用户名: 密码: 验证码:
海参、扇贝和牡蛎的加工特性及其抗氧化活性肽的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海珍品由于营养丰富,需求量不断增大。但是高压、低温、高盐的特殊生存环境,使海珍品具有特殊的组织结构和生理特性。因此,系统研究海珍品的加工特性,建立海珍品质构控制技术,并开发海珍品活性多肽,对丰富海珍品加工理论具有重要意义。
     本文针对海参、扇贝及牡蛎三种海珍品在加工过程中的特殊性,重点研究海参、扇贝在热加工过程中以及牡蛎在真空冷冻干燥过程中,其组成、组织结构及质构特性的变化;同时,针对原料富含蛋白质的特点,研究海参及牡蛎抗氧化活性肽。主要研究工作如下:
     (1)为明确热加工过程中海参体壁胶原蛋白结构的变化情况,分别采用紫外光谱和SDS-PAGE分析60-100℃加热过程中酶促溶性胶原蛋白(PSC)的变化。结果表明:随着温度的升高,海参体壁胶原蛋白的三螺旋结构逐渐被打开,导致其在232 nm附近紫外吸收强度逐渐增加;电泳检测α链基本完全降解所需时间逐渐缩短,各加热温度下基本完全降解的时间为60℃-8 h、70℃-6 h、80℃-1.5 h、90℃-0.83 h及100℃-0.33 h。
     (2)基于胶原分子在固体表面自组装的特性,采用原子力显微镜考察不同因素对海参体壁PSC溶液聚集状态的影响。结果表明:在乙酸缓冲溶液(pH 2.7)、磷酸盐缓冲溶液(PBS,pH 7.2)或超纯水中,随着PSC浓度的增加,聚集程度均逐渐加剧,最终形成堆积结构或片状聚集体。在40-80℃下加热30 min后,PSC在乙酸缓冲溶液中的聚集度增加,温度超过80℃聚集度逐渐下降;80℃加热0.5-2.0 h时,聚集现象比较明显。
     (3)为了明确海参体壁的热加工特性,采用组织学方法及显微技术考察其结构的变化,并运用质构仪分析嫩度(剪切力)、硬度、弹性、咀嚼性及回复性等指标。结果表明:温度越高海参体壁质量损失率达到平衡所需时间越短,分别为60℃-5.0 h、70℃-3.0 h、80℃-1.5 h、90℃-1.0 h及100℃-0.5 h;温度超过60℃时,海参体壁出现吸水现象,温度越高出现吸水的时间点越早,分别为70℃-24.0 h、80℃-6.0 h、90℃-3.0 h及100℃-2.0 h;采用100℃以上的高温对海参进行加工时,海参体壁的吸水能力明显提高,在相同发制时间(36 h)下,以获得2倍左右质量的水发海参为基准,温度越高,所需时间越短,分别为105℃-35 min、110℃-25 min、115℃-20 mmin和120℃-10 min;加热过程中,海参体壁胶原纤维组织结构会呈现变细、溶胀、凝聚和溶出等变化,温度越高发生聚集所需时间越短,分别为60℃-8.0 h、80℃-1.5 h及100℃-0.5 h;热加工到一定时间和温度后,海参体壁的剪切力和硬度分别降至1000 g和2000 g以下时,回复性明显下降,组织开始变得软烂,无法继续加工,此时参数为70℃-34 h、80℃-20 h、90℃-8 h、100℃-4 h、105℃-2.5 h、110℃-1.5 h及120℃-1 h。
     (4)依据海参体壁在热加工中胶原蛋白结构变化和质构特性分析,结合感官评定,得到海参体壁热加工控制曲线,建立了海参体壁热加工控制区域。曲线分别为海参体壁失水平衡曲线A、海参体壁吸水起始曲线B、海参体壁高温热加工控制曲线B’,及海参体壁热加工临界曲线C(C’)。加工水发类海参产品时,可以选择介于B和C,或B’和C’曲线之间的加工区域内的适宜加工参数。
     (5)为明确扇贝柱在热加工中的质构特性,研究了热加工中扇贝柱肌原纤维蛋白的变性情况,并采用光学显微镜观察肌纤维组织结构的变化,并运用质构仪分析嫩度(剪切力)、硬度、弹性、咀嚼性、回复性等指标。结果表明:温度越高,扇贝柱肌原纤维蛋白基本完全变性(变性率≥90%)所需时间越短,分别为60℃-240min、70℃-30 min、80℃-20 min、90℃-7 min及100℃-3 min,此时扇贝柱达到熟化状态;在不同温度下,随着加热时间的延长,扇贝柱肌纤维组织结构均呈现弯曲—舒展—断裂的变化趋势,发生明显断裂的参数为60℃-360 min、70℃-150 min、80℃-90 min、90℃-50 min及100℃-20 min,此时扇贝柱由熟化变为过熟状态。热加工到一定时间和温度后,扇贝柱均会出现组织松散,无法进行加工的情况,此时参数为60℃-390 min、70℃-360 min、80℃-240 min、90℃-90 min及100℃-40 min。
     (6)依据扇贝柱在热加工中蛋白质变性情况和质构特性分析,结合感官评定,得到扇贝柱热加工控制曲线,建立了扇贝柱热加工控制区域。扇贝柱热加工制品质构控制适宜加工区域为60℃-(4-6)h、70℃-(30~50)min、80℃-(20~90)min、90℃-(7~50)min及100℃-(3~20)min。
     (7)为确定牡蛎干制和后续复水过程中特性的变化,研究直接冻干牡蛎(Fresh+FD组)和预煮处理后冻干牡蛎(Boiled+FD组)的干燥比、复水比、复水率及组织结构的差异,并与自然干燥牡蛎(Fresh+ND组)进行对比。结果表明:冷冻干燥有利于保持牡蛎原有的组织结构,使其具有更好的复水效果。
     (8)采用高温处理和酶解相结合的方式制备海参胶原蛋白肽,并考察其抗氧化活性。结果表明:海参体壁明胶和胶原蛋白肽均具有一定的DPPH自由基清除能力(SC50值分别为9.31mg/mL和7.64mg/mL)、羟自由基清除能力(SC50值分别为0.97mg/mL和0.37mg/mL)和脂质过氧化抑制能力(IC50值分别为>20mg/mL和8.56 mg/mL),但胶原蛋白肽的抗氧化能力要明显强于明胶。
     (9)分别选用木瓜蛋白酶、中性蛋白酶和碱性蛋白酶对牡蛎进行水解,使用超滤膜对牡蛎水解液进行分级,获得具有不同分子质量的牡蛎肽,并考察其抗氧化活性。结果表明:牡蛎肽的抗氧化活性与分子质量分布范围有关,其中分子质量在3 kDa以下的肽组分有较强的抗氧化活性,且碱性肽组分具有更强的清除DPPH自由基的能力。
Precious marine products are nutritious, and the demand is increasing in resent years. The high pressure, low temperature and salty living environment result in their unique histological structure and physiological properties. It will be of great significance for enhancing the processing theory of precious seafoods to carry out a systematic research on the processing characteristics of precious seafoods, set up a texture control technique of precious seafoods, and develop bioactive peptides from precious seafoods.
     In view of the special processing characteristics of sea cucumber, scallop and oyster, we investigated the changes of chemical composition, histological structure as well as texture properties of sea cucumber and scallop during the heating process and of oyster during the vacuum freeze drying process in the present study. Meanwhile, antioxidant peptides were prepared from sea cucumber and oyster due to their abundant protein. The main research contents were summarized as below:
     (1) To determine the structural changes of collagen from sea cucumber body wall during heating process, pepsin-solubilized collagen (PSC) were purified and the changes were monitored by using ultraviolet (UV) absorption spectra and SDS-PAGE during the heating process ranging from 60℃to 100℃. Results indicated that the triple helical structure of collagen was destroyed by heat, resulting in an increased absorption at 235 nm. The time for complete degradation of a peptide chain of PSC decreased with increasing temperature. It was 8,6,1.5,0.83 and 0.33 h at 60,70,80,90 and 100℃, respectively.
     (2) Based on the self-assembly characteristics of collagen molecule on solid surface, the effects of different factors on aggregation state of PSC from sea cucumber body wall were investigated by using atomic force microscope (AFM). Results indicated that the aggregation degree of collagen molecule increased gradually with increasing concentration in either acetic acid buffer solution (pH 2.7), phosphate buffer solution (pH 7.2) and ultrapure water, and formed close-packed and sheet-like aggregates finally. After heating for 30 min at 40-80℃, the aggregation degree of PSC increased in acetic acid buffer solution. When the temperature was higher than 80℃, the aggregation degree of PSC decreased. The self-aggregation phenomenon was obvious after heating for 0.5-2.0 h at 80℃.
     (3) To determine the heat-processing characteristics of sea cucumber body wall, the histological structure was observed by using microhistological techniques, and the shear force, hardness, springness, chewiness and resilience were analyzed by using texture analyser (TA). Results indicated that the higher heating temperature used, the shorter consumption time needed for the mass of sea cucumber body wall reaching a plateau. It was 5.0,3.0,1.5,1.0 and 0.5 h at 60,70,80,90 and 100℃, respectively. When the temperature was higher than 60℃, the sea cucumber body wall began to absorb water. The higher heating temperature used, the shorter consumption time was needed for the appearance of water absorption phenomenon. It was 24,6,3 and 2 h at 70,80,90 and 100℃, respectively. When the sea cucumber was processed at temperature higher than 100℃, the water-absorbing capacity was obviously enhanced. The higher heating temperature used, the shorter time was needed to get the waterishlogged sea cucumber with two-fold mass. It was 35,25,20 and 10 min at 105,110,115 and 120℃, respectively. In the process of heating, the collagen fiber of sea cucumber became thin, swelled, aggregated and dissolved. The higher heating temperature used, the shorter time was needed for the appearance of aggregation phenomenon. It was 8.0,1.5 and 0.5 h at 60,80 and 100℃, respectively. After heating at a certain temperature for a certain period, such as 70℃for 34 h,80℃for 20 h,90℃for 8 h,100℃for 4 h,105℃for 2.5 h,110℃for 1.5 h and 120℃for 1 h, the shearing force and hardness of the sea cucumber body wall fell to less than 1000 g and 2000 g, respectively. When the heating temperature and time were beyond such points, the resilience decreased obviously, and the tissue of sea cucumber became too soft to process.
     (4) Based on the changes in structure of collagen protein, texture properties and sensory evaluation of sea cucumber body wall, the processing-controlling curves were obtained and the heat processing-controlling area was built up for sea cucumber body wall. The curves included a losing-water-balance curve (A), an absorbing-water-beginning curve (B), a high-temperature processing-controlling curve (B'), and a heat processing-threshold curve (C and C'). When waterishlogged sea cucumber was processed, the processing parameter located in the area between Curve B and Curve C or Curve B' and Curve C' should be employed.
