草酰腙缩乙醛酸三环己基锡酯诱导大细胞肺癌H460细胞凋亡及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景和研究目的
     据WHO统计,肺癌是当今世界上最大的癌患,其死亡率居于各种恶性肿瘤之首位,中国也已成为世界上第一肺癌大国。按组织学类型可将肺癌分为两大类:小细胞肺癌和非小细胞肺癌。非小细胞肺癌(NSCLC)占肺癌的85%以上。由于非小细胞肺癌转移后禁忌手术,且对放疗很不敏感,因此,对非小细胞肺癌化疗药物的开发与研究尤为重要。
     肺癌化疗的常用药物有如下五类:直接破坏DNA药物、插入DNA模板药物、影响核酸合成药物、抑制微管装配药物、影响蛋白质合成药物五类。尽管上述药物可有效诱导肺癌细胞凋亡,但是毒副作用较大且容易引起耐药,从而导致化疗失败。因此,开发毒性小、副作用少、能克服多药耐药和有效启动肺癌细胞凋亡信号传导途径的药物是目前亟待解决的问题。
     本研究选用H460、A549、H1792、H226、WI38细胞为实验细胞研究有机锡小分子化合物抑制NSCLC细胞生长的机制,原因在于:1)此四种NSCLC细胞分别来源于腺癌、大细胞癌、鳞癌,涵盖了非小细胞肺癌的三种亚型;2)此四种NSCLC细胞均可单独作为非小细胞肺癌研究领域里的模式细胞,用于细胞水平的检测;3)迄今对有机锡小分子化合物诱导NSCLC细胞凋亡的机制研究还比较少;4) WI38细胞是从人胚肺组织建立的二倍体成纤维细胞系,作为正常细胞经常被用作肺癌研究的对照细胞。因此可用以上细胞系筛选小分子化合物,并对其机制做深入研究,为NSCLC化疗药物的开发提供理论依据。
     化学遗传学(chemical genetics)是利用化学工具来研究生物体系的一种新兴手段,其可以在以下两个重要方面促进新药开发:一方面是鉴定出在某种疾病形成过程中起重要作用的基因或蛋白质,从而为新药筛选提供靶点;另外一方面是发现特异性作用于某个基因或蛋白质的小分子化合物,从而为新药开发提供先导化合物。化学遗传学应用的关键之一是要有大量的可供筛选的不同结构的化合物,新兴的组合化学很好地解决了这一难题,在同一个化学反应体系中加入不同结构单元,利用这些结构单元的排列组合,就能够系统地合成大量化合物。近年来,化学遗传学在细胞凋亡研究领域得到了广泛的应用:美国哈佛大学医学院袁钧瑛教授带领课题组进行了“用小分子研究细胞死亡过程中的信号传导:从Bcl-2到程序性坏死”的研究;美国密执安大学癌症中心王少萌教授开展了“合理设计小分子拮抗剂来调控关键性细胞坏死和蛋白质-蛋白质间的相互作用”的研究;另外,美国国立癌症研究所(NCI)早在1997年启动了一项新计划,将化学遗传学应用到癌症治疗研究中,即利用细胞渗透性的小分子化合物触发肿瘤细胞死亡。这充分说明化学遗传学方法为细胞凋亡研究提供了一个可靠的平台,基于此平台,利用具有一定生物活性的小分子化合物作为研究手段来研究细胞凋亡过程中的信号传导,优势明显:小分子化合物易于进入细胞,易于引起细胞表型变化,其作用具有剂量依赖性,适用于多蛋白家族,不会引起细胞的适应性变化等,另外,这些小分子化合物还往往可以作为“先导化合物”,进而指导新药的开发研究。
     近几年来,本课题组一直在从事有机小分子化合物库的构建工作,目前,库中已包含了60余种有机锡小分子化合物。研究显示,某些有机锡化合物具有抗肿瘤活性,这已经在MCF-7(乳腺癌)、WiDr(结肠癌)、P388(小鼠白血病)等抗癌活性研究中得到证实。这些研究大都停留在生长抑制实验阶段,部分研究显示有机锡化合物可以阻滞肿瘤细胞周期,但对其抑制生长、诱导凋亡的分子机制仍然不清楚。因此,探讨有机锡小分子化合诱导肿瘤细胞凋亡分子机制具有重要意义。
     基于以上考量,本课题研究目的是:利用化学遗传学这一新兴技术平台,以非小细胞肺癌H460、A549、H1792和H226细胞为研究对象,对草酰腙缩乙醛酸三环己基锡酯(OGTCT)的体外抗肿瘤活性进行研究,进而探讨其诱导H460细胞凋亡的分子机制,为新型肺癌化疗药物的开发提供更加完善的理论依据。
     研究内容
     1.鉴定OGTCT对NSCLC细胞、耐药细胞H460/TaxR及人胚肺二倍体成纤维细胞WI38的生长抑制作用。
     2.探讨OGTCT对H460细胞的凋亡诱导作用。
     3.分析OGTCT对H460细胞周期分布及周期调控相关蛋白p53、p21、PCNA表达的影响。
     4.分析OGTCT诱导H460细胞凋亡过程中,凋亡相关调控因子的变化及重要凋亡通路的激活情况。
     研究方法
     1细胞生长抑制检测:
     1.1 MTT法检测细胞存活率,由此对OGTCT进行初步筛选;
     1.2选择目前临床上常用抗肿瘤药物紫杉醇(Paclitaxel)为对照药物,用MTT法检测其对肿瘤细胞和正常细胞的生长抑制情况,并与OGTCT做比较。
     2.细胞凋亡检测方法:
     2.1倒置相差显微镜观察细胞形态变化及凋亡小体;
     2.2 Hoechst 33258荧光染色,并结合荧光显微镜观察细胞核形态变化;
     2.3乳酸脱氢酶(LDH)试剂盒检测细胞是否出现坏死;
     2.4台盼蓝拒染法进一步检测细胞是否出现坏死;
     2.5用Nucleosome ELISA试剂盒检测细胞凋亡率。
     3.细胞周期及其相关调控蛋白表达变化的检测:
     3.1流式细胞技术检测OGTCT对细胞周期分布的影响;
     3.2酶联免疫吸附测定技术(ELISA)检测与细胞周期调控相关重要蛋白p53和p21的表达变化;
     3.3免疫荧光结合激光扫描共聚焦显微镜检测增殖细胞核抗原PCNA的表达及分布;
     3.4 Western blot检测p53蛋白的表达。
     4.荧光探针结合激光扫描共聚焦技术检测细胞中钙离子浓度变化。
     5.检测OGTCT对ICE家族蛋白酶成员激活情况,方法如下:
     5.1用ApoAlert caspase-3,-8比色检测试剂盒分析caspase-3,-8酶活性变化;
     5.2用ApoAlert caspase 9/6荧光检测试剂盒分析caspase-9/6酶活性变化;
     5.3用caspase抑制剂检测caspase-3,8,6,9对OGTCT诱导细胞凋亡的影响。
     6.免疫荧光结合激光扫描共聚焦显微镜检测抗凋亡蛋白Bcl-2的分布及表达。
     7.Western blot检测细胞色素C(Cyto-C)的表达变化。
     8.酶联免疫(ELISA)试剂盒检测Fas/FasL的表达变化。
     研究结果
     1.OGTCT抗肿瘤活性检测结果(MTT法检测细胞存活率)
     1.1 OGTCT对NSCLC细胞、耐药细胞及人胚肺成纤维细胞WI38存活率的影响:在48h内,OGTCT以剂量依赖的方式,显著降低了NSCLC细胞(A549、H1792、H226、H460)和耐药细胞H460/TaxR的存活率;而相同浓度与作用时间下,WI38细胞的存活率远远高于NSCLC细胞和H460/TaxR耐药细胞的存活率。
     1.2阳性药物对比检测结果:
     在48h内,紫杉醇以剂量依赖的方式,降低了NSCLC细胞、H460/TaxR细胞及WI38细胞的存活率。但与OGTCT相比,紫杉醇对WI38有显著生长抑制作用,而对耐药细胞H460/TaxR的生长抑制作用极不显著。
     结果表明:OGTCT与紫杉醇相比有2个明显优势,OGTCT对正常细胞WI38的毒性较小,而对耐药细胞H460/TaxR的生长抑制作用尤为明显。
     2.OGTCT诱导H460细胞凋亡的研究结果
     2.1倒置相差显微镜观察细胞形态变化:
     0.1%DMSO溶剂对照组与对照组相比,细胞形态无明显变化;0.56μM/L的OGTCT处理H460细胞48h后发现,胞体皱缩,胞浆内空泡明显,核固缩,折光性减弱,细胞膜出芽且有脱离现象,凋亡小体形成,细胞呈现出典型的凋亡形态学特征。
     2.2 H33258染色结合荧光显微镜检测细胞核片段化结果:
     DMSO溶剂对照组与对照组相比,细胞核形态无明显变化,均呈现均匀亮蓝色;0.56μM/L的OGTCT处理H460细胞48h后发现,细胞核固缩、染色质凝集且有明显边缘化、出现细胞核碎片,凋亡小体清晰可见,呈现典型的凋亡形态学特征。
     2.3 LDH活性检测结果:
     OGTCT 0.14、0.28μM/L处理H460细胞48h,与对照组细胞相比,培养液中酶活性变化不显著(p>0.05,n=3);而OGTCT 0.56μM/L处理H460细胞48h,与对照组相比,培养液中酶活性显著升高(p<0.01,n=3)。
     2.4台盼蓝拒染实验检测表明:OGTCT 0.14和0.28μM/L处理H460细胞48h,细胞坏死率极低;而OGTCT0.56μM/L处理H460细胞48h,细胞坏死率显著增加(p<0.01,n=3)。
     2.5 Nucleosome ELISA检测发现:
     用0.14、0.28、0.56μM/L的OGTCT分别处理H460细胞6h、12h、24h、48h,与对照组细胞相比,OGTCT可有效诱导H460细胞凋亡,并呈明显的剂量时间依赖性。
     3.OGTCT对H460细胞周期的影响及相关分子机制研究结果
     3.1 OGTCT对H460细胞周期分布的影响
     分析细胞DNA变化发现,OGTCT作用24-48 h后可使H460细胞周期阻滞在G_0/G_1期,不能进入S期,并呈时间依赖性,但对M期的作用不明显。
     3.2检测p53/p21蛋白表达水平
     ●p53、p21 ELISA检测,发现:
     OGTCT可使H460细胞的p53和p21蛋白表达升高,随着作用时间的延长,表达水平显著升高,在24h时表达水平最高,此后表达水平逐步降低。
     ●Western Blot检测发现:OGTCT可使H460细胞中p53的表达显著升高(p<0.01,n=3)。
     3.3免疫荧光结合激光共聚焦显微技术检测PCNA蛋白表达及分布:
     0.56μM/L的OGTCT作用于H460细胞48h,与对照组相比,可使PCNA的表达显著降低(p<0.05,n=3)。
     4.OGTCT诱导H460细胞凋亡的相关分子机制研究结果
     4.1免疫荧光探针结合激光共聚焦显微技术检测H460细胞中钙离子变化及分布,发现:OGTCT 0.56μM/L处理48h后,可使H460细胞内的钙离子浓度显著增强(p<0.001,n=3)。
     4.2免疫细胞化学法结合激光共聚焦显微技术检测H460细胞中Bcl-2表达发现:用0.56μM/L的OGTCT处理H460细胞48h后,与对照组相比,Bcl-2表达水平显著降低(p<0.01,n=3)。
     4.3 Caspases活性检测结果:
     ●ApoAlert caspase-3比色检测试剂盒检测分析发现:0.56μM/L OGTCT处理H460细胞48h后,与对照组相比较,405 nm处光吸收值由0.246上升到0.982(p<0.001);
     ●ApoAlert caspase-8比色检测试剂盒检测分析发现:0.56μM/L OGTCT处理H460细胞48h后,与对照组相比较,405 nm处光吸收值由0.132上升到0.787(p<0.001);
     ●ApoAlert caspase-9/6荧光检测试剂盒检测分析发现:0.56μM/L OGTCT处理H460细胞48h后,与对照组相比较,caspase-9在460nm处的荧光强度由24.45上升到185.44,其相对活性上调了6.58倍(p<0.001);而caspase-6在460nm处的荧光强度由18.36上升到33.55,其相对活性上调了0.82倍(p<0.01);结果表明,在H460细胞凋亡过程中,OGTCT同时激活了caspase-3,-8,-9,6。
     ●Caspases抑制剂对OGTCT诱导H460细胞凋亡的影响
     加caspases抑制剂后,凋亡ELISA试剂盒检测细胞凋亡率,发现:与OGTCT处理的细胞相比,pan-caspase inhibitor(Z-VAD-FMK)完全阻滞了OGTCT诱导的凋亡,caspase-3 inhibitor(Z-DEVD-FMK)、caspase-8 inhibitor(Z-IETD-FMK)和caspase-9 inhibitor(Z-LEHD-FMK)显著逆转了OGTCT诱导的凋亡,而caspase-6 inhibitor(Z-VEID-FMK)显著抑制了OGTCT诱导的凋亡,但程度稍弱。
     4.4 Western blotting检测Cyto-C的表达
     Western bloting检测发现:0.56μM/L OGTCT处理H460细胞48h后,可使胞浆中Cyto-C的水平显著增加(p<0.01,n=3)。
     4.5 OGTCT处理的H460细胞中Fas/FasL的表达
     4.5.1 Fas/FasL ELISA assay检测结果
     ELISA assay检测发现,OGTCT可使H460细胞的Fas蛋白表达升高,随着作用时间的延长,表达水平显著升高,在24h时表达水平最高,此后表达水平有所降低;而mFasL与sFasL的表达水平未发生显著变化(p>0.05,n=3)。
     4.5.2 Fas抑制剂ZB4对OGTCT诱导H460细胞凋亡的影响
     用抗Fas抗体ZB4预先处理H460细胞一定时间后,再用0.56μM/L的OGTCT处理48h,MTT与nucleosome ELISA检测发现,ZB4显著逆转了OGTCT诱导的凋亡与增殖抑制。
     结论:
     1.OGTCT以浓度依赖的方式,显著降低NSCLC和H460/TaxR细胞的存活率。OGTCT与紫杉醇相比优势明显:对正常细胞WI38的毒性极小,且能有效克服肿瘤细胞的多药耐药性。
     2.OGTCT能有效诱导H460细胞凋亡。OGTCT可能通过上调p53和p21蛋白水平、降低PCNA表达的方式将细胞周期阻滞于G_0/G_1期、下调Bcl-2蛋白表达水平、导致钙离子和Cyto-C释放、激活Fas蛋白、激活caspase-8,-9,-3,-6而发挥其凋亡诱导作用。
     3.Fas信号通路和线粒体信号通路可能共同参与了OGTCT诱导的H460细胞凋亡过程。
BACKGROUND AND OBJECTIVE
     According to the statistics of WHO,lung cancer is the most dangerous cancer all over the world,which mortality tops the list of all kinds of tumor.And china has become a country that has the largest number of lung cancer patient.According to histological type,lung cancer can be divided two types:small cell lung cancer (SCLC) and non-small cell lung cancer(NSCLC).NSCLC accounts for more than 85%of lung cancer.Because NSCLC become not suitable for surgery after metastasis,and not sensitive to radiotherapy,therefore,it is particularly important for development and research of chemotherapeutic drugs.
     The classifications of frequently-used drugs for lung cancer chemotherapy are five categories as bellows:directly damage DNA drugs,inserted DNA template drugs,affecting nucleic acid synthesis drugs,repressing microtubule assembly drugs and impacting protein synthesis drugs.Although the above drugs can induce apoptosis of lung cancer cells,but strong toxicity side effect and easily leading to drug resistance cause frequently failure of chemotherapy.Therefore developments of drug which has minor toxicity,less side effect,ability to overcome multi-drug resistance,and able to start apoptosis signal transduction pathway,are the urgent problems to be settled.
     In this study,reasons that H460,A549,H1792,H226 and WI38 were selected as experimental cells to investigate mechanisms of growth-inhibition in NSCLC cells are as follows:1) These four kinds of NSCLC cells were derived from adenocarcinoma,large cell carcinoma,squamous cell carcinoma,covering three subtypes of NSCLC;2) These four kinds of NSCLC cells can be used seperately in detection on the cellular level in the field of lung cancer study as model cell;3) To date,investigation of mechanism of small molecular organotin-induced apoptosis in NSCLC cells remains relative few.4) WI38 is a diploid fibroblast cell line which derived from human embryonic lung tissue and frequently used as control cell in the study of lung cancer.Thus the above cell lines are available for screening small molecular compound,and make in-depth study of its mechanism aim to provide a theoretical basis for development of chemotherapeutic drug of NSCLC.
     Chemical genetics is a new means that utilizing chemical tools for investigating biological system,and it could promote the developments of new drugs in the following two important aspects:on the one hand,identifying gene or protein which plays an important role in formation of a disease,so as to provide targets for the new drug screening;The other hand is finding small molecular compound which act with a gene or protein,so as to provide lead compounds for developing new drugs.One of the key of chemical genetics researches is to have a large number of compounds with different structures for screening.The emerging combined chemistry is the core technology accessing to numerous small molecular compounds.The principle of the combined chemistry is to add different structural units into the same chemical reaction system,and to synthesize systematically numerous compounds utilizing permutations and combinations of these structural units.
     Over the years,the chemical genetics has been widely applied in the field of cell apoptosis research:Professor Yuan Junying from Harvard Medical School lead the research team carrying out the investigation named as "using small molecules to study on the signal transduction in the process of cell death:from Bcl-2 to the programmed necrosis";Professor Wang Shaomeng from the cancer research center of U.S.Michigan University launched study named as "rationally design small molecular antagonist to regulate key cell necrosis and protein-protein interactions"; Additionally,the U.S.National Cancer Institute(NCI) launched a new plan in 1997, the application chemical genetics to research of cancer treatment,namely the use of cell permeable small molecular compound to trigger death of tumor cell.The above examples fully prove that chemical genetics method provides a reliable platform for research of cell apoptosis.In this platform,utilizing small molecular compound with a certain biological activity as a tool to investigate signal transduction in the process of cell apoptosis has many advantages:small molecular compounds to enter cells easily,easy to cause changes in the cellular phenotype,its role in a dose-dependent relationship,applicable to multi-proteins family as well as not cause adaptive changes in cells,etc.In addition,these small molecular compounds often serve as "lead compounds" to further drug development and research.
