严重创伤后肾缺血再灌注与急性肝损伤的保护性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、研究背景
     一些严重创伤及大面积深度烧伤病人由于早期得不到及时有效的复苏治疗,伤员只能得到延迟复苏,往往得不到预想的疗效,休克的发生率高,病人在后续病程中多脏器功能衰竭发生率高,死亡率也高。夏照帆等早在1991年就提出了延迟复苏可以引起脏器的再灌注损伤。其中肾为高灌注器官,对缺血以及再灌注造成的损伤均敏感。造成缺血再灌注损伤(ischemia reperfusion injury,IRI)的相关因素很多,其中IRI引起的炎症级联反应和活性氧氧化导致的细胞凋亡是人们所关注的两个主要因素。研究证明抑制与炎症反应明确相关的MARK等信号通路,对炎性介质和氧化损伤引起的细胞损伤具有明确的保护作用。三七皂甙R1(notoginsenoside R1,NR1)是五加科人参属植物三七根部提取物三七总皂甙的主要成分之一,现代医学研究表明,NR1具有抗炎、抗氧化、保护心肌、抗心率失常、抗休克、降低动脉血压、抑制血小板聚集、增加心脑血流量等多方面的作用。而且最近有文献报道NRl可以通过ROS/ERK信号转导通路抑制TNF-α诱导的炎症反应,明显改善心脑IRI损伤。因此本实验一采用大鼠右侧肾摘除左肾动静脉夹闭45 min制备缺血再灌注模型,系统观察MAPK信号通路的变化,并采用NR1干预,探讨其在肾IRI损伤中的作用及机制。
     严重创伤、休克和重度烧伤等重症患者,内毒素血症引起的肝功能衰竭也是很常见的。严重创烧伤引起的肠源性感染已经日益受到临床的重视,由于这些患者往往合并有肠源性内毒素血症,更易导致临床肝功能衰竭。韩德五等在1995年就已经提出了肝功能衰竭的内毒素机制,认为内毒素血症特别是肠源性内毒素血症是肝功能衰竭发生的物质基础。内毒素引起的肝损伤的机制包括直接损伤和间接损伤,直接损伤指内毒素通过细胞膜特异性受体介导及非特异性胞膜结合两种方式进人细胞内,造成肝细胞的损伤,间接损伤指由内毒素介导的炎症介质的释放对肝组织的毒性作用以及所引发的细胞凋亡和坏死。圆盘状受体1(Discoidin Domain receptors,DDR1)属于酪氨酸激酶受体家族,在介导细胞粘附、迁移、增殖、凋亡、浸润以及胶原的合成和代谢中担当重要角色,最近研究发现体内DDR1可通过核转录因子NF-κB/Fas信号通路在细胞凋亡中起重要作用,并且在动物实验证实抑制DDR1的激活可减轻依赖p38MAPK信号通路的肺部炎症。为此本实验二采用脂多糖/D-半乳糖胺(LPS/D-GaIN)诱导的急性小鼠肝损伤模型,观察急性肝损伤后DDRl是否参与内毒素诱导的肝损伤,并采用体内DDR1 siRNA干扰技术,观察急性肝损伤后DDRl对LPS诱导急性肝损伤细胞凋亡及炎症相关丝裂原活化蛋白激酶(MAPK)细胞信号通路的影响,以了解DDR1和相关信号转导通路在急性肝损伤中的可能发病机制。
     二、研究目的
     1.观察三七皂甙R1在肾IRI中对MAPK信号转导通路及细胞凋亡的影响。探讨中药防治肾缺血再灌注损伤的机制及未来通过在信号转导通路不同层面调控来干预肾IRI进展和治疗此类疾病的可能性。
     2.采用体内DDR1 siRNA干扰技术,观察急性肝损伤后DDR1对LPS诱导急性肝损伤细胞凋亡及炎症相关MAPK细胞信号通路的影响,以了解DDR1和相关信号转导通路在急性肝损伤中的可能作用机制及体内DDR1 siRNA干扰技术对其的影响和作用。
     三、研究内容
     实验一三七皂甙R1在大鼠肾缺血再灌注损伤中的作用机制
     第一部分大鼠肾IRI后MAPK细胞信号转导通路的活化
     目的:系统观察肾IRI后p38MAPK、JNK、ERK蛋白激酶的动态活化,为进一步研究肾脏IRI机制提供理论基础。
     方法:雄性SD大鼠70只,随机将实验动物分为手术对照组;肾缺血再灌注(IRI)组,再分为再灌注后5、10、15、30、45、60、120 min七个时相点(n=5每个时相点)。采用右侧肾摘除左肾蒂夹闭左肾动脉、静脉45 min后松开制备缺血再灌注模型;对照组除未给予左肾动静脉夹闭外,余操作同IRI模型组,分别于再灌注各时相点处死动物取材。病理切片检查及Western blot法检测肾组织中p38MAPK、JNK、ERK激酶的活化情况。
     结果:IRI可造成早期肾脏病理损害,并且早期2h内随着再灌注时间的延长肾脏病理损害呈渐进性加重;IRI后5min大鼠肾组织p38很快被诱导活化,45min达到峰值,随后p38活化减弱,但仍明显高于正常水平(P<0.05);JNK在再灌注10min开始轻度被诱导活化,45min活化明显增强,而且持续增高至再灌注后2h,明显高于正常水平(P<0.05);再灌注后各个时相点5min,10 min,15 min,30 min,45 min,1 h,2 h大鼠肾组织ERK活化相比均未有明显差异(P>0.05)。
     结论:采用大鼠右侧肾摘除左肾蒂夹闭左肾动脉、静脉45min后松开行再灌注可以造成肾脏病理损害并且早期2h内随着再灌注时间延长病理损害呈渐进性加重。MAPK信号通路中p38MAPK、JNK信号通路都可能参与了肾IRI损伤,而ERK可能未参与此损伤。
     第二部分三七皂甙R1在大鼠肾缺血再灌注损伤中作用机制及对p38MAPK、JNK信号转导通路的影响
     目的:观察MAPK信号通路在肾IRI后的变化及NR1干预对其的影响,探讨其在肾IRI损伤中的作用及机制。