     (5) To determine the heat-processing characteristics of scallop adductor, the denaturation of myofibrillar protein in heating process was investigated. Meanwhile, the changes in muscle fiber structure were studied by using light microscope, and the shear force, hardness, springness, chewiness and resilience were analyzed by using TA. Results indicated that the higher heating temperature used, the shorter consumption time was needed for complete denaturation of myofibrillar protein (denaturation percent≥90%, the adductor muscle become ripen). It was 240,30,20,7 and 3 min at 60,70,80, 90 and 100℃, respectively. The myofibrillar of scallop adductor showed a trend of curving-stretching-breaking change with prolonging heating time at different temperature. When heating temperature was 60,70,80,90 and 100℃, the time for appearance of myofibrillar breakdown was 360,150,70,50 and 20 min, respectively. Under these processing conditions, the adductor muscle became over cooked. When the heating temperature and time were beyond the points such as 60℃for 360 min,70℃for 150 min,80℃for 90 min,90℃for 50 min and 100℃for 20 min, the adductor muscle tissue became too loose to process.
     (6) Based on the denaturation of protein, texture properties and sensory evaluation of scallop adductor, the heat processing-controlling curves were obtained and the heat processing-controlling areas were built up. When heat-processing scallop adductor was produced, the processing parameters located in the optimum area such as 60℃for 4-6 h,70℃for 30-150 min,80℃for 20-90 min,90℃for 7-50 min and 100℃for 3-20min should be employed.
     (7) To illustrate the changes in texture properties of oyster in the process of drying and follow-up rehydration, the drying ratio, rehydration ratio, rehydration rate and histological structure of the direct freeze-drying oysters (Fresh+FD group), the pre-cooked freeze-drying oysters (Boiled+FD group) and the natural-drying oysters (Fresh+ND group) were investigated. Results indicated that freeze-drying treatment was favorable to maintain the intrinsic histological structure and better rehydration capacity than the natural-drying treatment.
     (8) Sea cucumber gelatin peptides were prepared by high-temperature pretreatment followed by enzymatic hydrolysis, and their antioxidant activities were also investigated. Results indicated that both of gelatin and gelatin peptides possessed strong DPPH radical scavenging capacity (SC50 was 0.97 mg/mL and 0.37 mg/mL, respectively), hydroxyl radical scavenging capacity (SC50 was 0.97 mg/mL and 0.37 mg/mL, respectively), and lipid peroxidation inhibitory capacity (IC50 was above 20 mg/mL and 8.56 mg/mL, respectively). Obviously, the antioxidant activity of gelatin peptides was significantly higher than that of gelatin.
     (9) Oyster meat was hydrolyzed with three proteases including papain, neutrase and alcalase, respectively. The hydrolysates were fractionated using a series of ultrafiltration membranes, and the resultant peptide fractions were evaluated for their antioxidant activity. Results indicated that the antioxidant capacity of oyster peptides was related to the molecular weight distribution and amino acid type, the fractions with molecular mass below 3 kDa showed stronger antioxidant activity. Besides, the alkaline peptides had greater capacity on scavenging DPPH radical.
引文
[1]于东祥等编著.海参健康养殖技术[M].北京市:海洋出版社,2005:288
    [2]常亚青等编著.海参、海胆生物学研究与养殖[M].北京市:海洋出版社,2004:364
    [3]谢忠明,隋锡林,高绪生.海水经济动物养殖实用技术丛书—海参海胆增养殖技术[M].北京:海水经济动物养殖实用技术丛书—海参海胆增养殖技术,2004
    [4]Thurmond F, Trotter J. Morphology and Biomechanics of the Microfibrillar Network of Sea Cucumber Dermis[J]. Journal of Experimental Biology,1996,199(8):1817-1828
    [5]Saito M, Kunisaki N, Urano N, et al. Collagen as the Major Edible Component of Sea Cucumber (Stichopus Japonicus)[J]. Journal of Food Science,2002,67(4):1319-1322
    [6]蔡彬新,吴成业.海参多糖的分离纯化方法及其主要生物活性[J].福建水产,2008(3):70-74
    [7]方积年,丁侃.天然药物——多糖的主要生物活性及分离纯化方法[J].中国天然药物,2007,5(5):338-347
    [8]Avilov S A, Silchenko A S, Antonov A S, et al. Synaptosides a and a1, Triterpene Glycosides from the Sea Cucumber Synapta Maculata Containing 3-O-Methylglucuronic Acid and their Cytotoxic Activity Against Tumor Cells[J]. Journal of Natural Products,2008,71(4):525-531
    [9]Liu B S, Yi Y H, Li L, et al. Argusides D and E, Two New Cytotoxic Triterpene Glycosides from the Sea Cucumber Bohadschia Argus Jaeger[J]. Chemistry & Biodiversity,2008, 5(7):1425-1433
    [10]Liu B S, Yi Y H, Li L, et al. Argusides B and C, Two New Cytotoxic Triterpene Glycosides from the Sea Cucumber Bohadschia Argus Jaeger[J]. Chemistry & Biodiversity,2008, 5(7):1288-1297
    [11]Yamada K, Sasaki K, Harada Y, et al. Constituents of Holothuroidea,12. Isolation and Structure of Glucocerebrosides from the Sea Cucumber Holothuria Pervicax[J]. Chemical & Pharmaceutical Bulletin,2002,50(11):1467-1470
    [12]Yamada K, Wada N, Onaka H, et al. Constituents of Holothuroidea,15. Isolation of Ante-Iso Type Regio-Isomer On Long Chain Base Moiety of Glucocerebroside from the Sea Cucumber Holothuria Leucospilota[J]. Chemical & Pharmaceutical Bulletin,2005,53(7):788-791
    [13]Kisa F, Yamada K, Kaneko M, et al. Constituents of Holothuroidea,14. Isolation and Structure of New Glucocerebroside Molecular Species from the Sea Cucumber Stichopus Japonicus[J]. Chemical & Pharmaceutical Bulletin,2005,53(4):382-386
    [14]Kisa F, Yamada K, Miyamoto T, et al. Constituents of Holothuroidea,17. Isolation and Structure of Biologically Active Monosialo-Gangliosides from the Sea Cucumber Cucumaria Echinata[J]. Chemical & Pharmaceutical Bulletin,2006,54(7):982-987
    [15]Kisa F, Yamada K, Miyamoto T, et al. Constituents of Holothuroidea,18. Isolation and Structure of Biologically Active Disialo- and Trisialo-Gangliosides from the Sea Cucumber Cucumaria Echinata[J]. Chemical & Pharmaceutical Bulletin,2006,54(9):1293-1298
    [16]Wen J, Hu C, Fan S. Chemical Composition and Nutritional Quality of Sea Cucumbers[J]. Journal of the Science Food and Agriculture,2010,90(14):2469-2474
    [17]Tian F, Zhang X, Tong Y, et al. Pe, a New Sulfated Saponin from Sea Cucumber, Exhibits Anti-Angiogenic and Anti-Tumor Activities in Vitro and in Vivo[J]. Cancer Biology and Therapy,2005,4(8):874-882
    [18]Han H, Yi Y H, Li L, et al. Triterpene Glycosides from Sea Cucumber Holothuria Leucospilota[J]. Chinese Journal of Natural Medicines,2009,7(5):346-350
    [19]Fredalina B D, Ridzwan B H, Abidin A A, et al. Fatty Acid Compositions in Local Sea Cucumber, Stichopus Chloronotus, for Wound Healing[J]. Genaral Pharmacology,1999, 33(4):337-340
    [20]Chludil H D, Muniain C C, Seldes A M, et al. Cytotoxic and Antifungal Triterpene Glycosides from the Patagonian Sea Cucumber Hemoiedema Spectabilis[J]. Journal of Natural Products, 2002,65(6):860-865
    [21]焦健,康海燕.海刺参在传统加工过程中部分功能成分流失的实验研究[J].中国海洋药物,2010,29(4):4648
    [22]Zhu B W, Zhao L L, Sun L M, et al. Purification and Characterization of a Cathepsin L-Like Enzyme from the Body Wall of the Sea Cucumber Stichopus Japonicus[J]. Bioscience, Biotechnology, and Biochemistry,2008,72(6):1430-1437
    [23]Zhu B W, Zhao J G, Yang J F, et al. Purification and Partial Characterization of a Novel β-1,3-Glucanasefrom the Gut of Sea Cucumber Stichopus Japonicus[J]. Process Biochemistry Metabolic Engineering,2008,43(10):1102-1106
    [24]Zhu B W, Yu J W, Zhang Z S, et al. Purification and Partial Characterization of an Acid Phosphatase from the Body Wall of Sea Cucumber Stichopus Japonicus[J]. Process Biochemistry,2009,44(8):875-879
    [25]Zhu B W, Zheng J, Zhang Z S, et al. Autophagy Plays a Potential Role in the Process of Sea Cucumber Body Wall "Melting" Induced by Uv Irradiation[J]. Wuhan University Journal of Natural Sciences,2008,13(2):232-238
    [26]于建伟.酸性磷酸酶在UV诱导的海参自溶过程中的作用[D].大连:大连工业大学,2009
    [27]郑杰.海参自溶过程中细胞凋亡机理的研究[D].大连:大连工业大学,2007