     In recent years,our team has been engaged in construction the "library" of small organic compounds,at present,the library already contains more than 60 species of small molecular organotin.Studies have shown that some organotin have anti-tumor activities which are already confirmed in MCF-7,WiDr and P388 cells. Most of these studies still remained in the experimental phase of growth inhibition. Some studies indicated that organotin could block cell cycle of tumor cell.However, the molecular mechanisms of inhibiting growth and inducing apoptosis remain unclear.So investigation of molecular mechanism of apoptosis induced by small molecular organotin is of great significance.
     Based on the above considerations,aims of this research are as follows: applying chemical genetics methods,to investigate In vitro anti-tumor activity of OGTCT in H460,A549,H1792,H226 cells,and then,to explore molecular mechanisms of OGTCT-induced apoptosis in H460 cells.This study can also provide a more complete theoretical basis for the development of new chemotherapeutic agents for the treatment of lung cancer.
     STUDY CONTENTS
     1 Identification growth inhibition to NSCLC,H460/TaxR and WI38 of OGTCT.
     2 Exploration of apoptosis induction in H460 cells by OGTCT.
     3 Analysis of the influences of OGTCT on cycle distribution and p53,p21,PCNA protein levels in H460 cells.
     4 To analyze changes of apoptosis-related factors and the important apoptosis pathways activated by OGTCT in H460 cells.
     METHODS
     1.Cell growth inhibition Detection:
     1.1 MTT assay for cell viability,by which OGTCT was screened initially;
     1.2 Select the current clinically used anticancer drug(Paclitaxel) as control drug, using MTT assay for growth inhibition to tumor cells and normal cells,and make comparison to OGTCT.
     2.Methods for apoptosis identification:
     2.1 Observation of cell morphological changes and apoptosis bodies by Phase Contrast Microscope;
     2.2 Observation of nuclear morphological changes by Hoechst33258 staining combined with fluorescence microscopy;
     2.3 LDH(Lactate dehydrogenase) assay to determine cell toxicity induced by OGTCT;
     2.4 Trypan blue dye exclusion assay to confirm whether the cells treated by OGTCT undergo necrosis;
     2.5 Detection of apoptosis rates by Nucleosome ELISA assay kits.
     3.Detection of changes in cell cycle distribution and related regulatory proteins expression:
     3.1 Analysis of the changes in cell cycle distribution by Flow cytometry;
     3.2 ELISA methods for analysis of expression changes in p53/p21 proteins associated to regulation of cell cycle;
     3.3 Detection of expression and distribution of PCNA by immuno-fluorescence combined with Laser Scanning Confocal Microscopy(LSCM);
     3.4 Confirmation of the changes in p53 expression by Western blot.
     4.Detection changes of Ca~(2+) concentration in H460 cells by immuno-fluorescence probe combined with LSCM.
     5.Methods for determining whether caspases are activated by OGTCT:
     5.1 Analyzing caspase-3,-8 activities by ApoAlert caspase-3,-8 colorimetric assay kits;
     5.2 Analyzing caspase-9/6 activity by ApoAlert caspase-9/6 fluoremetric assay kits;
     5.3 Identification the influences of caspase-3,-8,-6,-9 on apoptosis induced by OGTCT with caspase inhibitors.
     6.To analyze distribution and expression of anti-apoptotic protein Bcl-2 by Immuno-fluorescence combined with LSCM.
     7.Detection expression changes of Cytochrome C(Cyto-C) by Western blot.
     8.Detection changes of expression in Fas/FasL proteins by ELISA kits.
     RESULTS
     1.Detected results of anti-tumor activity of OGTCT(MTT assay for cell viability)
     1.1 Influences of OGTCT on viability of NSCLC,H460/TaxR and WI38 cell:
     Within 48h,OGTCT reduced significantly viabilities of NSCLC cells (H460,A549,H1792,H226) and drug-resistant cell H460/TaxR in a dose-dependent manner;but at the same concentration and time,viabilities of WI38 cell were much higher than that of NSCLC and H460/TaxR cells.
     1.2 Results of positive drug comparison test:
     Within 48h,paclitaxel reduced viabilities of NSCLC,H460/TaxR and WI38 cells in a dose-dependent manner.But compared to OGTCT,paclitaxel inhibited obviously growth of WI38 cells,and its growth inhibition to H460/TaxR was not extremely significant.
     The results indicated:OGTCT had two advantages compared with paclitaxel, OGTCT had a minor toxicity to normal cell WI38,and its growth inhibition to drug-resistant cell H460/TaxR was particularly obvious.
     2.Results of apoptosis induced by OGTCT in H460 cells
     2.1 Cell morphological changes observed under Phase Contrast Microscope: Treated with 0.1%DMSO,cell morphology has no obvious change;Exposed to 0.56μM/L OGTCT for 48h,morphological changes are as follows:cell body shrinkage,obvious cytoplasmic vacuolization,karyopyknosis,refractive index decreased,membrane blebbing,formed apoptotic bodies,and cells showed typical morphological characteristics of apoptosis.
     2.2 Results of detection cell nuclear fragmentation by Hoechst33258 staining combined with Fluorescence Microscopy:
     There had no obvious change in cell nuclear morphology between DMSO group and control group,and cell nuclei showed a uniform light blue;When H460 cells were treated with 0.56μM/L OGTCT for 48h,typical apoptotic features such as cell shrinkage,chromatin condensation and marginalization,emerging nuclei fragmentation,apoptotic bodies clearly visible occurred.
     2.3 Detected results of activity of LDH:
     When H460 cells were respectively incubated in 0.14,0.28μM/L OGTCT for 48h,compared with the control group,there was no significant change of activity of LDH in culture medium(p>0.05,n=3);While LDH activity in culture medium containing 0.56μM/L OGTCT was significantly enhanced(p<0.01,n=3).
     2.4 Results of Trypan blue dye exclusion assay:
     Cell necrosis rate of 0.14 and 0.28μM/L test groups were extremely low, compared with the control group;While the necrosis rate of 0.56μM/L test group increased obviously(p<0.01,n=3).
     2.5 Results of nucleosome ELISA assay:
     When H460 cells were respectively treated with 0.14,0.28,0.56μM/L OGTCT for 6,12,24 and 48h,compared with the control group,OGTCT induced effectively apoptosis of H460 cells in dose- and time-dependent manners.
     3.Influence of OGTCT on H460 cell cycle and assay of related proteins
     3.1 Influence of OGTCT on H460 cell cycle distribution
     After changes of DNA were analyzed,we found that cell cycles of H460 cells witch treated by OGTCT for 24-48h were blocked at G_0/G_1 phase in a time-dependent manner.Furthermore,H460 cells could not enter S phase. However,OGTCT has a minor effect on M phase.
     3.2 Distribution and expression of p53/p21 protein
     ·p53/p21 ELISA assay
     The levels of p53 and p21 proteins were up-regulated by OGTCT and increased significantly with the extension of time,reached the maximum at 24h,since then, the levels of p53 and p21 gradually reduced.
     ·Western blot assay confirmed that OGTCT significantly up-regulated the expression of p53 protein(p<0.01,n=3).
     3.3 Immuno-fluorescence combined with LSCM detection for expression and distribution of PCNA protein in H460 cells:
     Expression level of PCNA in H460 cells was significantly reduced after treated with 0.56μM/L OGTCT for 48h(p<0.05,n=3).
     4.Research findings of OGTCT-induced apoptosis in H460 cells and its related molecular mechanisms
     4.1 Detection changes and distribution of Ca~(2+) in H460 cells by immuno-fluorescence probe combined with LSCM:
     Calcium concentration was significantly enhanced in H460 cells treated with 0.56μM/L OGTCT for 48h(p<0.001,n=3).
     4.2 To detect expressions of protein Bcl-2 in H460 cells by immuno-fluorescence assay combined with LSCM:
     When cells were treated with OGTCT 0.56μM/L for 48h,in comparison to control group,the expression of protein Bcl-2 was down-regulated significantly(p<0.01,n=3).
     4.3 Assay results of activities of caspases:
     ·ApoAlert caspase-3 colorimetric assay showed a higher light absorption at 405 nm compared to control group(0.982 vs 0.246,p<0.001) by OGTCT 0.56μM/L in H460 cells at 48 h.
     ·ApoAlert caspase-8 colorimetric assay showed a higher light absorption at 405 nm compared to control group(0.787 vs 0.132,p<0.001) by OGTCT 0.56μM/L in H460 cells at 48 h.
     ·ApoAlert caspase-9/6 fluoremetric assay showed that fluorescence intensity of caspase-9 at 460nm was dramatically up-regulated from 24.45 to 185.44 by OGTCT 0.56μM/L(p<0.001),in other words,its activity increased by 6.58 folds. And activity of capase-6 increased by 0.82 fold with the fluorescence intensity enhanced from 18.36 to 33.55(p<0.01).
     ·Detection influences of caspases inhibitors on apoptosis induced by OGTCT: Compared to 0.56μM/L OGTCT treatment group,pan-caspase inhibitor (Z-VAD-FMK) completely blocked the apoptosis induced by OGTCT,caspase-3 inhibitor(Z-DEVD-FMK),caspase-8 inhibitor(Z-IETD-FMK) and caspase-9 inhibitor(Z-LEHD-FMK) significantly reversed the OGTCT-induced apoptosis in H460 cells.And caspase-6 inhibitor(Z-VEID-FMK) reversed partially the OGTCT-induced apoptosis.
     4.4 Detection expression of Cytochrome C(Cyto-C) by Western blot assay Compared with the control group,the level of Cyto-C was significantly up-regulated by 0.56μM/L OGTCT at 48h in cytoplasm of H460 cells (p<0.01,n=3).
     4.5 ELISA assay detected expressions of Fas/FasL in H460 cells treated with OGTCT:
     4.5.1 Results of Fas/FasL ELISA assay
     The expression of Fas protein was up-regulated by OGTCT and significantly increased with the extension of time,reached the maximum at 24h,since then,the level of Fas reduced to some extent.However,the expressions of mFasL and sFasL did not change significantly(p>0.05,n=3).
     4.5.2 Influences of Fas inhibitor(anti-Fas Ab,ZB4) on apoptosis induced by OGTCT in H460 cells
     Cells were treated with 0.56μM/L OGTCT after ZB4 pre-treatment for 48h, MTT and ELISA assay indicated:apoptosis induced by OGTCT and proliferation inhibition were reversed by ZB4.
     CONCLUSIONS
     1 OGTCT reduced significantly viabilities of NSCLC cells and drug-resistant cell H460/TaxR in a dose-dependent manner;OGTCT had two advantages compared with paclitaxel:OGTCT had a minor toxicity to normal cell WI38,and it could overcome the multi drug-resistance of tumor cells.
     2 OGTCT could effectively induce apoptosis in H460 cells.It may well exert it's function of apoptosis induction through the following factors:up-regulation of levels of p53 and p21 proteins,reducing expression of PCNA,blocking cell cycle at G_0/G_1 phase,down-regulation expression level of Bcl-2,induction release of Ca~(2+) and Cyto-C into cytosol,activations of capase-3,-8,-9,-6.
     3 Fas signaling pathway and mitochondrial signaling pathway might jointly participate in the process of apoptosis induced by OGTCT in H460 cells.
引文
1. Cancer Research, UK. Cancerstats monograph 2004—Cancer incidence, survival and mortality in the UK and EU. London: Cancer Research UK. 2004; 88 pp.
    