     方法:雄性SD大鼠30只,随机分为手术组对照组(Control组,n=10)、缺血再灌注损伤组(IRI组,n=10)和NR1处理组(NR1组,n=10)。采用右侧肾摘除左肾蒂夹闭左肾动脉、静脉45 min后松开制备缺血再灌注模型,术前给予0.2ml等渗生理盐水尾静脉注射;NR1处理组术前给予NR1(40mg/kg)溶于0.2ml等渗生理盐水尾静脉注射,余操作同IRI模型组;Control组除未给予左肾动静脉夹闭外,余操作同IRI模型组。再灌注45min后处死动物取材检测肾功、MDA含量、凋亡细胞TUNEL分析、p38MAPK和JNK活化及炎症细胞因子TNF-α,IL-1β蛋白表达。
     结果:NR1可以明显改善IRI早期病理损害,但对早期肾功能恢复没有作用;IRI组MDA与对照组相比明显增高(P<0.05)。而NR1处理组与IRI组相比明显降低,但仍高于手术对照组(P<0.05);IRI组肾组织细胞凋亡明显,AI值明显高于对照组,差异显著(P<0.05),NRI预处理组亦出现凋亡细胞,但凋亡程度即AI值明显轻于IRI组,差异显著(P<0.05);IRI组phospho-p38、phospho-JNK在再灌注45min时相点与对照组相比表达明显增强(P<0.05),NRI处理组phospho-p38、phospho-JNK与IRI组相比表达明显减弱(P<0.05);TNF-α、IL-1β在缺血再灌注损伤后45min时相点IRI组与对照组相比明显升高(P<0.05),NR1处理组与IRI组相比表达减弱(P<0.05),但仍高于对照组(P<0.05)。
     结论:NR1在IRI引起的肾损伤中可能通过抑制p38MAPK和JNK信号通路的活化,减少炎症细胞因子TNF-α、IL-1β的表达,减轻组织受自由基攻击损伤的程度,从而减少肾脏损伤后细胞的凋亡,改善IRI引起的病理损害。
     实验二体内RNA干扰抑制盘状受体1对LPS/D-GaIN诱导小鼠急性肝损伤的保护作用及机制研究
     第一部分盘状受体1蛋白在急性肝损伤后的表达变化
     目的:观察LPS/D-GaIN诱导的急性小鼠肝损伤后DDR1蛋白的表达变化,以为更深一步研究DDR1是否参与急性肝损伤的发病机制提供理论依据
     方法:雄性BALB/c小鼠80只,随机将实验动物分为急性肝损伤组;生理盐水对照组。每组进一步分为0、0.5、1、3、6、12、24、48h八个时相点(n=5每个时相点)。肝损伤组小鼠均以LPS(10μg/kg)+D-GaIN(800 mg/kg),用1ml无菌生理盐水溶解后腹腔内注射,诱发小鼠肝损伤模型;对照组小鼠仅腹腔内注射1ml生理盐水。分别于注射后0、0.5、1、3、6、12、24、48h时相点分批麻醉后处死小鼠,每时相点5只,下腔静脉抽血后,迅速取出肝脏置于冰上,冰冷PBS冲洗后,部分肝组织10%中性福尔马林液固定待病理检查,剩余组织置液氮冻存备用。检测各组ALT、AST变化及病理分析,同时Western Blot检测DDR1蛋白表达变化。采用单因素方差分析判断组间差异,所有统计均经SPSS11.0统计软件处理完成。
     结果:肝损伤后小鼠血ALT在3h开始轻度升高,6h即呈现显著的升高,24h达到峰值,48h仍维持于高水平,小鼠血AST在1h即开始轻度升高,同ALT在24h达到峰值,48h仍维持于高水平;在HE染色下显示LPS/D-GaIN诱导肝脏损害后24、48h时相点病理损害明显;小鼠DDR1蛋白在0h、0.5h、1h与对照组无差异(P>0.05),3h开始轻度升高,在肝损伤早期6h才开始明显增高,24h达到高峰,48h后又明显减少,但仍明显高于正常水平(P<0.05)。
     结论:LPS/D-GaIN诱导的急性小鼠肝损伤模型可造成内毒素相关肝脏急性病理损害。DRR1表达在肝损伤后明显增强,并在24h达到高峰,因此推测DDR1在内毒素诱导的急性肝损伤中起重要作用。
     第二部分体内盘状受体1 siRNA干扰在急性肝损伤中的保护作用及机制
     目的:观察体内DDRI siRNA干扰对LPS/D-GaIN诱导急性肝损伤后细胞凋亡及炎症相关细胞信号通路的影响。
     方法:设计合成DDRI siRNA。雄性BALB/c小鼠35只,随机将实验动物分为生理盐水对照组;急性肝损伤组;DDR1siRNA1处理组;DDR1siRNA2处理组;非抑制性双链RNA(Non-silencing siRNA)组;暴发性肝衰组;DDR1siRNA1+暴发性肝衰组。n=5每组。其中前5组用来研究DDR1siRNA对急性肝损伤的影响。暴发性肝衰两组用来观察DDR1siRNA对暴发性肝衰后小鼠生存期的影响。急性肝损伤组以1.5ml生理盐水经小鼠尾静脉快速注射,5秒内注射完毕,8h及24h分别再重复注射一次,最后一次注射后24h,采用LPS(10μg/kg)+D-GaIN(800 mg/kg),用1ml无菌生理盐水溶解后腹腔内注射,诱发小鼠肝损伤模型;生理盐水对照组造模前同肝损伤组,生理盐水最后一次注射后24h,只给予1ml等量生理盐水腹腔注射;其余siRNA处理组分别将DDR1siRNA1、DDR1siRNA2、Non-silencing siRNA各50μg溶于1.5ml生理盐水中,按分组情况经小鼠尾静脉快速注射,5秒内注射完毕,8h及24h分别再重复注射一次,最后一次注射后24h操作同肝损伤组;暴发性肝衰组,操作同肝损伤组,但采用LPS(100μg/kg)+D-GaIN(800 mg/kg)剂量;DDR1siRNA1+暴发性肝衰组操作同DDR1siRNA1处理组,但采用LPS(100μg/kg)+D-GaIN(800 mg/kg)剂量诱发小鼠暴发性肝衰模型。
     前5组小鼠处理后24h,每只小鼠尾静脉注射印度墨汁0.05ml/10g,分别在注射后1min和5min用吸管(预先用肝素溶液湿润)经眶静脉丛取血20μl,用于炭粒廓清实验。然后处死取材,下腔静脉抽血后迅速取出肝脏置于冰上,冰冷等渗盐水冲洗后,部分肝组织10%中性福尔马林液固定待病理检查,剩余组织置液氮冻存备用。Western Blot检测DDRI蛋白、p38、pho-p38、JNK、pho-JNK表达变化,逆转录PCR法检测DDR1mRNA表达变化,TUNEL法检测肝细胞凋亡情况,EMSA法检测NF-κB的DNA结合活性变化,ELISA法检测血清内TNF-α、IL-1β蛋白表达,炭粒廓清实验测定库普弗细胞吞噬功能。