    [28]Trotter J A, Chapman J A, Kadler K E, et al. Growth of Sea Cucumber Collagen Fibrils Occurs at the Tips and Centers in a Coordinated Manner[J]. Journal of Molecular Biology,1998, 284(5):1417-1424
    [29]Trotter J A, Kadler K E, Holmes D F. Echinoderm Collagen Fibrils Grow by Surface-Nucleation-and-Propagation from Both Centers and Ends[J]. Journal of Molecular Biology,2000,300(3):531-540
    [30]Trotter J A, Lyons-Levy G, Thurmond F A, et al. Covalent Composition of Collagen Fibrils from the Dermis of the Sea Cucumber, Cucumaria Frondosa, a Tissue with Mutable Mechanical Properties[J]. Comparative Biochemistry and Physiology Part A:Physiology,1995, 112(3-4):463-478
    [31]Trotter J A, Lyons-Levy G, Luna D, et al. Stiparin:A Glycoprotein from Sea Cucumber Dermis that Aggregates Collagen Fibrils[J]. Matrix Biology,1996,15(2):99-110
    [32]Thurmond F A, Koob T J, Bowness J M, et al. Partial Biochemical and Immunologic Characterization of Fibrillin Microfibrils from Sea Cucumber Dermis[J]. Connective Tissue Research,1997,36(3):211-222
    [33]Matsumura T. Collagen Fibrils of the Sea Cucumber, Stichopus Japonicus:Purification and Morphological Study[J]. Connective Tissue Research,1974,2(2):117-125
    [34]Mercedes H, Heim A, Matthews W G, et al. Measurement of the Mechanical Properties of Intact Collagen Fibrils[C].2006
    [35]Szulgit G. The Echinoderm Collagen Fibril:A Hero in the Connective Tissue Research of the 1990S[J]. Bioessays,2007,29(7):645-653
    [36]云霞,韩学宏,农绍庄,等.海参真空冷冻干燥工艺[J].中国水产科学,2006,13(4):662-665
    [37]Duan X, Zhang M, Mujumdar A S, et al. Microwave Freeze Drying of Sea Cucumber (Stichopus Japonicus)[J]. Journal of Food Engineering,2010,96(4):491-497
    [38]母刚,张国琛,邵亮.热泵干燥海参的初步研究[J].渔业现代化,2007,34(5):47-50
    [39]孙妍,薛长湖,齐祥明,等.海参最佳对流干燥温度的研究[J].农业工程学报,2007,23(5):205-208
    [40]李庆领,宋吉昌,吴俊飞,等.海参超高压保鲜的工艺研究[J].食品科学,2009,30(12):117-120
    [41]肖枫,曾名勇.海棒槌胶原蛋白的酶解工艺及其产物清除自由基活性的研究[J].食品科学,2006,27(11):336-339
    [42]张或,农绍庄,徐龙权,等.海参蛋白酶解工艺条件的优化[J].大连轻工业学院学报,2001,20(2):105-108
    [43]朱蓓薇.2004.富含海参粘多糖食品及其制备方法.中国,ZL 200410054772.X
    [44]朱蓓薇.2004.富含海参粘多糖食品及其制备方法.中国,ZL 200410069576.X
    [45]陈燕.盐渍海参物性学及相关标准研究[D].青岛:中国海洋大学,2009
    [46]薛冬梅,高昕,崔凤霞,等.加热条件下刺参结构和流变学性质的变化[J].中国食品学报,2006,6(1):161-166
    [47]薛冬梅.海参的物性学研究及加工工艺探讨[D].青岛:中国海洋大学,2006
    [48]林文业,黄文琦,林葵,等.扇贝肉营养成分分析研究[J].广东微量元素科学,2000,7(1):57-59
    [49]苏秀榕,李太武.扇贝营养成分的研究[J].海洋科学,1997(2):10-11
    [50]王长云,管华诗.海湾扇贝边中氨基多糖的研究[J].中国水产科学,1994,1(2):32-39
    [51]于囡,刘赛,王海桃,等.扇贝裙边糖胺聚糖体外抗I型单纯疱疹病毒实验研究[J].中国药理学通报,2008,24(2):210-213
    [52]高莹,刘赛,王海桃,等.扇贝裙边糖胺聚糖对血管内皮细胞的抗氧化活性[J].中国医院药学杂志,2007,27(6):712-714
    [53]Takuma S, Hiroyuki U, Noriko A U, et al. Antitumor Activity and Immunomodulatory Effect of Glycoprotein Fraction from Scallop Patinopecten Yessoensis[J]. Nippon Suisan Gakkaishi, 1987,53(2):267-272
    [54]顾谦群,方玉春,辛现良,等.栉孔扇贝糖蛋白的肿瘤抑制活性和对免疫功能的影响[J].营养学报,2001,23(3):200-202
    [55]雷云霞,仲娜,杨敏,等.扇贝糖蛋白及多糖对S180荷瘤小鼠的抑瘤作用[J].中国药师,2006,32(9):156-159
    [56]Zhu B W, Zhou D Y, Yang J F, et al. Structural Analysis of a Polysaccharide from Patinopecten Yessoensis Viscera[J]. European Food Research and Technology,2009,229(6):971-974
    [57]闰雪,杨静峰,周大勇,等.虾夷扇贝内脏多糖SVP-12的分离纯化及性质研究[J].食品与发酵工业,2009,35(2):172-175
    [58]于运海,周大勇,孙黎明,等.虾夷扇贝脏器硫酸酯多糖的制备及性质研究[J].食品科学,2009,30(6):68-71
    [59]胡文婷,孙谧,王跃军.栉孔扇贝(Chlamys farreri)中抗氧化肽的分离纯化及性质研究[J].海洋与湖沼.2006,37(1):14-19
    [60]高明清,杜卫,郭沈波,等.扇贝多肽(PCF)抑制紫外线诱导的HaCaT细胞凋亡[J].高技术通讯,2007,17(12):1283-1289
    [61]郭沈波,邢雁霞,王春波.扇贝多肽通过调节c-jun和COX-2抑制UVA诱导的HaCaT细胞凋亡[J].中国药理学通报,2008,24(11):1470-1475
    [62]魏巍,贺淹才.从扇贝壳制取活性氧化钙及其抑菌效果初探[J].生物技术.2005,15(5):77-78
    [63]Liu Y C, Hasegawa Y. Reducing Effect of Feeding Powdered Scallop Shell On the Body Fat Mass of Rats[J]. Bioscience, Biotechnology, and Biochemistry,2006,70(1):86-92
    [64]Liu Y C, Uchiyama K, Natsui N, et al. In Vitro Activities of the Components from Scallop Shells[J]. Fisheries Science,2002,68(6):1330-1336
    [65]Liu Y C, Toritra A, Hasegawa Y. Scallop Shell Extract Promotes Recovery from UV-B-Induced Damage in Rat Skin Epidermal Layer[J]. Fisheries Science,2006, 72(2):388-392
    [66]Chung S L, Merrit J H. On-Board Handling and Freezing of the Sea Scallop Placopecten Mugellanicus[J]. Food Science and Technology,1991,26:695-705
    [67]Paredi M E, De Vido De Mattio N A, Crupkin M. Biochemical Properties of Actomyosin and Expressible Moisture of Frozen Stored Striated Adductor Muscles of Aulacomya Ater Ater (Molina):Effects of Polyphosphates[J]. Journal of Agricultural and Food Chemistry,1996, 44(10):3108-3112
    [68]Paredi M E, Crupkin M. Biochemiscal Properties of Actomyosin and Expressible Moisture of Frozen Stored Adductor Muscles of Patagonian Scallop (Zygochlamys Patagonica)[J]. Journal of Food Biochemistry,2003,27(6):461-470
    [69]Makri M. The Biochemical Textural and Sensory Properties of Frozen Stored (-22 ℃) King Scallop (Pecten Maxinus) Meats[J]. African Journal of Biotechnology,2009,8(16):3893-3903
    [70]Chung H Y, Yung I K S, Ma W C J, et al. Analysis of Volatile Components in Frozen and Dried Scallops (Patinopecten Yessoensis) by Gas Chromatography/Mass Spectrometry[J]. Food Research International,2002,35(1):43-53
    [71]Perez-Won M, Tabilo-Munizaga G, Barbosa-Canovas G V. Effects of Ultra High Pressure On Bay Scallop (Aequipecten Irradians) Adductor Muscles[J]. Food Science and Technology International,2005,11(6):477
    [72]关志强,孙小红,蒋小强,等.真空冷冻干燥过程参数对墨西哥湾扇贝冻干时间和能耗的影响[J].水产学报,2006,30(3):390-396
    [73]郑立静,关志强,李敏.扇贝真空冷冻干燥过程中变温变压工艺的研究[J].制冷学报,2010,31(2):53-56
    [74]张国琛,毛志怀,牟晨晓,等.微波真空干燥扇贝柱的物理和感观特性研究[J].农业工程学报,2004,20(3):141-144
    [75]Yoshikawa S, Asano K, Ohta T, et al. Fermentation of Scallop Paste with Lactic Acid Bacteria[J]. Nippon Shokuhin Kagaku Kogaku Kaishi,2002,49(1):53-56
    [76]王海洪,徐大伦,王扬.扇贝柱方便食品的研制[J].中国水产,2000,7:46-47
    [77]陈舒,许钟,郭全友,等.软烤扇贝加工过程的细菌学研究[J].海洋渔业,2009,31(2):415-420
    [78]陈舒,许钟,郭全友,等.软烤扇贝原料处理过程中的细菌学研究[J].上海海洋大学学报,2010,3:415-420
    [79]贾艳华,杨宪时,许钟,等.水分含量对软烤扇贝质构和色泽的影响[J].食品与机械,2010,3:47-50
    [80]王如才.牡蛎养殖技术[M].北京:金盾出版社,2004:180
    [81]陈骞.牡蛎糖原的提取与抗疲劳活性研究[D].江南大学,2005
    [82]谭乐义,章超桦,薛长湖,等.牛磺酸的生物活性及其在海洋生物中的分布[J].湛江海洋大学学报,2000,20(3):75-79
    [83]王俊,姚滢,张建鹏,等.牡蛎多糖的制备和生物学活性研究[J].医学研究生学报,2006,19(3):75-79
    [84]沈月新.水产食品学[M].北京:中国农业出版社,2006
    [85]周新月.蚝油酶法生产工艺的研究[J].食品工业科技,1994,4:20-22
    [86]付猛,云霞,朱蓓薇.牡蛎双酶水解工艺的研究[J].食品科学,2004,7(25):100-103
    [87]邓尚贵,章超桦.双酶法在水产品水解动物蛋白制作工艺中的应用研究[J].水产学报,1998,22(4):354-356
    [88]Liaset B. Enzymatic Hydrolysis of by-Product from the Oyster Industry; Chemical Characterization and Nutritional Evaluation[J]. Science Food Agriculture,2000,80:58-589
    [89]Je J Y, Park P J, Jung W K, et al. Amino Acid Changes in Fermented Oyster (Crassostrea Gigas) Sauce with Different Fermentation Periods[J]. Food Chemistry,2005,91(1):15-18
    [90]Tapiero H, Gate L, Dhalluin S, et al. The Antioxidant Effects of Crassostrea Gigas Extract (Jcoe) in Human Volunteers[J]. In Vivo,1998,12(3):305-309
    [91]Tapiero H, Tew K D. Increased Glutathione Expression in Cells Induced by Crassostera Gigas Extract(Jcoe)[J].Biomedicine & Pharmacotherapy,1996,50(3-4):149-153
    [92]Achour A,Lachgar A,Astgen A,et al.Potentialization of Ⅱ-2 Effects On Immune Cells by Oyster Extract(Jcoe) in Normal and Hiv-Infected Individuals[J]. Biomedicine & Pharmacotherapy,1997,51(10):427-429
    [93]吉川敏一,内藤裕二,增井康治,等.Crassostera gigas extract(JCOE)胃粘膜上皮细胞保护作用と细胞内グルタチォンの役割[J].The 14th Symposium on Trace Nutrients Research,1997:119-121
    [94]Tanaka K,Nishizono S,Kugino K,et al.Effects of Dietary Oyster Extract On Lipid Metabolism,Blood Pressure,and Blood Glucose in Sd Rats,Hypertensive Rats,and Diabetic Rats[J].Bioscience,biotechnology,and biochemistry,2006,70(2):462-470
    [95]于娅,杨瑞金,王璋.牡蛎功能短肽的制备及ACE抑制活性[J].无锡轻工大学学报:食品与生物技术,2004,23(2):49-52
    [96]欧成坤,杨瑞金.牡蛎酶解产物的ACE抑制活性和清除自由基活性研究[J].食品工业科技,2005,26(3):59-62
    [97]Kimura Y,Ohminami H,Okuda H.Effects of Extract of Oyster On Lipid Metabolism in Rats[J]. Journal of Ethnopharmacology,1998,59(3):117-123
