai-Hua; Lin, Yu-Shen; Wu, Si-Han; Hsu, Szu-Chun; Liu, Hon-Man; Mou, Chung-Yuan; Yang, Chung-Shi; Huang, Dong-Ming; Chen, Yao-Chang. Bifunctional magnetic silica nanoparticles for highly efficient human stem cell labeling. Nano Letters (2007), 7(1), 149-154.
    [21] Chen, Fapu(陈发普); Xu, Deyu (许德余). Synthesis of Water Soluble Phthalocyanines(水溶性酞菁化合物的合成), Chinese Journal of Organic Chemistry(有机化学) (1990), 10(6), 550-553.
    [22] Udenfriend, Sidney; Stein, Stanley; Boehlen, Peter; Dairman, Wallace; Leimgruber, Willy; Weigele, Manfred. Fluorescamine. Reagent for assay of amino acids, peptides, proteins, and primary amines in the picomole range. Science (Washington, DC, United States) (1972), 178(4063), 871-872.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700