     结果:DRR1-siRNA序列1和2都能够明显抑制DDR1蛋白和mRNA的表达;DDR1-siRNA体内干扰可以明显抑制肝损伤后ALT、AST的升高,减少细胞坏死及炎性浸润;TUNEL法检测细胞凋亡明显减轻;免疫组化可见肝损伤后Fas蛋白在肝组织且呈弥漫性表达增加,DDR1-siRNA体内干扰抑制Fas蛋白的表达;DDR1-siRNA体内干扰不仅抑制了肝损伤后p38MAPK、JNK激酶和NF-κB的活化,而且体内TNF-α、IL-1β的蛋白表达也被DDR1siRNA的干预所抑制,同时抑制了库普弗细胞吞噬指数升高,提高了急性肝损伤小鼠的中位生存时间。
     结论:尾静脉高压注射DRR1-siRNA能够明显抑制小鼠肝脏DDR1基因和蛋白的表达,采用小鼠尾静脉高压注射DDR1siRNA体内干扰是可行的。DDR1siRNA体内干扰可能通过降低肝细胞、血管内皮细胞及粒细胞等多种细胞Fas蛋白的表达,间接抑制库普弗细胞的吞噬功能,抑制p38、JNK、NF-κB等信号通路的激活从而减少TNF-α、IL-1β炎症介质的释放,进一步减轻了炎症介质释放的级联反应及细胞凋亡引起的损伤。
Study on the Protection of Renal Ischemia Reperfusion Injury and Acute Liver Injury After Severe Trauma
     1.Introduction
     Many severe trauma and burned patients if not to obtain promptly effective resuscitation therapy,only gained delayed fluid resuscitation, seldom got anticipatively therapeutic effect and obtained high incidence of shock,and got high incidence of MODS and mortality in post-course of disease.Xia ZF etal proposed delayed fluid resuscitation induced reperfusion injury of organs on 1991.Kidney is a hyperperfusion organ and it was rather sensitive to ischemia and reperfusion.There are many reasons for ischemia reperfusion injury(IRI)and apoptosis induced by inflammation cascade reaction and oxidative damage are the two main factors.It have been verificated inhibit MAPK signal transduction have the protection effects on cell injury induced by inflammation cascade reaction and oxidative damage.Notoginsenoside R1(NR1),a major active component of the traditional Chinese medicine herb panax notoginseng. Modern medicine research indicated that NR1 have many effects on anti-inflammatory,anti-inflammatory,protective myocardium,anti- heart rate upset,antishock,depress arterial blood pressure,inhibit platelet aggregation,increase cerebral blood flow etal.Furthermore,it reported NR1 can inhibit inflammation induced by TNF-αdependent on ROS/ERK signal transduction and ameliorate heart and brain IRI.So we apply IRI model was induced by renal pedicle ligation followed by reperfusion 45min along with a contralateral nephrectomy,and to observe the changes of MAPK signal transduction,then investigate the effect of NR1 on renal IRI.