    [98]王元勋,赵利英,刘兆乾,等.扇贝、牡蛎提取液的抗疲劳作用的实验研究[J].体育科学,1993(6):70
    [99]王颖,马安伦,张惠珍,等.牡蛎提取物抗肿瘤作用的实验研究[J].中国海洋药物,1997,16(1):18-22
    [100]吴少林,徐京鹏.废弃牡蛎壳生产活性钙[J].资源开发与市场,2003,19(4):195-196
    [101]洪鹏志,章超桦,郭家辉,等.牡蛎壳制备活性钙[J].湛江海洋大学学报,2000,2000,4:46-49
    [102]Zhang C H,Hong P Z,Deng S G,et al.Food Chemical Characteristic of Two Kinds of Shellfish in South China Sea and its Application for Preparing Aquatic Hydrolyzed Animal Protein[C].Food of 21st Century-Food and Resourse Technology Envioronment,2000,84-88
    [103]吴成业,刘智禹,张曼琦.牡蛎镀膜保鲜技术研究[J].水产学报,1999,23(2):213-215
    [104]陈慧斌,王梅英,陈绍军,等.不同气体环境对冻藏牡蛎品质变化的影响[J].农业工程学报,2008,24(9):263-267
    [105]杨志娟,章超桦,李敏.牡蛎冷冻干燥工艺的试验研究[J].食品科技,2004,3:58-60
    [106]袁勇军,陆宇波,陈伟,等.臭氧处理和低温保藏对牡蛎保鲜效果研究[J].食品科技,2009,10:137-140
    [107]杨贤庆,陈胜军,李来好,等.高水分半干牡蛎生产工艺技术研究[J].食品科学,2006,27(11):343-345
    [108]Kural A G,Chen H Q.Conditions for a 5-Log Reduction of Vibrio Vulnificus in Oysters through High Hydrostatic Pressure Treatment[J].International Journal of Food Microbiology, 2008,122(1-2):180-187
    [109]傅燕凤,沈月新.浅谈鱼皮胶原蛋白的利用[J].食品研究与开发,2004,25(2):16-18
    [110]Kimura S, Miyauchi Y, Uchida N. Scale and Bone Type I Collagens of Carp (Cyprinus Carpio).[J]. Comparative Biochemistrt and Physiology Part B:Comparative Biochemistry, 1991,99(2):473-476
    [111]Duan R, Zhang J J, Du X Q, et al. Properties of Collagen from Skin, Scale and Bone of Carp (Cyprinus Carpio)[J].Food Chemistry,2009,112(3):702-706
    [112]Zhang Y, Liu W T, Li G Y, et al. Isolation and Partial Characterization of Pepsin-Soluble Collagen from the Skin of Grass Carp (Ctenopharyngodon Idella)[J]. Food Chemistry,2007, 103(3):906-912
    [113]Muyonga J H, Cole C G B, Duodu K G. Characterisation of Acid Soluble Collagen from Skins of Young and Adult Nile Perch (Lates Niloticus)[J]. Food Chemistry,2004,85(1):81-89
    [114]Yan M Y, Li B F, Zhao X, et al. Characterization of Acid-Soluble Collagen from the Skin of Walleye Pollock (Theragra Chalcogramma)[J]. Food Chemistry,2008,107(4):1581-1586
    [115]Heu M S, Lee J H, Kim H J, et al. Characterization of Acid- And Pepsin-Soluble Collagens from Flatfish Skin[J]. Food Science and Biotechnology,2010,19(1):27-33
    [116]Kittiphattanabawon P, Benjakul S, Visessanguan W, et al. Isolation and Properties of Acid-And Pepsin-Soluble Collagen from the Skin of Blacktip Shark [J]. European Food Research and Technology,2010,230(3):475-483
    [117]Phanat K, Benjakul S, Visessanguan W, et al. Characterisation of Acid-Soluble Collagen from Skin and Bone of Bigeye Snapper (Priacanthus Tayenus)[J]. Food Chemistry,2005, 89(3):363-372
    [118]Ogawa M, Portier R J, Moody M W, et al. Biochemical Properties of Bone and Scale Collagens Isolated from the Subtropical Fish Black Drum (Pogonia Cromis) and Sheepshead Seabream (Archosargus Probatocephalus)[J]. Food Chemistry,2004,88(4):495-501
    [119]Nagai T, Suzuki N. Isolation of Collagen from Fish Waste Material--Skin, Bone and Fins[J]. Food Chemistry,2000,68(3):277-281
    [120]Kimura S, Matsuura F. The Chain Compositions of Several Invertebrate Collagens [J]. Journal of Biochemistry,1974,75(6):1231-1240
    [121]Shen X R, Kurihara H, Takahashi K. Characterization of Molecular Species of Collagen in Scallop Mantle[J]. Food Chemistry,2007,102(4):1187-1191
    [122]Shen X R, Ono S, Kurihara H, et al. Characterization of Pepsin-Solubilized Collagen from Scallop Mantle[J]. Journal-Japanese Society of Food Science and Technology,2005, 52(9):398
    [123]Mizuta S, Miyagi T, Nishimiya T, et al. Partial Characterization of Collagen in Mantle and Adductor of Pearl Oyster (Pinctada Fucata)[J]. Food Chemistry,2002,79(3):319-325
    [124]Mizuta S, Miyagi T, Yoshinaka R. Characterization of the Quantitatively Major Collagen in the Mantle of Oyster Crassostrea Gigas[J]. Fisheries Science,2005,71(1):229-235
    [125]Omura Y, Urano N, Kimura S. Occurrence of Fibrillar Collagen with Structure of α12α2 in the Test of Sea Urchin Asthenosoma Ijimai[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology,1996,115(1):63-68
    [126]Nagai T, Suzuki N. Partial Characterization of Collagen from Purple Sea Urchin (Anthocidaris Crassispina) Test [J]. International Journal of Food Science and Technology,2000, 35(5):497-501
    [127]Trotter J A, Lyons-Levy G, Thurmond F A, et al. Covalent Composition of Collagen Fibrils from the Dermis of the Sea Cucumber, Cucumaria Frondosa, a Tissue with Mutable Mechanical Properties[J]. Comparative Biochemistry and Physiology Part A:Physiology, 1995,112(3-4):463-478
    [128]崔凤霞,薛长湖,李兆杰,等.仿刺参胶原蛋白的提取及理化性质[J].水产学报,2006,30(4):549-553
    [129]李翠翠,董秀萍,高杨,等.海参体壁酶促溶性胶原的提取工艺[J].大连工业大学学报,2008,27(1):1-4
    [130]高杨,董秀萍,肖桂华,等.海参体壁酸溶性胶原提取及氨基酸组成分析[J].食品与发酵工业,2008,34(11):171-174
    [131]Yan M Y, Li B F, Zhao X. Isolation and Characterization of Collagen from Squid Skin[J]. Journal of Ocean University of China (English Edition),2009,8(2):191-196
    [132]Sivakumar P, Suguna L, Chandrakasan G. Molecular Species of Collagen in the Intramuscular Connective Tissues of the Marine Crab, Scylla Serrata[J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2000,125(4):555-562
    [133]Sivakumar P, Suguna L, Chandrakasan G. Purification and Partial Characterization of a Type V Like Collagen from the Muscle of Marine Prawn[J]. Journal of Biosciences,1997, 22(2):131-141
    [134]Mizuta S, Isobe S, Yoshinaka R. Existence of Two Molecular Species of Collagen in the Muscle Layer of the Ascidian(Halocynthia Roretzi)[J]. Food Chemistry,2002,79(1):9-13
    [135]Nagai T, Ogawa T, Nakamura T, et al. Collagen of Edible Jellyfish Exumbrella[J]. Journal of the Science of Food and Agriculture,1999,79(6):855-858
    [136]李卫林,曹健,汤克勇,等.胶原蛋白结构和稳定性关系研究[J].中国皮革,2005,34(23):14-16
    [137]Sato K, Ohashi C, Ohtsuki K, et al. Type V Collagen in Trout (Salmo Gairdneri) Muscle and its Solubility Change During Chilled Storage of Muscle[J]. Journal of Agricultural and Food Chemistry,1991,39(7):1222-1225
    [138]Hatae K, Tamari S, Miyanaga K, et al. Species Difference and Changes in the Physical Properties of Fish Muscle as Freshness Decreases.[J]. Nihon Suisan Gakkai-shi,1987, 51(7):1155-1161
    [139]Sato K, Ando M, Kubota S, et al. Involvement of Type V Collagen in Softening of Fish Muscle During Short-Term Chilled Storage[J]. Journal of Agricultural and Food Chemistry, 1997,45(2):343-348
    [140]Shigemura Y, Ando M, Harada K, et al. Possible Degradation of Type I Collagen in Relation to Yellowtail Muscle Softening During Chilled Storage[J]. Fisheries Science,2004, 70(4):703-709
    [141]王秀敏,张宝欣,苑德顺.不同冻藏温度下鲈鱼肌肉胶原蛋白生化特性的变化[J].河北渔业,2009(4):1-4
    [142]曾名勇,张联英,刘尊英,等.几种鱼皮胶原蛋白的理化特性及其影响因素[J].中国海洋大学学报,2005,35(4):608-612
    [143]钟朝辉,李春美,顾海峰,等.温度对鱼鳞胶原蛋白二级结构的影响[J].光谱学与光谱分析,2007,27(10):1970-1976
    [144]Nishimoto M, Mizuta S, Yoshinaka R. Characterization of Molecular Species of Collagen in Muscles of Japanese Amberjack, Seriola Quinqueradiata[J]. Food Chemistry,2004, 84(1):127-132
    [145]Mizuta S, Tanaka T, Yokoyama Y, et al. Hot-Water Solubility of Mantle Collagens in Several Cephalopod Molluscs[J]. Fisheries Science,2009,75(5):1337-1344
    [146]Asghar A, Samejima K, Yasui T. Functionality of Muscle Proteins in Gelation Mechanisms of Structured Meat Products[J]. Critical Reviews in Food Science and Nutrition,1985, 22(1):27-106
    [147]Xiong Y L, Brekke C J. Physicochemical and Gelation Properties of Pre-and Postrigor Chicken Salt-Soluble Proteins[J]. Journal of Food Science,1990,55(6):1544-1548
    [148]Xiong Y L, Brekke C J. Changes in Protein Solubility and Gelation Properties of Chicken Myofibrils During Storage[J]. Journal of Food Science,1989,54(5):1141-1146
    [149]Wang H, Pato M D, Pietrasik Z, et al. Biochemical and Physicochemical Properties of Thermally Treated Natural Actomyosin Extracted from Normal and PSE Pork Longissimus Muscle[J]. Food Chemistry,2009,113(1):21-27