    2. Yongtang Jin,Yingchun Xu, Ming Xu,and Saoli Xue. Increased risk of cancer among relatives of patients with lung cancer in China. BMC Cancer. 2005; 5:146.
    
    3. Suryanto, A.; Herlambang, K.; Rachmatullah, P. Comparison of Tumor Density by CT Scan Based on Histologic Type in Lung Cancer Patients. Acta Med Indones. 2005; 37: 195-198.
    
    4. Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, et al. Cancer statistics. CA Cancer J Clin. 2005;55:10-30.
    
    5. Yan Lu,William Lemon,Peng-Yuan Liu, et al. A Gene Expression Signature Predicts Survival of Patients with Stage I Non-Small Cell Lung Cancer. PLoS Med. 2006 December; 3(12): 467.
    
    6. Bach PB, Kelley MJ, Tate RC, McCrory DC. Screening for lung cancer: A review of the current literature. Chest. 2003; 123:72-82.
    
    7. Mountain CF, Dresler CM. Regional lymph node classification for lung cancer staging. Chest. 1997; 111:1718-1723.
    
    8. Johnson DH, Fehrenbacher L, Novotny WF, et al. Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol. 2004; (22):2184-2191.
    
    9. Kuenen BC, Rosen L, Smit EF, et al. Dose-finding and pharmacokinetic study of cisplatin, gemcitabine, and SU5416 in patients with solid tumors. J Clin Oncol.2002; (20): 1657-1667.
    
    10. Abstracts for the Eleventh Annual Meeting of the Society for Neuro Oncology.Neuro-oncol. 2006 October; 8(4): 391-500.
    
    11. Yoon SS, Ann KS, Kim SH, Shim YM, Kim J. In vitro establishment of cis-diammine-dichloroplatinum(H) resistant lung cancer cell line and modulation of apoptotic gene expression as a mechanism of resistant phenotype. Lung Cancer. 2001 Aug-Sep;33(2-3):221-8.
    
    12. McMurtrey AE, Graves RJ, Hooley J, Brophy G, Lewis Phillips GD. A novel 96-well scintillation proximity assay for the measurement of apoptosis. Cytotechnology. 1999 Nov;31(3):271-82.
    
    13. Broquet P, Rodriguez-Lafrasse C, Alphonse G. Comparison of methods used to study cell death in an adherent tumoral cell line with moderate clonogenic radiosensitivity. Neoplasma. 2001;48(5):362-9.
    
    14. 廖子君 南克俊,韩军等.现代肿瘤治疗药物学,2001.
    
    15. Vinella D. & D'Ari R. Overview of controls in the Escherichia coli cell cycle.Bioessays. 1995; 17: 527-536.
    
    16. Norbury C, Nurse P. Animal cell cycles and their control. Ann Rev Biochem 1992; 61:441-470.
    
    17. Tyson, J. J., K. Chen, and B. Novak. Network dynamics and cell physiology. Nat.Rev. Mol. Cell Biol. 2001;2:908-916.
    
    18. Grana X.Reddy EP.Cell cycle control in mammalian cell: role of cyclin, cyclin depent kinases(CDKs), growth suppressor gene and cyclin depent kinaseinhibitors. Oncogene.1995; 11(2):211.
    
    19. Cazales M, Schmitt E, Montembault E, Dozier C, Prigent C, Ducommun B.CDC25B phosphorylation by Aurora-A occurs at the G2/M transition and is inhibited by DNA damage. Cell Cycle. 2005; 4:1233-1238.
    
    20. Novak, B., and J. J. Tyson. Quantitative analysis of a molecular model of mitotic control in fission yeast. J. Theor. Biol. 1995; 173:283-305.
    
    21. Novak, B., A. Csikasz-Nagy, B. Gyorffy, K. Nasmyth, and J. J. Tyson. Model scenarios for evolution of the eukaryotic cell cycle. Philos. Trans. R. Soc. Lond.B Biol. Sci.1998; 353:2063-2076.
    
    22. Sha, W., J. Moore, K. Chen, A. D. Lassaletta, C. S. Yi, J. J. Tyson, and J. C. Sible.Hysteresis drives cell-cycle transitions in Xenopus laevis egg extracts. Proc. Natl.Acad. Sci. USA. 2003; 100:975-980.
    
    23. Arooz T, Yam CH , Siu W Y, et al. On the concentrations of cyclins and cyclin-dependent kinases in extracts of cultured human cells. Biochemistry. 2000;39(31):9494.
    
    24. Haidar MA, Cao XB, Manshouri T, Chan LL, Glassman A, Kantarjian HM,Keating MJ, Beran MS, Albitar M. p16INK4A and p15INK4B gene deletions in primary leukemias. Blood. 1995;86: 311-315.
    
    25. Hirai H, Roussel MF, Kato JY, Ashmun RA, Sherr CJ. Novel INK4 proteins, p19 and p18, are specific inhibitors of the cyclin D-dependent kinases CDK4 and CDK6. Mol Cell Biol 1995; 15:2672-2681.
    
    26. Ortega S, Malumbres M, Barbacid M. Cyclin D-dependent kinases, INK4 inhibitors and cancer. Biochim Biophys Acta. 2002; 1602:73-87.
    
    27. A.L. Gartel and A.L. Tyner. Transcriptional regulation of the p21(WAF1/CIP1) gene. Cell Res. 1999; 246: 280-289.
    
    28. Xiong Y, Hannon GJ, Zhang H,et al. P21 is a universal inhibitor of cyclin kinases.Nature. 1993; 366:701.
    
    29. Fero ML, Randel E, Gurley KE, Roberts JM, Kemp CJ. The murine gene p27 is haplo-insufficient for tumor suppression. Nature 1998;396:177-180.
    
    30. Lee MH, Reynisdottir I, Massague J. Cloning of p57KIP2, a cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution. Genes Dev 1995;9:639-49.
    
    31. Harper JW, Elledge SJ, Keyomarsi K, Dynlacht B, Tsai LH, Zhang P. Inhibition of cyclin-dependent kinases by p21. Mol Biol Cell. 1995;6:387-400.
    
    32. Matsuoka S, Edwards MC, Bai C, Parker S, Zhang P, Baldini A, Harper JW,Elledge SJ. p57KIP2, a structurally distinct member of the p21CIPl Cdk inhibitor family, is a candidate tumor suppressor gene. Genes Dev. 1995;9:650-662.
    
    33. Toyoshima H, Hunter T. p27, a novel inhibitor of G1 cyclin-CDK protein kinase activity, is related to p21. Cell. 1994; 78:67-74.
    
    34. Linda H. Malkas. A cancer-associated PCNA expressed in breast cancer has implications as a potential biomarker. PNAS. 2006; 12(9): 19472-77.
    
    35. Amel Dib,Timothy R Peterson, Laura Raducha-Grace, et al. Paradoxical expression of INK4c in proliferative multiple myeloma tumors: bi-allelic deletion vs increased expression. Cell Div. 2006; 1: 23.
    
    36. Myers, T.K., S.E. Andreuzza, and D.S. Franklin. pl8(INK4c) and p27(KIPl) are required for cell cycle arrest of differentiated myotubes. Exp. Cell Res. 2004;300:365-378.
    
    37. Hartwell LH, Weinert TA. Checkpoints: controls that ensure the order of cell cycle events. Science. 1989;246:629-634.
    
    38. Murray AW. Coordinating cell cycle events. Cold Spring Harbor Symposia on Quantitative Biology. 1991 ;56:399-408.
    
    39. Elledge SJ. Cell cycle checkpoints: preventing an identity crisis. Science. 1996.
    
    40. Pichierri P, Rosselli F. The DNA crosslink induced S-phase checkpoint depends on ATR-CHK1 and ATR-NBS1-FANCD2 pathways. EMBO J. 2004;23:1178-1187.
    
    41. Liu Q, Guntuku S, Cui XS, Matsuoka S, Cortez D, Tamai K, Luo G,Carattini-Rivera S, DeMayo F, Bradley A, et al. Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev. 2000; 14(12): 1448-1459.
    
    42. Xiaoling Zhang,June Li. The ATM/p53/p21 Pathway Influences Cell Fate Decision between Apoptosis and Senescence in Reoxygenated Hematopoietic Progenitor Cells.Biophysical Journal.2005;5(280):104-116.
    
    43. Zou Xiang yang, LI Lian hong. cell cycle control and tumor. Int J Genet. 2006 Feb;29:70-73.
    
    44. Michael D, Oren M. The p53 and mdm2 families in cancer. Curr Opin Genet Dev.2002;12:53-59.
    
    45. Vousden KH, Lu X. Live or let die: the cell's response to p53. Nat Rev Cancer.2002; 2:594-604.
    
    46. Kerr, J.F.; Wyllie, A.H.; Currie, A.R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26: 239-257.
    
    47. Kerr JF. History of the events leading to the formulation of the apoptosis concept.Toxicology. 2002; (181-182):471-474.
    48. Savill J, Fadok V. Corpse clearance defines the meaning of cell death. Nature.2000; 407:784-788.
    
    49. Kurosaka K, Takahashi M, Watanabe N, Kobayashi Y. Silent cleanup of very early apoptotic cells by macrophages. J Immunol. 2003; 171:4672-4679.
    