     Liver function failure induced by endotoxemia of severe trauma,shock and severe burned patients are common.Now it pay more attention to enterogenic infection induced by severe trauma and burned.Complicating with enterogenic infection endotoxemia is more easily to be to lead to liver function failure.Nan DW etal proposed endotoxin mechanism of liver function failure on 1995,considered endotoxemia and especially enterogenic infection endotoxemia are the substance fundament of liver function failure.Hepatic injury induced by endotoxin including direct injury and indirect injury,direct injury to count on to cause hepatocellular injury induced by endotoxin through cell membrane specificity and non-specificity acceptor,and indirect injury indicate to cause hepatocellular injury induced by mediators of inflammation. Discoidin domain receptor 1(DDR1)is a receptor tyrosine kinase that is activated on binding to its ligand-collagen,DDR1 is constitutively expressed in the normal tissues of organs such as the lungs,kidneys,colon, liver and brain,and DDR1 contribute to important role on cell adhesion, migration,generation,apoptosis,infiltrating as well as collagenous synthesis.Recently research shows that DDR1 play an important role in cell apoptosis dependent on NF-κB/Fas signal transduction passageway,and confirmed that suppress DDR1 can relieve lung inflammation dependent on p38MAPK signal transduction passageway.So we applied acute liver injury induced by LPS/D-GaIN to investigate whether DDR1 participate the injury,as well as applied DDR1 siRNA interference to observe the effects of DDR1 on cell apoptosis and MAPK signal transduction passageway,then to understand the possible pathogenesy related with DDR1 and signal transduction passageway.
     2.Objectives
     1)To observe the effects of NR1 on MAPK signal transduction passageway and cell apoptosis after renal IRI.Investigate the mechanism of traditional Chinese medicine prevention and cure of renal IRI and the possibility of apply traditional Chinese medicine to regulate signal transduction passageway to interfere progress of renal IRI and cure this kind of disease.
     2)To cbserve the effects of DDR1 siRNA invivo interfere on cell apoptosis and MAPK signal transduction passageway in acute liver injury induced by LPS,so to understand the pathogenesy of acute liver injury related with DDR1 and signal transduction passageway.
     3.Contents
     Test 1 The Mechanism of NR1 on Renal Ischemia Reperfusion Injury in Rats
     PartⅠThe Activation of MAPK Signal Transduction passageway After IRI
     Objectives:To investigate the activation of p38MAPK,JNK and ERK protein kinase after renal IRI,so to provide rationale for further study on renal IRI.