    [150]Wang H, Pato M D, Shand P J. Biochemical Properties of Natural Actomyosin Extracted from Normal and Pale, Soft, and Exudative Pork Loin after Frozen Storage[J]. Journal of Food Science,2005,70(4):C313-C320
    [151]Okitani A., Ichinose N., Itoh J, et al. Liberation of Actin from Actomyosin in Meats Heated to 65℃ [J]. Meat Science.2009,81(3):446-450
    [152]Lan Y H, Novakofski J, Mccusker R H, et al. Thermal Gelation of Pork, Beef, Fish, Chicken and Turkey Muscles as Affected by Heating Rate and pH[J]. Journal of Food Science,1995, 60(5):936-940
    [153]Yates L D, Greaser M L. Quantitative Determination of Myosin and Actin in Rabbit Skeletal Muscle[J]. Journal of Molecular Biology,1983,168(1):123-141
    [154]Potter J D. The Content of Troponin, Tropomyosin, Actin, and Myosin in Rabbit Skeletal Muscle Myofibrils[J]. Archives of Biochemistry and Biophysics,1974,162(2):436-441
    [155]Dudziak J A, Foegeding E A. Isolation of Actomyosin and Myosin from Post-Rigor Turkey Breast and Thigh[J]. Journal of Food Science,1988,53(5):1287-1289
    [156]Li X. Effects of Protein Modification On Textural Properties and Water Holding Capacity of Heat Induced Turkey Breast Meat Gels[D]. Sasktoon:University of Saskatchewan,2008
    [157]Roura S I, Saavedra J P, Truco R E, et al. Conformational Change in Actomyosin from Post-Spawned Hake Stored On Ice[J]. Journal of Food Science,1992,57(5):1109-1111
    [158]Riebroy S, Benjakul S, Visessanguan W, et al. Acid-Induced Gelation of Natural Actomyosin from Atlantic Cod (Gadus Morhua) and Burbot(Lota Lota)[J]. Food Hydrocolloids,2009, 23(1):26-39
    [159]Sultanbawa Y, Li-Chan E C Y. Structural Changes in Natural Actomyosin and Surimi from Ling Cod (Ophiodon Elongatus) During Frozen Storage in the Absence Or Presence of Cryoprotectants[J]. Journal Agriculture and Food Chemisrty,2001,49(10):4716-4725
    [160]Sano T, Ohno T, Otsuka Fuchino H, et al. Carp Natural Actomyosin:Thermal Denaturation Mechanism[J]. Journal of Food Science,1994,59(5):1002-1008
    [161]Jiang S T, San P C, Japit L S. Effect of Storage Temperatures On the Formation of Disulfides and Denaturation of Tilapia Hybrid Actomyosin (Tilapia Nilotica. Times. Tilapia Aurea)[J]. Journal of Agricultural and Food Chemistry,1989,37(3):633-636
    [162]Yarnpakdee S, Benjakul S, Visessanguan W, et al. Thermal Properties and Heat-Induced Aggregation of Natural Actomyosin Extracted from Goatfish (Mulloidichthys Martinicus) Muscle as Influenced by Iced Storage[J]. Food Hydrocolloids,2009,23(7):1779-1784
    [163]Benjakul S, Visessanguan W, Ishizaki S, et al. Differences in Gelation Characteristics of Natural Actomyosin from Two Species of Bigeye Snapper, Priacanthus Tayenus and Priacanthus Macracanthus[J]. Journal of Food Science,2001,66(9):1311-1318
    [164]Mignino L A, Paredi M E. Physico-Chemical and Functional Properties of Myofibrillar Proteins from Different Species of Molluscs[J]. LWT-Food Science and Technology,2006, 39(1):35-42
    [165]江慧敏,董秀萍,王继涛,等.扇贝肌原纤维蛋白浊度和黏度特性的研究[J].食品与机械,2009,25(6):18-21
    [166]Hegarty G R, Bratzler L J, Pearson A M. Studies On the Emulsifying Properties of some Intracellular Beef Muscle Protein Sab[J]. Journal of Food Science,1963,28(6):663-668
    [167]Galluzzo S J, Regenstein J M. Emulsion Capacity and Timed Emulsification of Chicken Breast Muscle Myosin[J]. Journal of Food Science,1978,43(6):1757-1760
    [168]Galluzzo S J, Regenstein J M. Role of Chicken Breast Muscle Proteins in Meat Emulsion Formation:Myosin, Actin and Synthetic Actomyosin[J]. Journal of Food Science,1978, 43(6):1761-1765
    [169]Schut J. Meat Emulsions[J]. Food Emulsions,1976:358-385
    [170]Frank G, Weeds A G. The Amino-Acid Sequence of the Alkali Light Chains of Rabbit Skeletal-Muscle Myosin[J]. European Journal of Biochemistry,1974,44(2):317-334
    [171]Borejdo J. Mapping of Hydrophobic Sites On the Surface of Myosin and its Fragments[J]. Biochemistry,1983,22(5):1182-1187
    [172]Kuntz I J, Kauzmann W. Hydration of Proteins and Polypeptides[J]. Advances in Protein Chemistry,1974,28:239-345
    [173]Gross J, Highberger J H, Schmitt F O. Extraction of Collagen from Connective Tissue by Neutral Salt Solutions[J]. Proceedings of the National Academyof Sciences of the United States of America,1955,41(1):1-7
    [174]Offer G, Trinick J. On the Mechanism of Water Holding in Meat:The Swelling and Shrinking of Myofibrils[J]. Meat Science,1983,8(4):245-281
    [175]Rome E. X-Ray Diffraction Studies of the Filament Lattice of Striated Muscle in Various Bathing Media[J]. Journal of Molecular Biology,1968,37(2):331-344
    [176]于巍,周坚.草鱼盐溶蛋白保水性及流变性质的研究[J].食品与发酵工业,2007,33(10):72-75
    [177]杨芳,吴永沛,陈梅香,等.阿根廷鱿鱼肌原纤维蛋白及肌肉组织凝胶保水性研究[J].水产科学,2008,27(8):386-389
    [178]张亚琦.鲍鱼的物性学研究及加工工艺探讨[D].中国海洋大学,2008
    [179]Chen H C, Moody M W, Jiang S T. Changes in Biochemical and Bacteriological Quality of Grass Prawn During Transportation by Icing and Oxygenating[J]. Journal of Food Science, 1990,55(3):670-673
    [180]Ziegler G R, Acton J C. Mechanisms of Gel Formation by Proteins of Muscle Tissue[J]. Food Technology,1984,38(5):77-82
    [181]Ziegler G R, Foegeding E A. The Gelation of Proteins[J]. Advances in food and nutrition research,1990,34:203-298
    [182]Yasui T, Samejima K. Recent Advances in Meat Science in Japan:Functionality of Muscle Proteins in Gelation Mechanism of Structured Meat Products[J]. Japan Agricultural Research Quarterly,1990,24:131-140
    [183]Sano T, Noguchi S F, Matsumoto J J, et al. Thermal Gelation Characteristics of Myosin Subfragments[J]. Journal of Food Science,1990,55(1):55-58
    [184]Yasui T, Ishioroshi M, Samejima K. Heat-Induced Gelation of Myosin in the Presence of Actin[J]. Journal of Food Biochemistry,1980,4(2):61-78
    [185]Sano T, Noguchi S F, Matsumoto J J, et al. Role of F-Actin in Thermal Gelation of Fish Actomyosin[J]. Journal of Food Science,1989,54(4):800-804
    [186]Sano T, Fnoguchi S, Tsuchiya T, et al. Contribution of Paramyosin to Marine Meat Gel Characteristics[J]. Journal of Food Science,1986,51(4):946-950
    [187]Sano T, Noguchi S F, Tsuchiya T, et al. Paramyosin-Myosin-Actin Interactions in Gel Formation of Invertebrate Muscle[J]. Journal of Food Science,1989,54(4):796-799
    [188]Sano T, Noguchi S F, Tsuchiya T, et al. Contribution of Tropomyosin to Fish Muscle Gel Characteristics[J]. Journal of Food Science,1989,54(2):258-264
    [189]De La Fuente Betancourt G, Garcia Carre O F, Navarrete D, et al. Protein Solubility and Production of Gels from Jumbo Squid[J]. Journal of Food Biochemistry,2009,33(2):273-290
    [190]Westphalen A D, Briggs J L, Lonergan S M. Influence of Ph On Rheological Properties of Porcine Myofibrillar Protein During Heat Induced Gelation[J]. Meat Science,2005, 70(2):293-299
    [191]Finn D B. Denaturation of Proteins in Muscle Juice by Freezing[J]. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character,1932:396-411
    [192]Reay G A. Freezing and Cold Storage of Herring[J]. Journal of Food Science,1938, 3(1-2):205-209
    [193]Dyer W J. Protein Denaturation in Frozen and Stored Fish[J]. Journal of Food Science,1951, 16(1-6):522-527
    [194]Connell J J, Howgate P F. Sensory and Objective Measurements of the Quality of Frozen Stored Cod of Different Initial Freshnesses[J]. Journal of the Science of Food and Agriculture, 1968,19(6):342-354
    [195]宋广磊,戴志远.鱼肉蛋白质冷冻变性研究进展[J].食品科技,2006(3):17-20
    [196]周国艳,郭堂鹏.鲢鱼鱼糜在储藏过程中新鲜度和盐溶性蛋白质变化研究[J].食品科技,2008(8):240-243
    [197]袁春红,陈舜胜,程裕东,等.冻结条件与冻藏温度对鲢鱼肉肌原纤维蛋白冷冻变性的影响[J].上海水产大学学报,2001,10(1):44-48
    [198]Yoshikawa K, Inoue N, Kawai Y, et al. Subunit Components in Salt-Soluble and Insoluble Fractions of Carp Myofibrils During Frozen Storage[J]. Fisheries Science (Japan),1995
    [199]Benjakul S, Visessanguan W, Thongkaew C, et al. Comparative Study On Physicochemical Changes of Muscle Proteins from some Tropical Fish During Frozen Storage[J]. Food Research International,2003,36(8):787-795
    [200]Ruiz-Capillas C, Moral A, Morales J, et al. The Effect of Frozen Storage On the Functional Properties of the Muscle of Volador (Illex Coindetii)[J]. Food Chemistry,2002, 78(2):149-156