    50. Horvitz HR. Genetic control of programmed cell death in the nematode Caenorhabditis elegans. Cancer Res. 1999; 59:1701-1706.
    
    51. Hacker G The morphology of apoptosis. Cell Tissue Res. 2000; 301:5-17.
    
    52. Trump BF, Berezesky IK, Chang SH, Phelps PC. The pathways of cell death:oncosis, apoptosis, and necrosis. Toxicol Pathol. 1997; 25:82-8.
    
    53. Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol. 1995; 146:3-15.
    
    54. Debnath J, Baehrecke EH, Kroemer G. Does autophagy contribute to cell death?Autophagy. 2005; 1:66-74.
    
    55. Hengartner MO. The biochemistry of apoptosis. Nature. 2000; 407:770-776.
    
    56. Allen PD, Bustin SA, Macey MG, et al. Programmed cell death (apoptosis) in immunity and haematological neoplasia. Br J Biomed Sci 1993; 50:135-49.
    
    57. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science 1995; 267:1456-62.
    
    58. Yamada T, Ohyama H. Radiation-induced interphase death of rat thymocytes is internally programmed (apoptosis). Int J Radiat Biol Relat Stud Phys Chem Med 1988; 53:65-75.
    
    59. Schwall RH, Robbins K, Jardieu P, et al. Activin induces cell death in hepatocytes in vivo and in vitro. Hepatology 1993; 18:347-356.
    
    60. Sachs L, Lotem J. Control of programmed cell death in normal and leukemic cells: new implications for therapy. Blood 1993; 82:15-21.
    
    61. Adams JM, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science 1998; 281:1322-6.
    
    62. Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science. 2001; 292:727-730.
    63. Rai NK, Tripathi K, Sharma D, Shukla VK. Apoptosis: a basic physiologic process in wound healing.Int J Low Extrem Wounds. 2005; 4:138-44.
    
    64. Danial NN, Korsmeyer SJ. Cell death: critical control points. Cell. 2004;116:205-219.
    
    65. Igney FH, Krammer PH. Death and anti-death: tumour resistance to apoptosis.Nat Rev Cancer. 2002; 2:277-88.
    
    66. Oda E, Ohki R, Murasawa H, et al. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science. 2000;288:1053-1058.
    
    67. Yu J, Zhang L, Hwang PM, Kinzler KW, Vogelstein B. PUMA induces the rapid apoptosis of colorectal cancer cells. Mol Cell. 2001; 7:673-682.
    
    68. Walker JA, Quirke P. Viewing apoptosis through a "TUNEL". J Pathol. 2001;195:275-276.
    
    69. Orrenius S., Zhivotovsky B., Nicotera P. Regulation of cell death: -The calcium-apoptosis link. Nat. Rev. Mol. Cell Biol. 2003; 7:552-565.
    
    70. Morishima N, Nakanishi K, Takenouchi H, Shibata T, Yasuhiko Y. An endoplasmic reticulum stress-specific caspase cascade in apoptosis: cytochrome c-independent activation of caspase-9 by caspase-12. J Biol Chem. 2002;277:34287-34294.
    
    71. Rao RV, Hermel E, Castro-Obregon S, del Rio G, Ellerby LM, Ellerby HM,Bredesen DE. Coupling endoplasmic reticulum stress to the cell death program:mechanism of caspase activation. J Biol Chem. 2001;276: 33869-33874.
    
    72. Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature. 2000; 403:98-103.
    
    73. Philip Nickson, Ambrus Toth, and Peter Erhardt. PUMA is critical for neonatal cardiomyocyte apoptosis induced by endoplasmic reticulum stress. Cardiovasc Res. 2007 January 1; 73(1): 48-56.
    
    74. Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies:integrating mammalian biology. Cell. 2001; 104:487-501.
    75. Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science.1998; 281:1305-8.
    
    76. Hsu H, Xiong J, Goeddel DV. The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell. 1995; 81:495-504.
    
    77. Wajant H. The Fas signaling pathway: more than a paradigm. Science. 2002;296:1635-6.
    
    78. Aggarwal BB. Signalling pathways of the TNF superfamily: A double-edged sword. Nat Rev Immunol. 2003; 3:745-756.
    
    79. Ware CF. Network communications: Lymphotoxins, LIGHT, and TNF. Annu Rev Immunol. 2005; 23:787-819.
    
    80. Kischkel FC, Hellbardt S, Behrmann I, Germer M, Pawlita M, Krammer PH,Peter ME. Cytotoxicity-dependent APO-1 (Fas/CD95)- associated proteins form a death-inducing signaling complex (DISC) with the receptor. Embo J. 1995;14:5579-88.
    
    81. Kim PK, Dutra AS, Chandrasekharappa SC, Puck JM. Genomic structure and mapping of human FADD, an intracellular mediator of lymphocyte apoptosis. J Immunol. 1996; 157:5461-5466.
    
    82. Weber CH, Vincenz C. The death domain superfamily: a tale of two interfaces? Trends Biochem Sci. 2001; 26:475-481.
    
    83. Eberstadt M, Huang B, Chen Z, Meadows RP, Ng SC, Zheng L, Lenardo MJ,Fesik SW. NMR structure and mutagenesis of the FADD (Mortl) death-effector domain. Nature. 1998; 392:941-945.
    
    84. Nagata, S. Fas ligand-induced apoptosis. Annu. Rev. Genet. 1999; 33:29-55.
    
    85. Slee EA, Adrain C, Martin SJ. Executioner caspase-3, -6, and -7 perform distinct,non-redundant roles during the demolition phase of apoptosis. J Biol Chem. 2001;76:7320-7326.
    
    86. Narula J, Pandey P, Arbustini E, Haider N, Narula N, Kolodgie FD, Dal BB,Semigran MJ, Bielsa-Masdeu A, Dec GW, Israels S, Ballester M, Virmani R,Saxena S, Kharbanda S. Apoptosis in heart failure: release of cytochrome c from mitochondria and activation of caspase-3 in human cardiomyopathy. Proc Natl Acad Sci USA. 1999; 96:8144-8149.
    
    87. Haider N, Narula N, Narula J. Apoptosis in heart failure represents programmed cell survival, not death, of cardiomyocytes and likelihood of reverse remodeling.J Card Fail. 2002; 8(Suppl 6):S512-S517.
    
    88. Wang S, Miura M, Jung YK, Zhu H, Li E, Yuan J. Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell. 1998;92:501-509.
    
    89. Hatai, T., A. Matsuzawa, S. Inoshita, Y. Mochida, T. Kuroda, K. Sakamaki, K.Kuida, S. Yonehara, H. Ichijo, and K. Takeda. Execution of apoptosis signal-regulating kinase1 (ASK1)-induced apoptosis by the mitochondria-dependent caspase activation. J. Biol. Chem. 2002;275:26576-26581.
    
    90. Kanamoto, T., M. Mota, K. Takeda, L. L. Rubin, K. Miyazono, H. Ichijo, and C.E. Bazenet. Role of apoptosis signal-regulating kinase in regulation of the c-Jun N-terminal kinase pathway and apoptosis in sympathetic neurons. Mol. Cell. Biol.2000; 20:196-204.
    
    91. Lei, K., A. Nimnual, W.-X. Zong, N. J. Kennedy, R. A. Flavell, C. B. Thompson,D. Bar-Sagi, and R. J. Davis. The Bax subfamily of Bcl2-related proteins is essential for apoptotic signal transduction by c-Jun NH2-terminal kinase. Mol.Cell. Biol. 2002; 22:4929-4942.
    
    92. Punya Shrivastava, Cristen Pantano, Richard Watkin et al. Reactive Nitrogen Species-Induced Cell Death Requires Fas-Dependent Activation of c-Jun N-Terminal Kinase. Mol Cell Biol. 2004 August; 24(15): 6763-6772.
    
    93. Ichijo, H., E. Nishida, K. Irie, P. ten Dijke, M. Saitoh, T. Moriguchi, M. Takagi,K. Matsumoto, K. Miyazono, and Y. Gotoh. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways.Science. 1997; 275:90-94.
    
    94. Tobiume, K., A. Matsuzawa, T. Takahashi, H. Nishitoh, K. Morita, K. Takeda, O.Minowa, K. Miyazono, T. Noda, and H. Ichijo. ASK1 is required for sustained activations of JNK and p38 MAP kinases and apoptosis. EMBO Rep. 2001; 2:222-228.
    
    95. Green DR. Apoptosis. Death deceiver. Nature. 1998; 396:629-30.
    
    96. T Otsuki, A Tomokuni, H Sakaguchi, T Aikoh, et al. Over-expression of the decoy receptor 3 (DcR3) gene in peripheral blood mononuclear cells (PBMC) derived from silicosis patients. Clin Exp Immunol. 2000 February; 119(2):323-327.
    
    97. Li, Y., H. Kanki, T. Hachiya, T. Ohyama, S. Irie, G Tang, J. Mukai, and T. Sato.Negative regulation of Fas-mediated apoptosis by FAP-1 in human cancer cells.Int. J. Cancer. 1997; 87:8539-8545.
    
    98. Vladimir N. Ivanov, Pablo Lopez Bergami, Gabriel Maulit, et al. FAP-1 Association with Fas (Apo-1) Inhibits Fas Expression on the Cell Surface. Mol Cell Biol. 2003 May; 23(10): 3623-3635.
    
    99. Muller M., Strand S., Hug H., Heinemann E. M., Walczak H., Hofmann W. J.,Stremmel W., Krammer P. H., Galle P. R. Drug-induced apoptosis in hepatoma cells is mediated by the CD95 (APO-I/Fas) receptor/ligand system and involves activation of wild-type p53. J. Clin. Investig. 1997; 99: 403-413.
    
    100. Fulda S., Sieverts H., Friesen C, Herr I., Debatin K. M. The CD95 (APO-1/Fas) system mediates drug-induced apoptosis in neuroblastoma cells. Cancer Res.1997; 57: 3823-3829.
    
    101. Fulda S., Scaffidi C, Pietsch T., Krammer P. H, Peter M. E., Debatin K. M.Activation of the CD95 (APO-1/Fas) pathway in drug- and gamma-irradiation-induced apoptosis of brain tumor cells. Cell Death Differ.1998; 5: 884-893,
    
    102. Kuo PL, Hsu YL, Chang CH, Lin CC. The mechanism of ellipticine-induced apoptosis and cell cycle arrest in human breast MCF-7 cancer cells. Cancer Lett.2005 Jun;8;223(2):293-301.
    
    103.Ioachim HL, Decuseara R, Giancotti F, Dorsett BH. FAS and FAS-L expression by tumor cells and lymphocytes in breast carcinomas and their lymph node metastases. Pathol Res Pract. 2005; 200(11-12):743-51.
    
    104. Sodeman T, Bronk SF, Roberts PJ, Miyoshi H, Gores GJ. Bile salts mediate hepatocyte apoptosis by increasing cell surface trafficking of Fas. Am J Physiol Gastrointest Liver Physiol 2000; 278: G992-9.
    105. Bennett M, Macdonald K, Chan SW, Luzio JP, Simari R, Weissberg P. Cell surface trafficking of Fas: a rapid mechanism of p53-mediated apoptosis. Science 1998; 282: 290-3.
    106.Pfeffer K. Biological functions of tumor necrosis factor cytokines and their receptors. Cytokine Growth Factor Rev. 2003; 14:185-191.
    107.Maida Wong, David Ziring, Yael Korin, et al. TNFa blockade in human diseases:Mechanisms and future directions. Clin Immunol. 2008 February; 126(2):121-136.
    
    108. Smith, C.A., T. Farrah, and R.G Goodwin. The TNF receptor superfamily of cellular and viral proteins: activation, costimulation and death. Cell. 1994;76:959-962.
    
    109.Beg, A.A., and D. Baltimore. An essential role for NF-kB in preventing TNFa-induced cell death. Science. 1996; 274:782-784.
    
    110.Van Antwerp, D.J., S.J. Martin, T. Kafri, D.R. Green, and I.M. Verma. Suppression of TNFa-induced apoptosis by NF-kB. Science. 1996; 274:787-789.
    
    111. Li, Z.W., W.M. Chu, Y.L. Hu, M. Delhase, T. Deerinck, M. Ellisman, R. Johnson,and M. Kami. The IKKβ subunit of IκB kinase (IKK) is essential for nuclear factor-kB activation and prevention of apoptosis. J. Exp. Med. 1999;189:1839-1845.
    
    112. Wu, M., H.Y. Lee, R.E. Bellas, S.L. Schauer, M. Arsura, D. Katz, M.J. Fitzgerald,T.L. Rothstein, D.H. Sherr, and G.E. Sonenshein. Inhibition of NF-κB/Rel induces apoptosis of murine B cells. EMBO J. 1996; 15:4682-4690.
    
    113. Nicole Cusson, Sarah Oikemus, Elizabeth D. Kilpatrick, Leslie Cunningham. The Death Domain Kinase RIP Protects Thymocytes from Tumor Necrosis Factor Receptor Type 2-induced Cell Death. J Exp Med. 2002 July 1; 196(1): 15-26.
    