     Materials and methods:Seventy male Sprague-Dawley rats randomly separated into two groups:sham operated group control group;IRI group,then subdivided into 5、10、15、30、45、60、120 min time point groups (n=5).IRI model was induced by renal pedicle ligation followed by reperfusion 45min along with a contralateral nephrectomy,and then scarrifice animals for biopsy,the activation of p38MAPK,JNK and ERK protein kinase after renal IRI injury detected by Western blot.
     Results:IRI can induce renal early pathologicallesion;p38 be activited early at 5min after IRI,to achieve peak at 45min,then begain to weaken(p<0.05).JNK be activated at 10min after IRI,then persistet increase until 2h after IRI compared with control group(P<0.05).
     Conclusions:IRI model induced by renal pedicle ligation followed by reperfusion along with a contralateral nephrectomy can induce renal early pathologicallesion.p38MAPK and JNK participate renal IRI but not for ERK.
     PartⅡThe Mechanism of NR1 on Renal Ischemia Reperfusion Injury and Effects on p38MAPK and JNK Signal Transduction Passageway in Rats
     Objectives:To observe the changes of MAPK signal transduction passageway and the effects of NR1 interferein it.To investigate the role of NR1 in IRI.
     Materials and methods:Thirty male Sprague-Dawley rats randomly separated into three groups:sham operated group control group(n=10);IRI group(n=10);NR1+IRI group(n=10).IRI model was induced by renal pedicle ligation followed by reperfusion 45min along with a contralateral nephrectomy,NR1 group received tail vein injection of NR1(40mg/kg)in 0.2ml saline,sham group treated as IRI group but not with a contralateral nephrectomy.Then scarrifice animals for biopsy at 45min after IRI,the activation of p38MAPK and JNK protein kinase after renal IRI injury detected by Western blot,cell apoptosis analysised by TUNE1,and analysised expressing of MDA,TNF-α,IL-1β.
     Results:NR1 can improve the renal pathologicallesion but not for functional recovery.The administration of NR1 decreased MDA and cell apoptosis compared with IRI group(P<0.05).Activation of p38MAPK and JNK was markedly inhibited by NR1(P<0.05),so as expression of TNF-α,IL-1βcompared with IRI group(P<0.05).
     Conclusions:NR1 can Inhibit activation of p38MAPK and JNK so as to decrease TNF-α,IL-1βrelease,thus relieve the injury of free radical attack,thereby decrease cell apoptosis and amelioration pathologicallesion.
     Test 2 The Protection of Invivo Delivery DDR1siRNA on Acute Liver Injury Induced by LPS/D-GaIN in Mice
     PartⅠThe Changes of Expression of DDR1 After Acute Liver Injury
     Objectives:To observe the changes of DDR1 after acute liver injury induced by LPS/D-GaIN,thus to provide theory for furthermore study on the role of DDR1 in acutr liver injury.
     Materials and methods:eighty male BALB/c randomly separated into two groups:saline control group;acute liver injury group,then subdivided into 0、5、10、15、30、45、60、120 min time point groups(n=5).Acute liver injury group received intraperitoneal injection of LPS(10μg /kg)+D-GaIN(800 mg/kg)in 1ml saline induce acute liver injury,control group animals only received 1ml saline.Sacrifice animals at different time points.ALT and AST are detected,the exrepressin of DDR1 detected by Western Blot.
     Results:Plasma ALT begain to step up at 3h and reach peak at 24h,then to keep high level at 48h.Plasma AST begain to step up at 1h and reach peak at 24h too.Pathologicallesion was obviously after LPS/D-GaIN induced liver injury.The expression of DD1 step up at 3h and reach peak at 24h too,then begain to decrese at 48h compared with control group.
     Conclusion:The model of acute liver injury induced by LPS/DaIN can duplicate gut origin endotoxin liver injury.DDR1 paticipate pathogenesy of acute liver injury,so we suppose DDR1 play key role in acute liver injury.
     PartⅡThe Role of Invivo Delivery DDR1siRNA in Acute Liver Injury
     Objectives:To observe the effects of DDR1 on cell apoptosis and signal transduction passageway related with inflammation.