    [201]薛勇,薛长湖,李兆杰,等.海藻糖对冻藏过程中鳙肌原纤维蛋白冷冻变性的影响[J].中国水产科学,2006,13(3):637-641
    [202]蒙健宗,秦小明,赵文报,等.海藻糖对冷冻罗非鱼片蛋白质变性作用的影响[J].食品工业科技,2007,2:214-216
    [203]Yamashita Y, Zhang N, Nozaki Y. Effect of Chitin Hydrolysate On the Denaturation of Lizard Fish Myofibrillar Protein and the State of Water During Frozen Storage[J]. Food Hydrocolloids,2003,17(5):569-576
    [204]Somjit K, Ruttanapornwareesakul Y, Hara K, et al. The Cryoprotectant Effect of Shrimp Chitin and Shrimp Chitin Hydrolysate On Denaturation and Unfrozen Water of Lizardfish Surimi During Frozen Storage[J]. Food Research International,2005,38(4):345-355
    [205]Zhou A M, Soot Tawat B. Cryoprotective Effect Soft Rehalose and Sodium Lactateontilapia (Sarot Herodonnilotica) Surimi During Frozen Storage[J]. Food Chemistry,2006,96:96-103
    [206]Anese M, Gormley R. Effects of Dairy Ingredients On some Chemical, Physico-Chemical and Functional Properties of Minced Fish During Freezing and Frozen Storage[J]. Lebensmittel-Wissenschaft und-Technologie,1996,29(1-2):151-157
    [207]Khan M, Hossain M A, Hara K, et al. Effect of Enzymatic Fish-Scrap Protein Hydrolysate On Gel-Forming Ability and Denaturation of Lizard Fish Saurida Wanieso Surimi During Frozen Storage[J]. Fisheries Science,2003,69(6):1271-1280
    [208]Cheung I W, Liceaga A M, Li-Chan E C. Pacific Hake (Merluccius Productus) Hydrolysates as Cryoprotective Agents in Frozen Pacific Cod Fillet Mince[J]. Journal of Food Science, 2009,74(8):588-594
    [209]Hossain M A, Ishihara T, Hara K, et al. Effect of Proteolytic Squid Protein Hydrolysate On the State of Water and Dehydration-Induced Denaturation of Lizard Fish Myofibrillar Protein[J]. Journal Agriculture and Food Chemisrty,2003,51(16):4769-4774
    [210]Skipnes D, Van der Plancken I, Van Loey A, et al. Kinetics of Heat Denaturation of Proteins from Farmed Atlantic Cod (Gadus Morhua)[J]. Journal of Food Engineering,2008, 85(1):51-58
    [211]Paredi M E, Tomas M C, Crupkin M. Thermal Denaturation of Myofibrillar Proteins of Striated and Smooth Adductor Muscles of Scallop (Zygochlamys Patagonica). A Differential Scanning Calorimetric Study[J]. Journal of Agricultural and Food Chemistry,2002, 50(4):830-834
    [212]段蕊,张俊杰,林生沾,等.温度对南美白对虾肌原纤维蛋白质性质的影响[J].食品研究与开发,2008,29(10):54-57
    [213]刘世新主编.实用生物组织学技术[M].北京市:科学出版社,2004:259
    [214]Ayala M D, Lopez Albors O, Blanco A, et al. Structural and Ultrastructural Changes On Muscle Tissue of Sea Bass, Dicentrarchus Labrax L., After Cooking and Freezing[J]. Aquaculture,2005,250(1-2):215-231
    [215]Kong F B, Tang J M, Lin M S, et al. Thermal Effects On Chicken and Salmon Muscles: Tenderness, Cook Loss, Area Shrinkage, Collagen Solubility and Microstructure[J]. LWT-food Science and Technology,2008,41(7):1210-1222
    [216]Lin W L, Zeng Q X, Zhu Z W. Different Changes in Mastication Between Crisp Grass Carp (Ctenopharyngodon Idellus C. Et V) and Grass Carp (Ctenopharyngodon Idellus) After Heating:The Relationship Between Texture and Ultrastructure in Muscle Tissue[J]. Food Research International,2009,42(2):271-278
    [217]Gao X, Ogawa H, Tashiro Y, et al. Rheological Properties and Structural Changes in Raw and Cooked Abalone Meat[J]. Fisheries Science,2001,67(2):314-320
    [218]Gao X, Tashiro Y, Ogawa H. The Correlation Between Rheological Properties and Characteristic Values of Structure for Steamed Abalone Meat[J]. Food Science and Technology Research,2002,8(4):304-310
    [219]Gao X, Zhang Z H, Tang Z X, et al. Rheological Properties and Structural Changes in Different Sections of Boiled Abalone Meat[J]. Journal of Ocean University of China (English Edition),2003,2(1):44-48
    [220]Gao X, Zhang Z H, Tang Z X, et al. The Relationships Between Rheological Properties and Structural Changes of Chilled Abalone Meat[J]. Journal of Ocean University of China (English Edition),2003,2(2):171-176
    [221]Gao X, Zhang Y Q, Xu J C, et al. Structural Changes and Rheological Properties of Dry Abalone Meat (Haliotis Diversicolor) During the Process of Water Restoration[J]. Journal of Ocean University of China (English Edition),2007,6(4):403-406
    [222]李霞,周海燕,秦艳杰,等.仿刺参体壁的显微和亚显微结构[J].大连海洋大学学报,2010,25(4):289-293
    [223]Raspanti M, Viola M, Sonaggere M, et al. Collagen Fibril Structure is Affected by Collagen Concentration and Decorin[J]. Biomacromolecules,2007,8(7):2087-2091
    [224]Szczesniak A S. Classification of Textural Characteristicsa[J]. Journal of Food Science,1963, 28(4):385-389
    [225]Sanchez Brambila G Y, Lyon B G, Huang Y W, et al. Sensory Characteristics and Instrumental Texture Attributes of Abalones, Haliotis Fulgens and Cracherodii[J]. Journal of Food Science,2002,67(3):1233-1239
    [226]Hatae K, Yoshimatsu F, Matsumoto J J. Discriminative Characterization of Different Texture Profiles of Various Cooked Fish Muscles[J]. Journal of Food Science,1984,49(3):721-726
    [227]Angsupanich K, Ledward D A. High Pressure Treatment Effects On Cod (Gadus Morhua) Muscle[J]. Food Chemistry,1998,63(1):39-50
    [228]MΦrkΦre T, Einen O. Relating Sensory and Instrumental Texture Analyses of Atlantic Salmon[J]. Journal of Food Science,2003,68(4):1492-1497
    [229]Kong F B, Tang J M, Rasco B, et al. Quality Changes of Salmon (Oncorhynchus Gorbuscha) Muscle During Thermal Processing[J].Journal of Food Science,2007,72(2):S103-S111
    [230]戴志远,崔雁娜,王宏海.不同冻藏条件下养殖大黄鱼鱼肉质构变化的研究[J].食品与发酵工业,2008,34(8):188-192
    [231]Brown M R, Sikes A L, Elliott N G, et al. Physicochemical Factors of Abalone Quality:A Review[J]. Journal of Shellfish Research,2008,27(4):835-842
    [232]Olaechea R P, Ushio H, Watabe S, et al. Toughness and Collagen Content of Abalone Muscles[J]. Bioscience, biotechnology, and biochemistry,1993,57(1):6-11
    [233]Chiou T K, Tsai C Y, Lan H L. Chemical, Physical and Sensory Changes of Small Abalone Meat During Cooking[J].Fisheries Science,2004,70(5):867-874
    [234]Siripatrawan U, Sanguandeekul R, Narakaew V. An Alternative Freshness Index Method for Modified Atmosphere Packaged Abalone Using an Artificial Neural Network[J]. LWT-Food Science and Technology,2009,42(1):343-349
    [235]Allen V J, Marsden I D, Ragg N L C, et al. The Effects of Tactile Stimulants On Feeding, Growth, Behaviour, and Meat Quality of Cultured Blackfoot Abalone, Haliotis Iris[J]. Aquaculture,2006,257(1-4):294-308
    [236]Perez-Won M, Tabilo-Munizaga G, Barbosa-Canovas G V. Effects of Ultra High Pressure On Bay Scallop (Aequipecten Irradians) Adductor Muscles[J]. Food Science and Technology International,2005,11(6):477
    [237]Makri M. The Biochemical, Textural and Sensory Properties of King Scallop (Pecten Maxinus) Meats Frozen at Different Characteristic Freezing Times[J]. African Journal of Biotechnology, 2010,9(28):4374-4385
    [238]曹荣,刘淇,殷邦忠,等.虾仁TPA质构分析及不同熟制加工方式对其品质的影响[J].食品研究与开发,2010,31(6):1-5
    [239]Harman D. Aging:A Theory Based On Free Radical and Radiation Chemistry [J]. Journal of Gerontology,1956, 11(3):298-300
    [240]Kim S K, Wijesekara I. Development and Biological Activities of Marine-Derived Bioactive Peptides:A Review[J]. Journal of Functional Foods,2010,2(1):1-9
    [241]Wu H C, Chen H M, Shiau C Y. Free Amino Acids and Peptides as Related to Antioxidant Properties in Protein Hydrolysates of Mackerel (Scomber Austriasicus)[J]. Food Research International,2003,36(9-10):949-957
    [242]Ranathunga S, Rajapakse N, Kim S K. Purification and Characterization of Antioxidative Peptide Derived from Muscle of Conger Eel (Conger Myriaster)[J]. European Food Research and Technology,2006,222(3):310-315
    [243]Thiansilakul Y, Benjakul S, Shahidi F. Antioxidative Activity of Protein Hydrolysate from Round Scad Muscle Using Alcalase and Flavourzyme[J]. Journal of Food Biochemistry,2007, 31(2):266-287