    114.Qunying Hong, Li-Jin Hsu, Lori Schultz, Nicole Pratt, Jeffrey Mattison, et al.Zfra affects TNF-mediated cell death by interacting with death domain protein TRADD and negatively regulates the activation of NF-kB, JNK1, p53 and W0X1 during stress response. BMC Mol Biol. 2007; 8: 50. Published online 2007 June 13.
    115.Lixin Zheng, Nicolas Bidere, David Staudt, Alan Cubre, et al. Competitive Control of Independent Programs of Tumor Necrosis Factor Receptor-Induced Cell Death by TRADD and RIP1. Mol Cell Biol. 2006 May; 26(9): 3505-3513.
    116. L(?)a Tourneur, Agnes Buzyn, and Gilles Chiocchia. FADD adaptor in cancer. Med Immunol. 2005; 4:1.
    117.Kai-Li He and Adrian T. Ting. A20 Inhibits Tumor Necrosis Factor (TNF) Alpha-Induced Apoptosis by Disrupting Recruitment of TRADD and RIP to the TNF Receptor 1 Complex in Jurkat T Cells. Mol Cell Biol. 2002 September;22(17): 6034-6045.
    118.Dempsey PW, Doyle SE, He JQ, Cheng G. The signaling adaptors and pathways activated by TNF superfamily. Cytokine Growth Factor Rev. 2003; 14:193-209.
    119.Rakesh K Srivastava. TRAIL/Apo-2L: Mechanisms and Clinical Applications in Cancer. Neoplasia. 2001 November; 3(6): 535-546.
    
    120. Emery JG, McDonnell P, Burke MB, et al. Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J Biol Chem. 1998; 273:14363-7.
    
    121. Pan G, Ni J, Wei YF, Yu G, Gentz R, Dixit VM. An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science. 1997; 277:815-8.
    
    122. Pan G, O'Rourke K, Chinnaiyan AM, et al. The receptor for the cytotoxic ligand TRAIL. Science. 1997; 276:111-3.
    
    123. Jiang Y, Woronicz JD, Liu W, Goeddel DV. Prevention of constitutive TNF receptor 1 signaling by silencer of death domains. Science. 1999; 283:543-6.
    
    124.LeBlanc H. N., Ashkenazi A. Apo2L/TRAIL and its death and decoy receptors.Cell Death Differ. 2003; 10:66-75.
    125.Pan, G, K. O'Rourke, A. M. Chinnaiyan, R. Gentz, R. Ebner, J. Ni, and V. M.Dixit. The receptor for the cytotoxic ligand TRAIL. Science. 1997; 276:111-113.
    126.Chaudhary, P. M., M. Eby, A. Jasmin, A. Bookwalter, J. Murray, and L. Hood.Death receptor 5, a new member of the TNFR family, and DR4 induce FADD-dependent apoptosis and activate the NF-kappaB pathway. Immunity. 1997; 7:821-830.
    
    127.Wajant, H., J. Gerspach, and K. Pfizenmaier. Tumor therapeutics by design:targeting and activation of death receptors. Cytokine Growth Factor Rev. 2005;16:55-76.
    
    128. Almasan, A., and A. Ashkenazi. Apo2L/TRAIL: apoptosis signaling, biology, and potential for cancer therapy. Cytokine Growth Factor Rev. 2003; 14:337-348.
    
    129.Davidovich, I. A., A. S. Levenson, and V. V. Levenson Chernokhvostov.Overexpression of DcR1 and survivin in genetically modified cells with pleiotropic drug resistance. Cancer Lett. 2004; 211:189-197.
    
    130.Bouralexis, S., D. M. Findlay, G J. Atkins, A. Labrinidis, S. Hay, and A.Evdokiou. Progressive resistance of BTK-143 osteosarcoma cells to Apo2L/TRAIL-induced apoptosis is mediated by acquisition of DcR2/TRAIL-R4 expression: resensitisation with chemotherapy. Br. J. Cancer. 2003; 89:206-214.
    
    131.T Miyashita, A Kawakami, T Nakashima, S Yamasaki, et al. Osteoprotegerin (OPG) acts as an endogenous decoy receptor in tumour necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis of fibroblast-like synovial cells. Clin Exp Immunol. 2004 August; 137(2): 430-436.
    
    132.Delphine Merino, Najoua Lalaoui,Alexandre Morizot, Pascal Schneider, Eric Solary, and Olivier Micheau. Differential Inhibition of TRAIL-Mediated DR5-DISC Formation by Decoy Receptors 1 and 2. Mol Cell Biol. 2006 October;26(19): 7046-7055.
    
    133.Bursch W, Ellinger A, Gerner C, et al. Programmed cell death (PCD). Apoptosis autophagic PCD, or others? Ann N Y Acad Sci, 2000; 926: 1-12.
    
    134. Douglas, R.; Green and John C. Reed. Mitochondria and Apoptosis. Science 1998; 281: 1309-1312.
    
    135. Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating LAP inhibition. Cell.2000; 102:33-42.
    
    136. Saelens X, Festjens N, Vande Walle L, van Gurp M, van Loo G, Vandenabeele P.Toxic proteins released from mitochondria in cell death. Oncogene. 2004; 23:2861-74.
    
    137. Blink E, Maianski NA, Alnemri ES, Zervos AS, Roos D, Kuijpers TW.Intrarnitochondrial serine protease activity of 0mi/HtrA2 is required for caspase-independent cell death of human neutrophils. Cell Death Differ. 2004;11(8):937-9.
    
    138. Joza N, Susin SA, Daugas E, Stanford WL, Cho SK, Li CY, et al. Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature.2001; 410(6828):549-54.
    
    139.Li LY, Luo X, Wang X. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature. 2001; 412(6842):95-9.
    
    140. GREEN D.R., REED J.C. Mitochondria and apoptosis. Science. 1998;281:1309-1312.
    
    141.KROEMER G. Introduction: mitochondrial control of apoptosis. Biochimie. 2002;84:103-104.
    
    142. GORDON D.M., DANCIS A., PAIN D. Mechanisms of mitochondrial protein import. Essays Biochem. 2000; 36:61-73.
    
    143. SCHEFFLER I.E. Mitochondria make a come back. Adv. Drug Deliv. Rev. 2001;49:3-26.
    
    144. GREEN D.R., KROEMER G The pathophysiology of mitochondrial cell death.Science. 2004; 305:626-629.
    
    145.GADELHA F.R., THOMSON L, FAGIAN M.M., COSTA A.D., RADI R.,VERCESI A.E. Ca~(2+)-independent permeabilization of the inner mitochondrial membrane by peroxynitrite is mediated by membrane protein thiol cross-linking and lipid peroxidation. Arch. Biochem. Biophys. 1997; 345:243-250.
    
    146.KOWALTOWSKI A.J., CASTILHO R.F., VERCESI A.E. Mitochondrial permeability transition and oxidative stress. FEBS Lett. 2001; 495:12-15.
    
    147. VAN LOO G, SAELENS X, VAN GURP M, MACFARLANE M., MARTIN S.J,VANDENABEELE P. The role of mitochondrial factors in apoptosis: a Russian roulette with more than one bullet. Cell Death Differ. 2002; 9:1031-1042.
    
    148.KUWA.NA T., NEWMEYER D.D. Bcl-2-family proteins and the role of mitochondria in apoptosis. Curr. Opin. Cell Biol. 2003; 15:691-699.
    149.EKERT P.G., VAUX D.L. The mitochondrial death squad: hardened killers or innocent bystanders. Curr. Opin. Cell Biol. 2005; 17:626-630.
    
    150. Sattler M, Liang H, Nettesheim D, et al. Structure of Bcl-xLBak peptide complex: recognition between regulators of apoptosis. Science. 1997; 275(5302): 983-986.
    
    151.Tan C B, Dlugosz P J, Peng J, et al. Auto-activation of the apoptosis protein BAX increases mitochondrial membrane permeability and is inhibited by BCL-2. J Biol Chem. 2006; 281(21): 14764-14775.
    
    152. Kuwana T, Mackey M R, Perkins G, et al. Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell. 2002;111(3): 331-342.
    
    153.CAIN K., BRATTON S.B., COHEN G.M. The Apaf-1 apoptosome: a large caspase-activating complex. Biochimie. 2002; 84:203-214.
    
    154. Shimizu S, Ide T, Yanagida T, et al. Y. Electrophysiological study of a novel large pore formed by Bax and the voltagedependent anion channel that is permeable to cytochrome c. J Biol Chem. 2000; 275(16): 12321-12325.
    
    155.Marzo I, Brenner C, Zamzami N, et al. Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science. 1998; 281(5385):2027-2031.
    
    156. Shimizu S, Nartia M, Tsujimoto Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature. 1999;399(6735): 483-487.
    
    157. Sattler M, Liang H, Nettesheim D, et al. Structure of Bcl-xLBak peptide complex: recognition between regulators of apoptosis. Science. 1997; 275(5302): 983-986.
    
    158. Tan C B, Dlugosz P J, Peng J, et al. Auto-activation of the apoptosis protein BAX increases mitochondrial membrane permeability and is inhibited by BCL-2. J Biol Chem. 2006; 281(21): 14764-14775.
    
    159. Kuwana T, Mackey M R, Perkins G, et al. Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell. 2002;111(3): 331-342.
    160.Makin G W J, Corfe B M, Griffiths G J, et al. Damageinduced Bax N-terminal change, translocation to mitochondria and formation of Bax dimers/complexes occur regardless of cell fate. EMBO J. 2001; 20(22): 6306-6315.
    161. Antonsson B, Montessuit S, Lauper S, et al. Bax oligomerization is required for channel-forming activity in liposomes and to trigger cytochrome c release from mitochondria. Biochem J. 2000; 345(2): 271-278.
    162.Mikhailov V, Mikhailova M, Pulkrabek D J, et al. Bcl-2 prevents Bax oligomerization in the mitochondrial outer membrane. J Cell Biol. 2001; 276(21):18361-18374.
    163.Nechushtan A, Smith C L, Lamensdorf I, et al. Bax and Bak coalesce into novel mitochondria-associated clusters during apoptosis. J Cell Biol. 2001; 153(6):1265-1276.
    164.Mikhailov V, Mikhailova M, Degenhardt K, et al. Association of Bax and Bak homo-oligomers in mitochondria. Bax requirement for Bak reorganization and cytochrome c release. J Biol Chem. 2003; 278(7): 5367-5376.
    165.Heiskanen, K.M., M.B. Bhat, H.W. Wang, J. Ma, and A.L. Nieminen. Mitochondrial depolarization accompanies cyto c release during apoptosis in PC6 cells. J. Biol. Chem. 1999; 274:5654-5658.
    
    166.Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell. 1996;86(1):147-57.
    
    167.Hill MM, Adrain C, Duriez PJ, Creagh EM, Martin SJ. Analysis of the composition, assembly kinetics and activity of native Apaf-1 apoptosomes. Embo J. 2004; 23:2134-45.
    
    168.Hu Y, Benedict MA, Ding L, Nunez G. Role of cytochrome c and dATP/ATP hydrolysis in Apaf-1-mediated caspase- 9 activation and apoptosis. EMBO J.1999; 18(13):3586-95.
    
    169. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X.Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 1997; 91(4):479-89.
    170.Chong ZZ, Kang JQ, Maiese K. Erythropoietin is a novel vascular protectant through activation of Akt1 and mitochondrial modulation of cysteine proteases.Circulation. 2002a; 106(23):2973-9.
    171.Chong ZZ, Kang JQ, Maiese K. Hematopoietic Factor Erythropoietin Fosters Neuroprotection Through Novel Signal Transduction Cascades. J Cereb Blood Flow Metab. 2005b; 22(5):503-514.
    172.Cregan SP, Fortin A, MacLaurin JG, Callaghan SM, Cecconi F, Yu SW, et al. Apoptosis-inducing factor is involved in the regulation of caspase-independent neuronal cell death. J Cell Biol. 2002; 158:507-17.
    173.Li LY, Luo X, Wang X. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature. 2001; 412:95-9.
    174.Alexei G. Basnakian, Eugene O. Apostolov, Xiaoyan Yin, et al. Endonuclease G promotes cell death of non-invasive human breast cancer cells. Exp Cell Res.2006 December 10; 312(20): 4139-4149.
    175. Anne M Verhagen, Elizabeth J Coulson, and David L Vaux. Inhibitor of apoptosis proteins and their relatives: IAPs and other BIRPs. Genome Biol. 2001; 2(7):1-10.
    176.Takahashi R, Deveraux Q, Tamm I, Welsh K, Assa-Munt N, Salvesen GS, Reed JC. A single BIR domain of XIAP sufficient for inhibiting caspases. J Biol Chem.1998; 273:7787-7790.
    177.Chai J, Du C, Wu JW, Kyin S, Wang X, Shi Y. Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature. 2000; 406:855-862.
    178. Liu Z, Sun C, Olejniczak ET, Meadows RP, Betz SF, Oost T, Herrmann J, Wu JC,Fesik SW. Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain. Nature. 2000; 408:1004-1008.
    179.Mori K Tripartite. Management of unfolded Proteins in the endoplasmic reticulum. Cell. 2000; 101(5):451—454.
    180. Schroder M, Kaufman RJ. ER stress and the unfolded protein response. Mutat Res. 2005; 569(l-2):29—63.
    181.Nakagawa, T., H. Zhu, N. Morishima, E. Li, J. Xu, B.A. Yankner, and J. Yuan. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature. 2000; 403:98-103.
    