     Materials and methods:To design and synthetic of DDR1siRNA.Thirty five male BALB/c randomly separated into seven groups(n=5):Acute liver injury group treated with 1.5ml saline rapidly injected into the tail vein.The injection was repeated 8 and 24h later.24h after the last of three injections LPS(10μg/kg)+D-GaIN(800 mg/kg)dissolved in 1 ml saline intraperitoneal injection induce acute liver injury;Control mice were injected with an equal volume of normal saline.DDR1siRNA1、DDR1siRNA2、 Non-silencing siRNA groups underwent identical procedures to acute liver inury mice and pre-teated with different sequence of siRNA respectively; underwent identical procedures to acute liver inury mice but administated dose of LPS(100μg/kg)+D-GaIN(800 mg/kg)differently;DDR1siRNA1+ fluminating liver failer group underwent identical procedures to fluminating liver failer group and pre-teated with siRNA1.
     The first 5 groups received tail vein injection of India ink 0.05ml/10g after 24h respectively and collected 20μl blood via orbital for carbon clearance test,then collected kidney sample for test.Activation of DDR1,p38MAPK and JNK were assessed by Western Blot.Cell apoptsis analyzed by TUNEL and NF-κB activation detected by EMSA.Expression of TNF-α、IL-1βassessed by ELISA and phagocytosis function of Kupffer's cell detection by carbon clearance test.
     Results:The expression of DDR1 protein and mRNA were inhibited by DDR1siRNA sequence 1 and 2.Invivo delivery DDR1siRNA can inhibit the increase of ALT and AST,so as to decrease cell apoptosis in Acute Liver Injury.Not only activation of DDR1,p38MAPK,JNK and NF-κB were inhibited,but also expression of TNF-α,IL-1βdecreased too and inhibit phagocytosis function of Kupffer's cell at the same time.The median Survival time of mice were obviously improved.
     Conclusion:The expression of DDR1 protein and mRNA were inhibited by invivo delivery DDR1siRNA,so it is feasible to interfere DDR1 by invivo delivery DDR1siRNA.Invivo delivery DDR1siRNA can ihibit expression of Fas on hepatocyte,vascular endothelial cell and granulocyte etal,indirect inhibit phagocytosis function of Kupffer's cell,then inhibit activation of p38,JNK and NF-κB,thereby decrease releasing of TNF-α,IL-1β,so relieve cell apoptosis by cascade reaction of mediators of inflammation. 属性不符合
引文
[1]Chertow GM,Burdick E,Honour M,Bonventre JV,Bates DW.Acute kidney injury,mortality,length of stay,and costs in hospitalized patients.J Am Soc Nephrol,2005,16(11):3365-3370
    [2]Vandijck DM,Oeyen S,Decruyenaere JM,Annemans L,Hostel EA.Acute kidney injury,length of stay,and costs in patients hospitalized in the intensive care unit.Acta Clin Belg Suppl,2007,(2):341-345
    [3]Soullier S,Gayrard N,Mejean C,Swarcz I,Mourad G,Argiles A.Molecular mechanisms involved in kidney ischemia-reperfusion.Nephrol Ther,2005,1(5):315-321
    [4]Devarajan P.Cellular and molecular derangements in acute tubular necrosis.Curr Opin Pediatr,2005,17(2):193-199
    [5]Plotnikov EY,Kazachenko AV,Vyssokikh MY et al.The role of mitochondria in oxidative and nitrosative stress during ischemia/reperfusion in the rat kidney.Kidney Int,2007,72(12):1493-502
    [6]Chatterjee PK.Novel pharmacological approaches to the treatment of renal ischemia-reperfusion injury:a comprehensive review.Naunyn Schmiedebergs Arch Pharmacol, 2007,376(1-2):1-43
    [7] Tugtepe H, Sener G, Biyikli NK, Yuksel M, Cetinel S, Gedik N et al. The protective effect of oxytocin on renal ischemia/reperfusion injury in rats. Regul Pept, 2007 ,140 (3):101-8
    [8] Kher A, Meldrum KK, Hile KL, Wang M, Tsai BM, Turrentine MW et al. Aprotinin improves kidney function and decreases tubular cell apoptosis and proapoptotic signaling after renal ischemia-reperfusion. J Thorac Cardiovasc Surg, 2005,130(3):662-669