    [244]Jun S Y, Park P J, Jung W K, et al. Purification and Characterization of an Antioxidative Peptide from Enzymatic Hydrolysate of Yellowfin Sole (Limanda Aspera) Frame Protein[J]. European Food Research and Technology,2004,219(1):20-26
    [245]Mendis E, Rajapakse N, Byun H G, et al. Investigation of Jumbo Squid (Dosidicus Gigas) Skin Gelatin Peptides for their in Vitro Antioxidant Effects[J]. Life Sciences,2005, 77(17):2166-2178
    [246]刘程惠,朱蓓薇,董秀萍,等.海参酶解产物的分离及其体外抗氧化作用的研究[J].食品与发酵工业,2007,33(9):50-53
    [247]Qin L, Zhu B W, Zhou D Y, et al. Preparation and Antioxidant Activity of Enzymatic Hydrolysates from Purple Sea Urchin (Strongylocentrotus Nudus) Gonad[J]. LWT-Food Science and Technology,2010
    [248]汪秋宽,刘红丹,徐坚,等.牡蛎酶解液的抗氧化活性[J].中国水产科学,2007,14(2):295-300
    [249]Je J Y, Kim S Y, Kim S K. Preparation and Antioxidative Activity of Hoki Frame Protein Hydrolysate Using Ultrafiltration Membranes[J]. European Food Research and Technology, 2005,221(1):157-162
    [250]Hsu K C. Purification of Antioxidative Peptides Prepared from Enzymatic Hydrolysates of Tuna Dark Muscle by-Product[J]. Food Chemistry,2010,122(1):42-48
    [251]Je J Y, Qian Z J, Byun H G, et al. Purification and Characterization of an Antioxidant Peptide Obtained from Tuna Backbone Protein by Enzymatic Hydrolysis[J]. Process Biochemistry, 2007,42(5):840-846
    [252]Bougatef A, Nedjar-Arroume N, Manni L, et al. Purification and Identification of Novel Antioxidant Peptides from Enzymatic Hydrolysates of Sardinelle (Sardinella Aurita) by-Products Proteins[J]. Food Chemistry,2010,118(3):559-565
    [253]Suetsuna K. Antioxidant Peptides from the Protease Digest of Prawn (Penaeusjaponicus) Muscle[J]. Marine Biotechnology,2000,2:5-10
    [254]Moure A, Dominguez H, Parajo J C. Antioxidant Properties of Ultrafiltration-Recovered Soy Protein Fractions from Industrial Effluents and their Hydrolysates[J]. Process Biochemistry, 2006,41(2):447-456
    [255]Qian Z J, Jung W K, Kim S K. Free Radical Scavenging Activity of a Novel Antioxidative Peptide Purified from Hydrolysate of Bullfrog Skin, Rana Catesbeiana Shaw[J]. Bioresource Technology,2008,99(6):1690-1698
    [256]Rajapakse N, Mendis E, Jung W K, et al. Purification of a Radical Scavenging Peptide from Fermented Mussel Sauce and its Antioxidant Properties[J]. Food Research International,2005, 38(2):175-182
    [257]Erdmann K, Grosser N, Schipporeit K, et al. The Ace Inhibitory Dipeptide Met-Tyr Diminishes Free Radical Formation in Human Endothelial Cells Via Induction of Heme Oxygenase-1 and Ferritin[J]. Journal of Nutrition,2006,136(8):2148-2152
    [258]Fu X. Effect of Plant Leaf Protein On Lipotropy Peroxidase System of Rats[J]. Chinese Journal of Veterinary Science and Technology,2003, 11:49-50
    [259]Wang W, De Mejia E G. A New Frontier in Soy Bioactive Peptides that May Prevent Age-Related Chronic Diseases[J]. Comprehensive Reviews in Food Science and Food Safety,2005, 4(4):63-78
    [260]王嘉榕,滕达,田子罡,等.功能性抗氧化肽制备与机制研究进展[J].天然产物研究与开发,2008,20(2):371-375
    [261]Chen H M, Muramoto K, Yamauchi F. Structural Analysis of Antioxidative Peptides from Soybean.β.-Conglycinin[J]. Journal of Agricultural and Food Chemistry,1995,43(3):574-578
    [262]Chen H M, Muramoto K, Yamauchi F, et al. Antioxidant Activity of Designed Peptides Based On the Antioxidative Peptide Isolated from Digests of a Soybean Protein[J]. Journal of Agricultural and Food Chemistry,1996,44(9):2619-2623
    [263]Chen H M, Muramoto K, Yamauchi F, et al. Antioxidative Properties of Histidine-Containing Peptides Designed from Peptide Fragments Found in the Digests of a Soybean Protein[J]. Journal of Agricultural and Food Chemistry,1998,46(1):49-53
    [264]Gibbs B F, Zougman A, Masse R, et al. Production and Characterization of Bioactive Peptides from Soy Hydrolysate and Soy-Fermented Food[J]. Food Research International,2004, 37(2):123-131
    [265]Pena-Ramos E A, Xiong Y L. Antioxidant Activity of Soy Protein Hydrolyzates in a Liposomial System[J]. Journal of Food Science,2002,67:2952-2956
    [266]Li X X, Han L J, Chen L J. In Vitro Antioxidant Activity of Protein Hydrolysates Prepared from Corn Gluten Meal[J]. Journal of the Science of Food and Agriculture,2008, 88(9):1660-1666
    [267]Eiwegger T, Rigby N, Mondoulet L, et al. Gastro-Duodenal Digestion Products of the Major Peanut Allergen Ara H 1 Retain an Allergenic Potential[J]. Clinical & Experimental Allergy, 2006,36(10):1281-1288
    [268]Moure A, Dominguez H, Parajo J C. Fractionation and Enzymatic Hydrolysis of Soluble Protein Present in Waste Liquors from Soy Processing[J]. Journal of Agricultural and Food Chemistry,2005,53(19):7600-7608
    [269]Hartmann R, Wal J M, Bernard H, et al. Cytotoxic and Allergenic Potential of Bioactive Proteins and Peptides[J]. Current Pharmaceutical Design,2007,13(9):897-920
    [270]Hamada Y, Nagashima Y, Shiomi K. Identification of Collagen as a New Fish Allergen[J]. Bioscience, Biotechnology, and Biochemistry,2001,65(2):285-291
    [271]刘光明,钟永嘉,曹敏杰,等.鲤鱼过敏源(胶原蛋白)的体外消化模拟[J].集美大学学报,2010,15(4):267-271
    [272]Matsumura T, Shinmei M, Nagai Y. Disaggregation of Connective Tissue:Preparation of Fibrous Components from Sea Cucumber Body Wall and Calf Skin[J]. Journal of Biochemistry,1973,73(1):155-162
    [273]Gao X, Xue D M, Zhang Z H, et al. Rheological and Structural Properties of Sea Cucumber Stichopus Japonicus During Heat Treatment[J]. Journal of Ocean University of China (English Edition),2005,4(3):244-247
    [274]李翠翠,董秀萍,高杨,等.海参体壁酶促溶性胶原的提取工艺[J].大连工业大学学报,2008,27(1):1-4
    [275]王琳,刘宇,魏泓.高效液相色谱法制备Ⅰ型胶原蛋白及其性质研究[J].氨基酸和生物资源,2004,26(2):35-37
    [276]Fujita Y, Kobayashi K, Hoshino T. Atomic Force Microscopy of Collagen Molecules. Surface Morphology of Segment-Long-Spacing (SLS) Crystallites of Collagen[J]. Journal of Electron Microscopy,1997,46(4):321-326
    [277]Shimada K, Fujikawa K, Yahara K, et al. Antioxidative Properties of Xanthan On the Autoxidation of Soybean Oil in Cyclodextrin Emulsion[J]. Journal of Agricultural and Food Chemistry,1992,40(6):945-948
    [278]王辉,孙春艳,刘刚.异莲心碱的体外抗氧化活性[J].中国生化药物杂志,2005,26(1):21-23
    [279]Mistsuda H, Yasumoto K, Iwami K. Antioxidative Action of Indole of Compounds During the Antioxidation of Linoleic Acid[J]. Eiyo to Syokuryo,1966,19:210-214
    [280]Wang H, Gao X D, Zhou G C, et al. In Vitro and in Vivo Antioxidant Activity of Aqueous Extract from Choerospondias Axillaris Fruit[J]. Food Chemistry,2008,106(3):888-895
    [281]Ren J Y, Zhao M M, Shi J, et al. Purification and Identification of Antioxidant Peptides from Grass Carp Muscle Hydrolysates by Consecutive Chromatography and Electrospray Ionization-Mass Spectrometry[J]. Food Chemistry,2008,108(2):727-736
    [282]Liu H Y, Li D, Guo S D. Studies On Collagen from the Skin of Channel Catfish (Ictalurus Punctaus)[J]. Food Chemistry,2007,101(2):621-625
    [283]Zhang M, Liu W T, Li G Y. Isolation and Characterisation of Collagens from the Skin of Largefin Longbarbel Catfish (Mystus Macropterus)[J]. Food Chemistry,2009, 115(3):826-831
    [284]Nagai T, Suzuki N. Preparation and Partial Characterization of Collagen from Paper Nautilus (Argonauta Argo, Linnaeus) Outer Skin[J]. Food Chemistry,2002,76(2):149-153
    [285]Binnig G, Quate C F, Gerber C. Atomic Force Microscope[J]. Physical Review Letters,1986, 56(9):930-933
    [286]雷卓,白晓军,成晓玲,等.原子力显微镜在生物制品中的应用[J].中国生物制品学杂志,2006,19(4):438-440
    [287]Graham J S, Vomund A N, Phillips C L, et al. Structural Changes in Human Type I Collagen Fibrils Investigated by Force Spectroscopy[J]. Experimental Cell Research,2004, 299(2):335-342
    [288]Gutsmann T, Fantner G E, Kindt J H, et al. Force Spectroscopy of Collagen Fibers to Investigate their Mechanical Properties and Structural Organization[J]. Biophysical Journal, 2004,86(5):3186-3193
    [289]Strasser S, Zink A, Janko M, et al. Structural Investigations On Native Collagen Type I Fibrils Using AFM[J]. Biochemical and Biophysical Research Communications,2007,354(1):27-32