    182. Junichi Hitomi, Taiichi Katayama, Yutaka Eguchi, Takashi Kudo, et al.Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and AJ3-induced cell death. JCB, 2004, Volume 165, Number 3,347-356.
    
    183. Brewer, J.W., J.L. Cleveland, and L.M. Hendershot. A pathway distinct from the mammalian unfolded protein response regulates expression of endoplasmic reticulum chaperones in non-stressed cells. EMBO J. 1997; 16:7207-7216.
    
    184.Selkoe, D.J. Altered structural proteins in plaques and tangles: what do they tell us about the biology of Alzheimer's disease? Neurobiol. Aging. 1986; 7:425-432.
    185.Rao, R.V., E. Hermel, S. Castro-Obregon, G del Rio, L.M. Ellerby, H.M. Ellerby,and D.E. Bredesen. Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation. J. Biol. Chem. 2001;276:33869-33874.
    
    186.Morand JP, Macri J, Adeti K. Proteomic profiling of hepatic endoplasmic reticulum-associated proteins in an animal model of insulin resistance and metabolic dyslipidemia. J Biol Chem. 2005; 280:17626-17633.
    187. Christine Lavoie, Jacques Paiement. Topology of molecular machines of the endoplasmic reticulum: a compilation of proteomics and cytological data. 2008; Histochem Cell Biol. 2008 February; 129(2): 117-128.
    
    188.Vanden Abeele, F., Skryma, R., Shuba, Y., Van Coppenolle, F., Slomianny, C.,Roudbaraki, M., Mauroy, B., Wuytack, F. & Prevarskaya, N. Bcl-2-dependent modulation of Ca~(2+) homeostasis and store-operated channels in prostate cancer cells. Cancer Cell. 2002; 1:169-179.
    
    189.Scorrano, L., Oakes, S. A., Opferman, J. T., Cheng, E. H., Sorcinelli, M. D.,Pozzan, T. & Korsmeyer, S. J. BAX and BAK regulation of endoplasmic reticulum Ca~(2+): a control point for apoptosis. Science. 2003; 300:135-139.
    190.Fern KF, Kroemer G Organelle-specific initiation of cell death pathways. Nat Cell Biol. 2001; 31(11):E255-263.
    191.Knoblach B, Keller BO, Groenendyk J, Aldred S, Zheng J, Lemire BD, Li L, Michalak M. ERp19 and ERp46, new members of the thioredoxin family of endoplasmic reticulum proteins. Mol Cell Proteomics. 2003; 2:1104-1119.
    
    192.Mori K. Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell. 2000; 101(5):451-454.
    
    193. Bertolotti A, Zhang Y, Hendershot L, Harding H, Ron D. Dynamic interaction of BiP and the ER stress transducers in the unfolded protein response. Nat Cell Biol.2000; 2:326-332.
    
    194. Urano F, et al. Coupling of stress in the endoplasmic reticulum to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science. 2000;287:664-666.
    
    195. Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP, Ron D. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science. 2000; 287: 664-666.
    
    196. Eva Szegezdi, Susan E Logue, Adrienne M Gorman, and Afshin Samali. Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep. 2006;7(9): 880-885.
    
    197. Harding HP, Zhang Y, Bertolotti A, Zeng H, Ron D. Perk is essential for translational regulation and cell survival during the unfolded protein response.Mol Cell. 2000; 5: 897-904.
    
    198. Schroder M, Kaufman RJ. The mammalian unfolded protein response. Annu Rev Biochem. 2005; 74: 739-789.
    
    199. Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ, Roth KA, MacGregor GR, Thompson CB, Korsmeyer SJ. Proapoptotic BAX and BAK:a requisite gateway to mitochondrial dysfunction and death. Science. 2001; 292:727-730.
    
    200. Hu P, Han Z, Couvillon AD, Exton JH. Critical role of endogenous Akt/IAPs and MEK1/ERK pathways in counteracting endoplasmic reticulum stress-induced cell death. J Biol Chem 2004; 279: 49420-49429.
    
    201.Wei MC, Zong WX, Cheng EH. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science. 2001; 292(5517):727-730.
    202.Xie Q,Khaoustov Ⅵ,Chung CC,et al.Effect of tauroursodeoxycholic acid on ER stress-induced Caspase-12 activation.Hepatology.2002;36(3):592-601.
    203.Rizzuto R,Pinton P,Carrington W,et al.Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca~(2+) responses.Science.1998;280(5370):1763-1766.
    204.Berridge,M.J.,P.Lipp,and M.D.Bootman.The versatility and universality of calcium signalling.Nat.Rev.Mol.Cell Biol.2000;1:11-21.
    205.Boehning,D.,R.L.Patterson,L.Sedaghat,N.O.Glebova,T.Kurosaki,and S.H.Snyder.Cytochrome c binds to inositol-l,4,5 trisphosphate receptors,amplifying calcium-dependent apoptosis.Nat.Cell Biol.2003;5:1051-1061.
    206.Silke F.Fischer,Claudia Schwarz,Juliane Vier,Georg H(a|¨)cker.Characterization of Antiapoptotic Activities of Chlamydia pneumoniae in Human Cells.Infect Immun.2001 November;69(11):7121-7129.
    207.Morishima N,Nakanishi K,Takenouchi H,et al.An endoplasmic reticulum stress-specific caspase cascade in apoptosis.Cytochrome C-independent activation of caspase-9 by caspase-12.J Biol Chem.2002;277(37):34287-34294.
    208.Nakagawa T,Zhu H,Morishima N,et al.Caspase-12 mediates ER-specific apoptosis and cytotoxicity by amyloid-β.Nature.2000;403(6765):98-103.
    209.Kalai M,larnkanfi M,Denecker G,et al.Regulation of the expression and processing of caspase- 12.J Cell Biol.2003;162(3):457-467.
    210.Mehmet H.Caspase find a new place to hide.Nature.2000;403:29-30.
    211.Nakagawa T,Yuan JY.Cross-talk between two cysteine protease families activation of caspase-12 by calpain in apoptosis.J Cell Biol.2000;150(4):887-894.
    212.Rao RV,Peel A,Logvinova A,et al.Coupling endoplasmic reticulum stress to the cell death program:role of the ER chaperone GRP78.FEBS Lett.2002.514(2-3):122-128.
    213.Chua BT,Guo K,Li P.Direct cleavage byt he calcium-activated protease calpain can lead to inactivation of caspases. J Biol chem. 2000; 275(7):5131-5135.
    
    214. Lin, X.Y., M.S. Choi, and A.G. Porter. Expression analysis of the human caspase-1 subfamily reveals specific regulation of the CASP5 gene by lipopolysaccharide and interferon-gamma. J. Biol. Chem. 2000;275:39920-39926.
    
    215.Junichi Hitomi, Taiichi Katayama, Yutaka Eguchi, Takashi Kudo, et al. Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Ap-induced cell death. J Cell Biol. 2004 May 10; 165(3): 347-356.
    
    216. Chiarugi A, Moskowitz MA. Cell biology. PARP-l-a perpetrator of apoptotic cell death? Science. 2002; 297: 200-201.
    
    217.Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by Caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell. 1998; 94: 491-501.
    
    218.Rutkowski D T, Kaufman R J. A trip to the ER: coping with stress. Trends Cell Biol. 2004; 14(1): 20-28.
    
    219. Oakes S A, Scorrano L, Opferma J T, et al. Proapoptotic BAX and BAK regulate the type 1 inositol trisphosphate receptor and calcium leak from the endoplasmic reticulum. Proc Natl Acad Sci USA. 2005; 102(1): 105-110.
    
    220. Halestrap A P. Calcium, mitochondria and reperfusion injury: a pore way to die. Biochem Soc Trans. 2006; 34(2):232-237.
    
    221.Boulares A H, Zoltoski A J, Contreras F J, et al. Regulation of DNAS1L3 endonuclease activity by poly(ADP-ribosyl) ation furing etoposide-induced apoptosis. Role of poly (ADP-ribose) polymerase-1 cleavage in endonuclease activation. J Biol Chem. 2002; 277(1): 372-378.
    
    222. Rizzuto R, Pinton P, Ferrari D, et al. Calcium and apoptosis: facts and hypotheses.Oncogene. 2003; 22(53): 8619-8627.
    
    223. Nutt L K, Pataer A, Pahler J, et al. Bax and Bak promote apoptosis by modulating endoplasmic reticular and mitochondrial Ca~(2+) stores. J Biol Chem. 2002; 277(11):9219-9225.
    
    224. Scorrano L, Oakes S A, Opferman J T, et al. BAK and BAK regulation of endoplasmic reticulum Ca~(2+): a control point for apoptosis. Science. 2003;300(5616): 135-139.
    225.Demaurex N, Distelhorst C. Cell biology. Apoptosis—the calcium connection. Science. 2003; 300(5616): 65-67.
    226. Chami M, Prandini A, Campaella M, et al. Bcl-2 and Bax exert opposing effects on Ca~(2+) signaling, which do not depend on their putative pore-forming region. J Biol Chem. 2004; 279(52): 54581-54589.
    227.Pinton P, Ferrari D, Rapizzi E, et al. The Ca~(2+)concentration of the endoplasmic reticulum is a key determinant of ceramideinduced apoptosis: significance for the molecular mechanism of Bcl-2 action. EMBO J. 2001; 20(11): 2690-2701.
    228.Szalai G, Krishnamurthy R, Hajnoczky G Apoptosis driven by IP(3)-linked mitochondrial calcium signals. EMBO J. 1999; 18(22): 6349-6361.
    
    229. Gajkowska B, Wojewodzka U, Gajda J. Traslocation of Bax and Bid to mitochondria, endoplasmic reticulum ad nuclear envelope: possible control points in apoptosis. J Mol Histol. 2004; 35(1): 11-19.
    
    230. David G Breckenridge, Marina Stojanovic, Richard C. Marcellus, and Gordon C.Shore. Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J Cell Biol. 2003 March 31; 160(7): 1115-1127.
    
    231.Lane DP, Lain S. Therapeutic exploitation of the p53 pathway. Trends Mol Med.2002;8(4 Suppl):S38-42.
    
    232.Lane DP, Lu X, Hupp T, Hall PA. The role of the p53 protein in the apoptotic response. Philos Trans R Soc Lond B Biol Sci. 1994 Aug 30;345(1313):277-80.
    
    233.Bodnarchuk IA. Analysis of the role of DNA repair, regulation of cell cycle and apoptosis in the radiation-induced adaptive response of mammalian cells. Radiats Biol Radioecol. 2003 Jan-Feb;43(1):19-28.
    234.Mezencev R, Koh(?)t A. Apoptosis, tumor phenotype and pathogenesis of malignant tumors. Cesk Fysiol. 2004;53(2):48-65.
    235. Vattemi E, Claudio PP. Gene therapy for lung cancer: practice and promise. Ann Ital Chir. 2004 May-Jun; 75(3):279-89.
    236.Bindra, R. S., and P. M. Glazer. Genetic instability and the tumor microenvironment: towards the concept of microenvironment-induced mutagenesis. Mutat. Res. 2005; 569:75-85.
    
    237. Bourdon JC. p53 Family isoforms. Curr Pharm Biotechnol. 2007 Dec;8(6):332-6.
    
    238. Beverly LJ, Felsher DW, Capobianco A.J . Suppression of p53 by Notch in lymphomagenesis: implications for initiation and regression.Cancer Res. 2005 Aug 15; 65(16):7159-68.
    
    239. Chen D, Kon N, Li M, Zhang W, Qin J, Gu W. ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor.Cell. 2005 Jul 1; 121(7):1071-83.
    
    240. Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature 2000; 408:307-310.
    
    241.Coates PJ. p53 and Mdm2: not all cells are equal. J Pathol. 2007 Dec;213(4):357-9.
    242.Eischen, C.M.; Weber, J.D.; Roussel, M.F.; Sherr, C.J.; Cleveland, J.L.Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev. 1999; 13: 2658-2669.
    
    243. Ginsberg, D. E2F1 pathways to apoptosis. FEBS Lett. 2002, 529: 122-125.
    
    244. Shiloh, Y.,. ATM and ATR: networking cellular responses to DNA damage. Curr.Opin. Genet. Dev. 2001; 11(1):71-77.
    
    245. Sanchez, Y., Wong, C, Thoma, R.S., Richman, R., Wu, Z.,Piwnica-Worms, H.,Elledge, S.J.,. Conservation of the Chkl checkpoint pathway in mammals:linkage of DNA damage to Cdk regulation through Cdc25. Science, 1997;277(5331): 1497-1501.
    
    246. Schmitt, E., Boutros, R., Froment, C, Monsarrat, B., Ducommun,B., Dozier, C.,.CHKl phosphorylates CDC25B during the cell cycle in the absence of DNA damage. J. Cell Sci., 2006; 119(20):4269-4275.
    