    [9] Xie J, Guo Q. Apoptosis antagonizing transcription factor protects renal tubule cells against oxidative damage and apoptosis induced by ischemia-reperfusion. J Am Soc Nephrol,2006,17(12):3336-3346
    [10]ZhengX, Zhang X, Sun H, Feng B, Li M, Chen G et al. Protection of renal ischemia injury using combination gene silencing of complement 3 and caspase 3 genes. Transplantation,2006,82(12):1781-1786
    [11]Regan SE, Broad M, Byford AM, Lankford AR, Cerniway RJ, Mayo MW et al. Al adenosine receptor overexpression attenuates ischemia-reperfusion-induced apoptosis and caspase 3 activity. Am J Physiol Heart Circ Physiol, 2003,284(3):H859-866
    [12]Pimienta G, Pascual J. Canonical and alternative MAPK signaling. Cell Cycle, 2007,6(21):2628-2632
    [13]Torres M. Mitogen-activated protein kinase pathways in redox signaling. Front Biosci, 2003,8:d369-391
    [14]Chang SH, Choi Y, Park JA, Jung DS, Shin J, Yang JH et al. Anti-inflammatory effects of BT-201, an n-butanol extract of Panax notoginseng, observed in vitro and in a collagen-induced arthritis model. Clin Nutr, 2007, 26(6):785-791
    [15]Shen YH, Chen CX. The bioactivity of angiotensin II and the effects of related Chinese Herbs. Zhongguo Zhong Yao Za Zhi, 2003, 28(5):394-397, 431
    [16]Jia YT, Ma B, Wei W, Xu Y, Wang Y, Tang HT et al. Sustained activation of nuclear factor-kappaB by reactive oxygen species is involved in the pathogenesis of stress-induced gastric damage in rats*. Crit Care Med, 2007,35(6):1582-91
    [17]Han JY, Fan JY, Horie Y, Miura S, Cui DH, Ishii H et al. Ameliorating effects of compounds derived from Salvia miltiorrhiza root extract on microcirculatory disturbance and target organ injury by ischemia and reperfusion. Pharmacol Ther, 2008,117(2):280-295
    [18]Sener G, Sakarcan A, Yegen BC. Role of garlic in the prevention of ischemia-reperfusion injury. Mol Nutr Food Res, 2007,51(11):1345-1352
    [19] Jirillo E, Caccavo D, Magrone T, Piccigallo E, Amati L, Lembo A et al. The role of the liver in the response to LPS: experimental and clinical findings. J Endotoxin Res, 2002,8(5):319-327
    [20]Yang H, Sheng Z, Guo Z, Shi Z, Lu J, Chai J et al. Oxygen free radical injury and its relation to bacterial and endotoxin translocation after delayed fluid resuscitation: clinical and experimental study. Chin Med J (Engl), 1997,110(2):118-124
    [21]Han DW. Intestinal endotoxemia as a pathogenetic mechanism in liver failure. World J Gastroenterol, 2002,8(6):961-965
    [22]Sakaguchi S, Furusawa S. Oxidative stress and septic shock: metabolic aspects of oxygen-derived free radicals generated in the liver during endotoxemia. FEMS Immunol Med Microbiol, 2006,47(2):167-177
    [23]Kumar LD, Clarke AR. Gene manipulation through the use of small interfering RNA (siRNA): From in vitro to in vivo applications. Adv Drug Deliv Rev, 2007,59(2-3):87-100
    [24]Peng Y, Murr MM. Establishment of immortalized rat Kupffer cell lines. Cytokine, 2007,37(3):185-191
    [25]Wesche-Soldato DE, Chung CS, Lomas-Neira J, Doughty LA, Gregory SH, Ayala A. In vivo delivery of caspase-8 or Fas siRNA improves the survival of septic mice. Blood, 2005,106(7):2295-2301
    [26]Andrianaivo F, Lecocq M, Wattiaux-De Coninck S, Wattiaux R, Jadot M. Hydrodynamics-based transfection of the liver: entrance into hepatocytes of DNA that causes expression takes place very early after injection. J Gene Med, 2004, 6(8):877-883
    [1]Zhang C,Sheng ZY,Hu S,Gao JC,Li JY,Liu Y.The role of oxygen-free radical in the apoptosis of enterocytes in scalded rats after delayed resuscitation.J Trauma,2004,56(3):611-617
    [2]Huang YS,Yang ZC,Liu XS,Chen FM,He BB,Li A et al.Serial experimental and clinical studies on the pathogenesis of multiple organ dysfunction syndrome (MODS)in severe burns.Burns,1998,24(8):706-716
    [3]Xia ZF,He F,Barrow RE,Broemeling LD,Herndon DN.Reperfusion injury in burned rats after delayed fluid resuscitation.J Burn Care Rehabil,1991,12(5):430-436