    [290]Mertig M, Thiele U, Bradt J, et al. Scanning Force Microscopy and Geometric Analysis of Two-Dimensional Collagen Network Formation[J]. Surface and Interface Analysis,1997, 25(7-8):514-521
    [291]钟朝辉,李春美,顾海峰,等.原子力显微镜研究鱼鳞胶原蛋白的溶液聚集行为[J].精细化工,2006,23(10):983-987
    [292]蒋挺大编著.胶原与胶原蛋白[M].北京市:化学工业出版社,2006:352
    [293]Saiga A, Tanabe S, Nishimura T. Antioxidant Activity of Peptides Obtained from Porcine Myofibrillar Proteins by Protease Treatment[J]. Journal of Agricultural and Food Chemistry, 2003,51(12):3661-3667
    [294]Guo H, Kouzuma Y, Yonekura M. Structures and Properties of Antioxidative Peptides Derived from Royal Jelly Protein[J]. Food Chemistry,2009,113(1):238-245
    [295]Sanchez-Moreno C. Review:Methods Used to Evaluate the Free Radical Scavenging Activity in Foods and Biological Systems[J]. Food Science and Technology International,2002, 8(3):121-127
    [296]Chen G T, Zhao L, Zhao L Y, et al. In Vitro Study On Antioxidant Activities of Peanut Protein Hydrolysate[J]. Journal of the Science of Food and Agriculture,2007,87(2):357-362
    [297]林霖,田颖刚,谢明勇,等.乌骨鸡活性肽组成成分及体外抗氧化活性研究[J].食品科学,2007,28(10):4145
    [298]Li Y M, Baviello G, Vlassara H, et al. Glycation Products in Aged Thioglycollate Medium Enhance the Elicitation of Peritoneal Macrophages[J]. Journal of Immunological Methods, 1997,201(2):183-188
    [299]Gimenez B, Aleman A, Montero P, et al. Antioxidant and Functional Properties of Gelatin Hydrolysates Obtained from Skin of Sole and Squid[J]. Food Chemistry,2009, 114(3):976-983
    [300]张水华主编.食品分析实验[M].北京市:化学工业出版社,2006:152
    [301]孟运莲主编.现代组织学与细胞学技术[M].武汉市:武汉大学出版社,2004:143
    [302]White A, Handle P, Smith F L. Principles of Biochemistry (Fifth Edition)[M]. New York: Mcgraw-Hill Inc,1973
    [303]韩丽,赵淑敏.不同种类电镜样品的制作[J].承德医学院学报,2001,18(2):149-150
    [304]王廷华等主编.组织细胞化学理论与技术[M].北京市:科学出版社,2005:246
    [305]董秀萍,姜丹,江慧敏,等.海参体壁组织电镜样品的制备方法[J].食品与发酵工业,2009,35(8):4547
    [306]Fukunaga T, Matsumoto M, Murakami T, et al. Effects of Soaking Conditions On the Texture of Dried Sea Cucumber[J]. Fisheries Science,2004,70(2):319-325
    [307]马美湖等主编.动物性食品加工学[M].北京市:中国轻工业出版社,2003:437
    [308]樊绘曾.海参:海中人参——关于海参及其成分保健医疗功能的研究与开发[J].中国海 洋药物,2001,20(4):37-44
    [309]苏秀榕,娄永江,常亚青,等.海参的营养成分及海参多糖的抗肿瘤活性的研究[J].营养学报,2003,25(2):181-182
    [310]李丹彤,常亚青,陈炜,等.獐子岛野生刺参体壁营养成分的分析[J].大连水产学院学报,2006,21(3):278-282
    [311]管斌,林洪,王广策编著.食品蛋白质化学[M].北京市:化学工业出版社,2005:356
    [312]汤晓艳,周光宏,徐幸莲,等.肉嫩度决定因子及牛肉嫩化技术研究进展[J].中国农业科学,2007,40(12):2835-2841
    [313]Brown P C, Consden R, Glynn L E. Observations On the Shrink Temperature of Collagen and its Variations with Age and Disease[J]. Annals of the Rheumatic Diseases,1958,17(2):196
    [314]高英茂主编.组织学与胚胎学[M].北京:人民卫生出版社,2005
    [315]Wattanachant S, Benjakul S, Ledward D A. Effect of Heat Treatment On Changes in Texture, Structure and Properties of Thai Indigenous Chicken Muscle[J]. Food Chemistry,2005, 93(2):337-348
    [316]Christensen M, Purslow P P, Larsen L M. The Effect of Cooking Temperature On Mechanical Properties of Whole Meat, Single Muscle Fibres and Perimysial Connective Tissue[J]. Meat Science,2000,55(3):301-307
    [317]Bailey A J, Light N D. Connective Tissue in Meat and Meat Products[M]. London:Elsevier Applied Science,1989
    [318]Califano A N, Bertola N C, Bevilacqua A E, et al. Effect of Processing Conditions On the Hardness of Cooked Beef[J]. Journal of Food Engineering,1997,34(1):41-54
    [319]Garcia-Segovia P, Andres-Bello A, Martinez-Monzo J. Effect of Cooking Method On Mechanical Properties, Color and Structure of Beef Muscle (M. Pectoralis)[J]. Journal of Food Engineering,2007,80(3):813-821
    [320]Palka K, Daun H. Changes in Texture, Cooking Losses, and Myofibrillar Structure of Bovine M. Semitendinosus During Heating[J]. Meat Science,1999,51(3):237-243
    [321]王艳,方展强.翡翠贻贝鳃的组织形态学和超微结构观察[J].台湾海峡,2009,28(1):25-29
    [322]王宜艳,孙虎山,孙修勤,等.海湾扇贝消化系统粘液细胞的类型与分布[J].中国水产科学,2003,10(3):254-257
    [323]孙虎山,王宜艳,王平,等.栉孔扇贝外套膜和鳃粘液细胞的类型与分布[J].中国水产科学,2002,9(4):315-317
    [324]Paredi M E, Mattio N D E V, Crupkin M. Biochemical Properties of Actomyosin of Cold Stored Striated Adductor Muscles of Aulacomya Ater Ater (Molina)[J]. Journal of Food Science,1990,55(6):1567-1570
    [325]Garcia I, Diez V, Zumalacarregui J M. Changes in Proteins During the Ripening of Spanish Dried Beef Cecina[J]. Meat Science,1997,46(4):379-385
    [326]杨凤影,张弼.不同地理种群栉孔扇贝营养成分的比较分析[J].安徽农业科学,2009,37(9):40734075
    [327]苏秀榕,李太武.扇贝营养成分的研究[J].海洋科学,1997(2):10-11
    [328]李兆杰主编.水产品化学[M].北京市:化学工业出版社,2007:224
    [329]Warner R D, Kauffman R G, Greaser M L. Muscle Protein Changes Post Mortem in Relation to Pork Quality Traits[J]. Meat Science,1997,45(3):339-352
    [330]Davey C L, Gilbert K V. Temperature-Dependent Cooking Toughness in Beef[J]. Journal of the Science of Food and Agriculture,1974,25(8):931-938
    [331]李媛,刘通讯,王永江,等.低值鱼蛋白的热变性与酶解特性关系研究[J].食品科学,2005,26(5):50-53
    [332]潘锦锋,沈慧星,尤娟,等.草鱼肌原纤维蛋白加热过程中理化特性的变化[J].中国农业大学学报,2009,14(6):17-22
    [333]Yongsawatdigul J, Hemung B O. Structural Changes and Functional Properties of Threadfin Bream Sarcoplasmic Proteins Subjected to Ph-Shifting Treatments and Lyopilization[J]. Jouranl of Food Science,2010,75(3):251-257
    [334]Offer G. Modelling of the Formation of Pale, Soft and Exudative Meat:Effects of Chilling Regime and Rate and Extent of Glycolysis[J]. Meat Science,1991,30(2):157-184
    [335]Beltran-Lugo A I, Maeda-Martinez A N, Pacheco-Aguilar R, et al. Seasonal Variations in Chemical, Physical, Textural, and Microstructural Properties of Adductor Muscles of Pacific Lions-Paw Scallop (Nodipecten Subnodosus)[J]. Aquaculture,2006,258(1-4):619-632
    [336]Chen Y, Wang M, Rosen R T, et al.2,2-Diphenyl-l-Picrylhydrazyl Radical-Scavenging Active Components from Polygonum Multiflorum Thunb[J]. Journal of Agricultural and Food Chemistry,1999,47(6):2226-2228
    [337]Zhu L, Chen J, Tang X, et al. Reducing, Radical Scavenging, and Chelation Properties of in Vitro Digests of Alcalase-Treated Zein Hydrolysate[J]. Journal of Agricultural and Food Chemistry,2008,56(8):2714-2721
    [338]Marabi A, Dilak C, Shah J, et al. Kinetics of Solids Leaching During Rehydration of Particulate Dry Vegetables[J]. Journal of Food Science,2004,69(3)
    [339]Cunningham S E, Mcminn W A M, Magee T R A, et al. Experimental Study of Rehydration Kinetics of Potato Cylinders[J]. Food and Bioproducts Processing,2008,86(1):15-24
    [340]Dadali G, Demirhan E, ozbek B. Effect of Drying Conditions On Rehydration Kinetics of Microwave Dried Spinach[J]. Food and Bioproducts Processing,2008,86(4):235-241
    [341]Krokida M K, Marinos-Kouris D. Rehydration Kinetics of Dehydrated Products[J]. Journal of Food Engineering,2003,57(1):1-7
    [342]Hernando I, Sanjuan N, Perez-Munuera I, et al. Rehydration of Freeze-Dried and Convective Dried Boletus Edulis Mushrooms:Effect On some Quality Parameters[J]. Journal of Food Science,2008,73(8):356-362
    [343]Wang Y G, Zhu F R, Han F S, et al. Purification and Characterization of Antioxidative Peptides from Salmon Protamine Hydrolysate[J]. Journal of Food Biochemistry,2008, 32(5):654-671
    [344]Yang J I, Ho H Y, Chu Y J, et al. Characteristic and Antioxidant Activity of Retorted Gelatin Hydrolysates from Cobia (Rachycentron Canadum) Skin[J]. Food Chemistry,2008, 110(1):128-136
    [345]Mendis E, Rajapakse N, Kim S K. Antioxidant Properties of a Radical-Scavenging Peptide Purified from Enzymatically Prepared Fish Skin Gelatin Hydrolysate[J]. Journal of Agricultural and Food Chemistry,2005,53(3):581-587
    [346]Vandanjon L, Johannsson R, Derouiniot M, et al. Concentration and Purification of Blue Whiting Peptide Hydrolysates by Membrane Processes[J]. Journal of Food Engineering,2007, 83(4):581-589
    [347]Cao W H, Zhang C H, Hong P Z, et al. Optimising the Free Radical Scavenging Activity of Shrimp Protein Hydrolysate Produced with Alcalase Using Response Surface Methodology[J]. International Journal of Food Science and Technology,2009,44(8):1602-1608

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700