    247.Falck, J., Mailand, N., Syljuasen, R.G., Bartek, J., Lukas, J.,The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature, 2001; 410(6830):842-847.
    
    248.Chuang, L. S., H. I. Ian, T. W. Koh, H. H. Ng, G. Xu, and B. F. Li. Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1.Science 1997; 277:1996-2000.
    
    249. Wang, X.W., Zhan, Q.M., Coursen, J.D., Khan, M.A., Kontny, H.U., Yu, L., M.Hollander, M.C., O'Connor, P.M., Fornace,A.J.Jr, Harris, C.C.,. GADD45 induction of a G(2)/M cell cycle checkpoint. Proc. Natl. Acad. Sci. (USA), 1999a;96(7):3706-3711.
    
    250.Oren, M. Regulation of the p53 tumor suppressor protein. J. Biol. Chem 1999;274:3(3031-36034.
    251.Bargonetti, J., and J. J. Manfredi. Multiple roles of the tumor suppressor p53.Curr. Opin. Oncol. 2002; 14:86-91.
    
    252.Chipuk, JE; Kuwana, T; Bouchier-Hayes, L; Droin, NM; Newmeyer, DD;Schuler, M; Green, DR. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science. 2004; 303:1010-4.
    253. Jiang P, Du W, Heese K, Wu M. The Bad guy cooperates with good cop p53:Bad is transcriptionally up-regulated by p53 and forms a Bad/p53 complex at the mitochondria to induce apoptosis. Mol Cell Biol. 2006 Dec;26(23):9071-82.
    254.Chipuk, J.E., Kuwana, T., Bouchier-Hayes, L., Droin, N.M., Newmeyer, D.D.,Schuler, M., Green, D.R.,. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science. 2004;303(5660): 1010-1014.
    
    255. Thomas, A., Elrouby, S., Reed, J.C., Krajewski, S., Silber, R.,Potmseil, M.,Newcomb, E.W.,. Drug-induced apoptosis in B-cell chronic lymphocytic leukemia: relationship between p53 gene mutation and Bcl-2/Bax proteins in drug resistance. Oncogene. 1996;12:1055-1062.
    
    256.Macaluso M, Montanari M, Cinti C, Giordano A. Modulation of cell cycle components by epigenetic and genetic events. Semin Oncol. 2005 Oct;32(5):452-7.
    257. Aldman, T.; Kinzler, K.W.; Vogelstein, B. p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res. 1995; 55: 5187-5190.
    258.E1-Deiry, W.S.; Tokino, T.; Velculescu, V.E.; Levy, D.B.; Parsons, R.; Vogelstein, B. WAF1, a potential mediator of p53 tumor suppression Cell. 1993; 75:817-825.
    
    259.Sayed, M.; Pelech, S.; Wong, C.; Marotta, A.; Salh, B. Protein kinase CK2 is involved in G2 arrest and apoptosis following spindle damage in epithelial cells.Oncogene. 2001; 20: 6994-7005.
    
    260. Concin N, Stimpfl M, Zeillinger C, Wolff U, Hefler L. Role of p53 in G2/M cell cycle arrest and apoptosis in response to gamma-irradiation in ovarian carcinoma cell lines. Int J Oncol. 2003 Jan; 22(1):51-7.
    
    261.Han, Z.; Chatterjee, D.; He, D.M.; Hendricksonm, E.A. Evidence for a G2 checkpoint in p53-independent apoptosis induced by X-irradiation. Mol Cell Biol 1995; 15: 5849-5857.
    
    262. Concin, N.; Stimpel, M.; Zeillinger, C.; Wolff, U.; Hefler, L. Role of p53 in G2/M cell cycle arrest and apoptosis in response to γ-irradiation in ovarian carcinoma cell lines. International journal of oncology. 2003; 22: 51-57.
    
    263.Del Sal, G.;, Ruaro, E.M.; Utrera, R.; Schneider, C. Gasl-induced growth suppression requires a transactivation-independent p53 function. Mol Cell Biol.1995; 15:7152-7160.
    
    264. Ruaro, E.M.; Collavin, L.; Del Sal, G., Haffner, R.; Oren, M.A proline-rich motif in p53 is required for transactivation-independent growth arrest as induced by Gas1. Proc Natl Acad Sci USA. 1997; 94: 4675-4680.
    
    265.Ben-Yehoyada, M.; Ben-Dor, I.; Shaul, Y. c-Abl tyrosine kinase selectively regulates p73 nuclear matrix association. J Biol Chem 2003; 278: 34475-34482.
    
    266.Wei, G., Li, A.G., Liu, X. Insights into Selective Activation of p53 DNA Binding by c-AblJ. Biol Chem. 2005; 280: 12271-12278.
    
    267. Soussi, T. p53 alterations in human cancer: More questions than answers.Oncogene. 2007; 26:2145-2156.
    
    268.Shlien A, Tabori U, Marshall CR, Pienkowska M, Feuk L, Novokmet A.Excessive genomic DNA copy number variation in the Li-Fraumeni cancer predisposition syndrome. Proc Natl Acad Sci USA. 2008 Aug 12;105(32): 11264-9.
    269. Buendia,M.A.Genetics of hepatocellular carcinoma. Semin. Cancer Biol. 2000;10:185-200.
    270.Hainaut P, Hernandez C, Robinson A, Rodriguez-Tome P, Flores T, Hollstein M,Harris CC, Montesano R. IARC database of p53 gene mutation in human tumors and cell lines: updated complation, revised format and new visualisation tools. Nucleic Acid Res. 1998; 26:205 -13.
    271.Hagiwara K, Mcmenamin MG, Miura K, Harris CC. Mutational analysis of p63/p73L/p51/p40/ CUSP/KET gene in human cancer cell lines using intronic primers. Cancer Res. 1999; 59:4165 -9.
    272. Yin ZM, Sima J, Wu YF, Zhu J. The effect of C-terminal fragment of JNK2 on the stability of p53 and cell proliferation. Cell Res. 2004 Oct;14(5):434-8.
    273.Haupt, Y; Maya, R.; Kazaz, A.; Oren, M. Mdm2 promotes the rapid degradation of p53. Nature. 1997; 387,296-299.
    274. Steinwaerder DS, Carlson CA, Lieber A. Human papilloma virus E6 and E7 proteins support DNA replication of adenoviruses deleted for the E1A and E1B genes. Mol Then 2001 Sep; 4(3):211-6.
    275.Dewantoro O, Gani RA, Akbar N. Hepatocarcinogenesis in viral Hepatitis B infection: the role of HBx and p53. Acta Med Indones. 2006 Jul-Sep;38(3):154-9.
    276.Frese S, Schaper M, Kuster JR, Miescher D, Cell death induced by down-regulation of heat shock protein 70 in lung cancer cell lines is p53-independent and does not require DNA cleavage. J Thorac Cardiovasc Surg.2003 Sep;126(3):748-54.
    
    277.Cai L, Zhu JD. The tumor-selective over-expression of the human Hsp70 gene is attributed to the aberrant controls at both initiation and elongation levels of transcription. Cell Res. 2003 Apr;13(2):93-109.
    
    278. Knights CD, Liu Y, Appella E, Kulesz-Martin M. Defective p53 post-translational modification required for wild type p53 inactivation in malignant epithelial cells with mdm2 gene amplification. J Biol Chem. 2003 Dec 26;278(52):52890-900.
    
    279.Kato S, Han S, Liu W. Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis.Proc Natl Acad Sci.2003;100:8424-8429.
    280.Brown N M.Berlin:Springer-verlag.1990:p69.
    281.Crowe A J.Berlin:Springer-verlag.1990:80.
    282.Meinema H A et al.Res Si Ge Sn Pb Comp.1985;8:157.
    283.Crowe A J,Smith P J,Atassi G.Chem Biol.Interact.1980;32:171.
    284.Narayanan V L.Berlin:Springer-verlag.1990:201.
    285.Gielen M.Berlin:Springer-verlag.1990:p126.
    286.胡春等.中国药学杂志,1992;8:455.
    287.Crowe A J,Smith P J,Atassi G.Inorg.Chim Acta.1984;93:179.
    288.Haidue I et al.Coord.Chem Rev.1990,99:253.
    289.胡盛志,万嘉铸.结构化学.1990;9(4):264.
    290.胡盛志等.有机化学.1989;9:89.
    291.戴安邦.无机化学丛书,第十三卷,配位化学,p738-740.
    292.Gielen M,Melolle M et al.Tetrahedron.1989;45:1219.
    293.Gielen M,Acheddad M.Main Group Met Chem.1991;14:74.
    294.Crowe A J.Metal-based Antitumour Drugs.1989;1:103.
    295.Gielen M.Main Group Met Chem.1991;14:77.
    296.Gielen M,Khloufi A E,Blesemans M,et al.Di-n-butyltin anddiethyltin monofluorobenzoates synthesis,spectroscopic characterization and in vitro anti-tumor activity.Appl Organometal Chem.1993;7:119-125.
    297.Gielen M.Appl.Organomet.Chem.1993;7:119.
    298.Gielen M,Boualam M.Appl.Organomet Chem.1994;8:19.
    299.Gielen M.Tin-based antitumor drugs.Coord Chem Rev.1996;151:41-51.
    300.Ribot F,Sanchez C,Gielen M et al.J.Organmet Chem.1998;552(1,2):177-186.
    301.Gielen M,Biesemans M.J.Fluorine Chem.1993;64:279.
    302.Iucherman JJed.Tin and Maligant Cell Growth.Boca Raton:CRC.1988:1.
    303.Gielen M,Willem R.Bull.Soc.Chim Belg.1993;102:761.
    304.Gielen M,Tiekink E R T.Appl.Organomet Chem.1995;9:639.
    305.Li Qingshan,Yang Pin et al.J.Bioinorg Chem.1996;64:181.
    306.Li Q,Yang P,Tian Y,Guo M et al.Acta Chimica Sinica.1997;55:370.
    307.Yang Pin,Li Qingshan.Science in China,Series B.1996;26:304.
    308.Huber F.J.Inorg Biochem.1985;25:238.
    309.Keller H J,Keppler B.European Patent 49486,1982.
    310.Carrara M,Zampiron S et al.Pharmacol.Res Commun.1988;20:161.
    311.Fuminori Teraishi,ShuhongWu,JiichiroSasaki.P-Glycoprotein-Independent Apoptosis Induction by a NovelSynthetic Compound,MMPT[5-[(4-Methylphenyl)methylene]-2-(phenylamino)-4(5H)-thia zolone].Pharma Ther.2005;(314):355-362.
    312.叶能胜,梁琼麟等.化学基因组学研究进展及应用.中国天然药物,2004;2.
    313.Dohse,D,Technology Policy and the Regions-the Case of the BioRegio Contest,Research Policy,29(9),Dec.2000,pp.1111-1133.
    314.Hossini AM,Eberle J.Apoptosis induction by Bcl-2 proteins independent of the BH3 domain.Biochem Pharmacol.2008 Dec 1;76(11):1612-9.
    315.Feng G,Wang DZ,Chen HQ,Hu J,He J.A new method to induce multi-drug resistance to carboplatin in a mouse model of human tongue squamous cell carcinoma.Int J Oral Maxillofac Surg.2008 Dec;37(12):1141-7.
    316.Smukste I,Stockwell BR.Advances in chemical genetics.Annu Rev Genomics Hum Genet.2005;(6):261-286.
    317.H(o|¨)ti N,Zhu DE,Song Z,Wu Z,Tabassum S,Wu M.p53-dependent apoptotic mechanism of a new designer bimetallic compound tri-phenyl tin benzimidazolethiol copper chloride(TPT-CuC12):in vivo studies in Wistar rats as well as in vitro studies in human cervical cancer cells.J Pharmacol Exp Ther.2004 Dec;311(3):1281.
    318.Thompson CB.Apoptosis in the pathogenesis and treat-ment of disease.Science.1995;(267):1456-1462.
    319.Banasiak D,Barnetson AR,Odell RA,Mameghan H,Russell PJ.Comparison between the clonogenic,MTT,and SRB assays for determining radiosensitivity in a panel of human bladder cancer cell lines and a ureteral cell line.Radiat Oncol Investig. 1999; 7(2):77-85.
    
    320.Froscio SM, Fanok S, Humpage AR. Cytotoxiciry screening for the cyanobacterial toxin cylindrospermopsin. J Toxicol Environ Health A. 2009;72(5):345-9.
    
    321. Pin Yang, Maolin Guo. Metal Based Drugs.1998; 5(1): 41-58.
    
    322. Sherman L R,Huber F.Relationship of cytotoxic groups in organotin molecules and the effectiveness of the compounds against leukemia. Appl. Organomet.Chem. 1988;2(1):65-72.
    
    323. Ward TH, Cummings J, Dean E, Biomarkers of apoptosis. Br J Cancer. 2008 Sep 16; 99(6):841-6.
    
    324. Macaluso M, Montanari M, Cinti C, Giordano A. Modulation of cell cycle components by epigenetic and genetic events. Semin Oncol. 2005 Oct;32(5):452-7.
    
    325. Kuo PL, Hsu YL, Lin TC, Chang JK, Lin CC. Induction of cell cycle arrest and apoptosis in human non-small cell lung cancer A549 cells by casuarinin from the bark of Terminalia arjuna Linn. Anticancer Drugs. 2005 Apr; 16(4):409-15.
    
    326. D'Agnano I, Antonelli A, Bucci B, Marcucci L, Petrinelli P, Ambra R, Zupi G,Elli R. Effects of poly(ADP-ribose) polymerase inhibition on cell death and chromosome damage induced by VP16 and bleomycin. Environ Mol Mutagen.1998;32(1):56-63.
    
    327. Potter AJ,Rabinovitch PS.The cell cycle phases of DNA damage and repair initiated by topoisomerase II -targeting chemotherapeutic drugs.Mutat Res.2005;(572):27-44.
    
    328. Macaluso M, Montanari M, Cinti C, Giordano A. Modulation of cell cycle components by epigenetic and genetic events. Semin Oncol. 2005 Oct;32(5):452-7.
    
    329. Waterman MJ,Stavridi ES,Waterman JL,Halazonetis TD.ATM-dependent activation of p53 involves dephosphorylation and association with 14-3-3proteins.Nat Genet.1998;(19):175-178.
    
    330.Falck, J., Mailand, N., Syljuasen, R.G., Bartek, J., Lukas, J.The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis.Nature.2001;410(6830):842-847.
    331.Michael L.,Whitfield,Gavin Sherlock.Identification of Genes Periodically Expressed in the Human Cell Cycle and Their Expression in Tumors.Molecular Biology of the Cell.2002 June;(13):1977-2000.
    332.Smith ML,Fornace AJ Jr.Mammalian DNA damage-inducible genes associated with growth arrest and apoptosis.Mutat Res.1996 Jun;340(2-3):109-24.
    333.Cheng CC,Yang SM,Huang CY,Chen JC,Chang WM,Hsu SL.Molecular mechanisms of ginsenoside Rh2-mediated G1 growth arrest and apoptosis in human lung adenocarcinoma A549 cells.Cancer Chemother Pharmacol.2005 Jun;55(6):531-40.
    334.Dimitrios J.Stravopodis,Panagiotis K.Karkoulis,Eumorphia G.Grade-dependent effects on cell cycle progression and apoptosis in response to doxorubicin in human bladder cancer cell lines.Int J Oncol.2009Jan;34(1):137-60.
    335.Fujise,K.,Zhang,D.,Liu,J.,Yeh,E.T.,Regulation of apoptosis and cell cycle progression by MCL1.Differential role of proliferating cell nuclear antigen.J.Biol.Chem.2000;275(50):39458-39465.
    336.Zhao Y,Zhang N,Kong Q.Tetrazolium violet induces G0/G1 arrest and apoptosis in brain tumor cells.J Neurooncol.2006 Apr;77(2):109-15.
    337.李昭辉,王占民,赵志伦,等.Fas和FasL在胃癌组织中的表达.中国现代普通外科进展.2004;7(5):292-293.
    338.Lee TB,Min YD,Lim SC,et al.Fas(Apo1/CD95)and Fas ligand interaction between gastric cancer cells and immune cells.J Gastroenterol Hepatol.2002;1.7(1):32-38.
    339.Elnemr A,Ohta T,Yachie A,et al.Human pancreatic cancer cells express nonfunctional Fas receptors and counterattack lymphocytes by expressing Fas ligand:a potential mechanism for immune escape.Int J Oncol.2001;18(1):33-39.
    340.Sano Y,Sotozono C.Role of Fas ligand in ocular tissue.Cornea.2002 Mar;21(2Suppl 1):S30-2.
    341.Tineke Timmer, Elisabeth G. E. de Vries and Steven de Jong. Fas receptor-mediated apoptosis: a clinical application? Journal of Pathology J Pathol.2002; (196): 125-134.
    
    342. Carlos G. Ferreira, Christos Tolis. Simone W. Span, Godefridus J. Peters,Drug-induced Apoptosis in Lung Cancer Cells Is Not Mediated by the Fas/FasL (CD95/APO1) Signaling Pathway. Clinical Cancer Research. 2000 January;(6):203-212.
    
    343. Cartron, P.F.; Priault, M.; Oliver, L.; Meflah, K.; Manon, S.; Valletta, F. M. The N-terminal End of Bax Contains a Mitochondrial-targeting Signal. J Biol Chem.2003;(278):11633-11641.
    
    344. Lei X, Chen Y, Du G, Yu W, Wang X, Qu H, Xia B, He H, Mao J, Zong W, Liao X, Mehrpour M, Hao X, Chen Q. Gossypol induces Bax/Bak-independent activation of apoptosis and cytochrome c release via a conformational change in Bcl-2. FASEB J. 2006 Oct;20(12):2147-9.
    
    345.Kang MH, Reynolds CP. Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res. 2009 Feb 15; 15(4): 1126-32.
    
    346. Chauhan D, Pandey P, Ogata A, Teoh G, Krett N, Kharbanda S, Anderson K.Cytochrome c-dependent and -independent induction of apoptosis in multiple myeloma cells. J Biol Chem. 1997 Nov 28;272(48):29995-7.
    
    347. Krajewski S, Krajewska M, Ellerby LM, Salvesen GS, Bredesen DE, Rosenthal RE, Fiskum G, Reed JC. Release of caspase-9 from mitochondria during neuronal apoptosis and cerebral ischemia. Proc Natl Acad Sci U S A. 1999 May 11;96(10):5752-7.
    
    348.La Piana G, Marzulli D, Consalvo MI, Lofrumento NE. Cytochrome c-induced cytosolic nicotinamide adenine dinucleotide oxidation, mitochondrial permeability transition, and apoptosis. Arch Biochem Biophys. 2003 Feb 15;410(2):201-211.
    
    349.Buki A, Okonkwo DO, Wang KK, Povlishock JT. Cytochrome c release and caspase activation in traumatic axonal injury. J Neurosci. 2000 Apr 15;20(8):2825-34.
    350.Lartigue L, Medina C, Schembri L, Chabert P, Thoraval D, Crouzet M, Ichas F,De Giorgi F. An intracellular wave of cytochrome c propagates and precedes Bax redistribution during apoptosis. J Cell Sci. 2008 Nov l;121(Pt 21):3515-23.
    
    351. Lee JH, Li YC, Ip SW, Hsu SC, Chang NW, Yang JS, Chung JG. The role of Ca~(2+)in baicalein-induced apoptosis in human breast MDA-MB-231 cancer cells through mitochondria- and caspase-3-dependent pathway. Anticancer Res. 2008 May-Jun;28(3A):1701-11.
    
    352.Oblirnersen: Augmerosen, BCL-2 antisense oligonucleotide - Genta, G 3139, GC 3139, oblimersen sodium. Drugs R D. 2007; 8(5):321-34.
    
    353.Feng P, Li T, Guan Z, Franklin RB, Costello LC. The involvement of Bax in zinc-induced mitochondrial apoptogenesis in malignant prostate cells. Mol Cancer. 2008 Mar 10; 7:25.
    
    354.Philchenkov A, Zavelevich M, Kroczak TJ, Los M. Caspases and cancer:mechanisms of inactivation and new treatment modalities. Exp Oncol. 2004 Jun;26(2):82-97.
    
    355. Catherine Denicourt and Steven F. Dowdy Targeting Apoptotic Pathways in Cancer Cells. Science. 3 September 2004: 1411-1413.
    
    356. Baker, S. J., and Reddy, E. P. Transducers of life and death: TNF receptor superfamily and associated proteins. Oncogene. 1996;12:1-9.
    
    357.Bajt ML; Lawson JA; Vonderfecht SL; Gujral JS; Jaeschke H. Protection against Fas Receptor-Mediated Apoptosis in Hepatocytes and Nonparenchymal Cells by a Caspase-8 Inhibitor in Vivo: Evidence for a Postmitochondrial Processing of Caspase-8. Toxicological Sciences. 2000; 58:109-117.
    
    358.Kim HS, Ingermann AR, Tsubaki J, Twigg SM, Walker GE, Oh Y. Insulin-like growth factor-binding protein 3 induces caspase-dependent apoptosis through a death receptor-mediated pathway in MCF-7 human breast cancer cells. Cancer Res. 2004 Mar 15; 64(6):2229-37.
    
    359. Vlachos K, Siafakas N, Karameris A, Papadopoulos J, Hakim N. Apoptosis and adenocarcinoma of the cardia: expression of p53, Bcl-2, Bcl-XL, WAF1, and fas proteins and association with characteristics of the tumors. Int Surg. 2008 May-Jun;93(3):145-54.
    360. Chang GC, Yu CT, Tsai CH, Tsai JR, Chen JC, Wu CC, Wu WJ, Hsu SL. An epidermal growth factor inhibitor, Gefitinib, induces apoptosis through a p53-dependent upregulation of pro-apoptotic molecules and downregulation of anti-apoptotic molecules in human lung adenocarcinoma A549 cells. Eur J Pharmacol. 2008 Dec 14;600(1-3):37-44.
    361.Polster BM, Fiskum G. Mitochondrial mechanisms of neural cell apoptosis. J Neurochem. 2004 Sep;90(6):1281-9.
    362.Topuridze ML, Kipiani VA, Pavliashvili NS, Kipiani NV, Petriashvili TG.Molecular mechanisms of apoptosis. Georgian Med News. 2007 Sep;(150):38-45.
    
    363. Kadenbach B , Arnold S , Lee I, et al. The possible role of cytochrome c oxidase in stress - induced apoptosis and degenerative diseases. Biochim Biophys Acta .2004 ;1655 (1 - 3):400 - 408.
    
    364. Breckenridge DG, Stojanovic M, Marcellus RC , et al.Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals ,enhancing cytochrome c release to the cytosol. J Cell Biol. 2003;160(7):1115-1127.
    
    365. Apati A , Janossy J , Brozik A , et al. Effects of intracellular calcium on cell survival and the MAPK pathway in a human hormone - dependent leukemia cell line (TF-1) [J]. Ann N YAcad Sci. 2003 ;1010:70 - 73.
    
    366.Boya P, Kroemer G. Lysosomal membrane permeabilization in cell death.Oncogene. 2008 Oct 27; 27(50):6434-51.
    367. Jayaraj R, Gupta N, Rao PV. Multiple signal transduction pathways in okadaic acid induced apoptosis in HeLa cells. Toxicology. 2009 Feb 4;256(1-2):118-27.
    368.Bhushan S, Kumar A, Malik F. A triterpenediol from Boswellia serrata induces apoptosis through both the intrinsic and extrinsic apoptotic pathways in human leukemia HL-60 cells. Apoptosis. 2007 Oct; 12(10): 1911-26.
    369.Perchellet EM, Wang Y, Weber RL, Sperfslage BJ, Lou K, Crossland J, Hua DH,Perchellet JP. Synthetic 1,4-anthracenedione analogs induce cytochrome c release, caspase-9, -3, and -8 activities, poly(ADP-ribose) polymerase-1 cleavage and internucleosomal DNA fragmentation in HL-60 cells by a mechanism which involves caspase-2 activation but not Fas signaling. Biochem Pharmacol. 2004 Feb 1;67(3):523-37.
    
    370.Qiang Q, Zhen W. Effect of lidamycin on mitochondria initiated apoptotic pathway in human cancer cells. Acta Pharmaceutica Sinica. 2007; 42:2.
    
    371.A.-L. Genestier, M.-C. Michallet, G. Prevost, G. Bellot, L. Chalabreysse, S.Peyrol, F. Thivolet, J. Etienne, G Lina, F. M. Vallette, F. Vandenesch, and L.Genestier. Staphylococcus aureus Panton-Valentine leukocidin directly targets mitochondria and induces Bax-independent apoptosis of human neutrophils. J.Clin. Invest. 2005; 115:3117-3127.
    
    372. Plesnila N. Role of mitochondrial proteins for neuronal cell death after focal cerebral ischemia. Acta Neurochir Suppl. 2004;89:15-9.
    
    373.Juo P, Kuo CJ, Yuan J, Blenis J. Essential requirement for caspase-8/FLICE in the initiation of the Fas-induced apoptotic cascade. Curr. Biol. 1998; 8:1001-1008.
    
    374. Scott H. Kaufmannl and William C. Earnshaw. Induction of Apoptosis by Cancer Chemotherapy. Experimental Cell Research. 2000; 256: 42-49.
    
    375. Senthivinayagam S, Mishra P, Paramasivam SK, Yallapragada S, Chatterjee M,Wong L, Rana A, Rana B. Caspase mediated cleavage of beta -catenin precedes drug induced apoptosis in resistant cancer cells. J Biol Chem. 2009 Mar 16.
    
    376.Kolenko V, Uzzo RG, Bukowski R, Bander NH. Dead or dying: necrosis versus apoptosis in caspase-deficient human renal cell carcinoma. Cancer Res. 1999 Jun 15; 59(12):2838-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700