    [4]Gobe GC,Johnson DW.Distal tubular epithelial cells of the kidney:Potential support for proximal tubular cell survival after renal injury.Int J Biochem Cell Biol,2007,39(9):1551-1561
    [5]Yamanobe T,Okada F,Iuchi Y et al.Deterioration of ischemia/reperfusion-induced acute renal failure in SODl-deficient mice.Free Radic Res,2007,41(2):200-7
    [6]贺永进,高月平,李志华.肾缺血再灌注损伤研究进展.河北医学,2003,9(8):754-757
    [7]Torres M.Mitogen-activated protein kinase pathways in redox signaling.Front Biosci,2003,8:d369-391
    [8]Hipskind RA,Bilbe G.MAP kinase signaling cascades and gene expression in osteoblasts. Front Biosci, 1998,3:d804-816
    
    [9] Pimienta G, Pascual J. Canonical and alternative MAPK signaling. Cell Cycle, 2007,6(21):2628-2632
    [10]Joo JD, Kim M, Horst P, Kim J, D'Agati VD, Emala CW Sr, Lee HT. Acute and delayed renal protection against renal ischemia and reperfusion injury with Al adenosine receptors. Am J Physiol Renal Physiol, 2007,293(6) :F1847-57
    [11]Shen YH, Chen CX. [The bioactivity of angiotensin II and the effects of related Chinese Herbs]. Zhongguo Zhong Yao Za Zhi, 2003,28(5):394-397, 431
    [12]Jia YT, Ma B, Wei W, Xu Y, Wang Y, Tang HT et al. Sustained activation of nuclear factor-kappaB by reactive oxygen species is involved in the pathogenesis of stress-induced gastric damage in rats*. Crit Care Med , 2007, 35(6):1582-91
    [13]Rabb H, Ramirez G, Saba SR, Reynolds D, Xu J, Flavell R et al. Renal ischemic-reperfusion injury in L-selectin-deficient mice. Am J Physiol, 1996,271(2 Pt 2):F408-413
    [14]Avlan D, Unlu A, Ayaz L, Camdeviren H, Nayci A, Aksoyek S. Poly (adp-ribose) synthetase inhibition reduces oxidative and nitrosative organ damage after thermal injury. Pediatr Surg Int, 2005,21(6):449-455
    [15]Tadros T, Traber DL, Herndon DN. Hepatic blood flow and oxygen consumption after burn and sepsis. J Trauma, 2000,49(1):101-108
    [16] Jia YT, Wei W, Ma B, Xu Y, Liu WJ, Wang Y et al. Activation of p38 MAPK by reactive oxygen species is essential in a rat model of stress-induced gastric mucosal injury. J Immunol, 2007,179(11):7808-7819
    [1]Avlan D,Unlu A,Ayaz L,Camdeviren H,Nayci A,Aksoyek S..Poly(adp-ribose)synthetase inhibition reduces oxidative and nitrosative organ damage after thermal injury.Pediatr Surg Int,2005,21(6):449-455
    [2]Mocan H,Saruhan H,ArslanMK,Erduran E,SarpkayaAO,Efe Het al.The effect of ATP-MgC12 on lipid peroxidation in ischemic and reperfused rabbit kidney.Eur J Pediatr Surg,1999,9(1):42-46
    [3]Daemen MA,de Vries B,Buurman WA.Apoptosis and inflammation in renal reperfusion injury.Transplantation,2002,73(11):1693-1700
    [4]Kher A,Meldrum KK,Hile KL,Wang M,Tsai BM,Turrentine MW et al.Aprotinin improves kidney function and decreases tubular cell apoptosis and proapoptotic signaling after renal ischemia-reperfusion.J Thorac Cardiovasc Surg,2005,130(3):662-669
    [5]Miyaso H,Morimoto Y,Ozaki M,Haga S,Shinoura S,Choda Y et al.Protective effects of nafamostat mesilate on liver injury induced by lipopolysaccharide in rats:possible involvement of CD14 and TLR-4 downregulation on Kupffer cells.Dig Dis Sci,2006,51(11):2007-2012
    [6]Zhang HS,Wang SQ.Notoginsenoside R1 from Panax notoginseng inhibits TNF-alpha-induced PAI-1 production in human aortic smooth muscle cells.Vascul Pharmacol,2006,44(4):224-230
    [7]王旭林,王红梅,蔡善荣,姜强,徐文鸿,张苏展.大鼠肝缺血-再灌流损伤脑组织p38MAPK与脑细胞凋亡的关系.中华急诊医学杂志,2006,15(5):410-414
    [8]Zhang HS,Wang SQ.Notoginsenoside R1 inhibits TNF-alpha-induced fibronectin production in smooth muscle cells via the ROS/ERK pathway.Free Radic Biol Med,2006,40(9):1664-1674
    [9]Lu DQ,Bei JX,Feng LN,Zhang Y,Liu XC,Wang L et al.Interleukin-lbeta gene in orange-spotted grouper,Epinephelus coioides:molecular cloning,expression,biological activities and signal transduction.Mol Immunol,2008,45(4):857-867
    [10]武凡,康格非,等.三七皂甙Rg1、Rb1对大鼠脑缺血、缺氧损害的保护及机理研究.中国病理生理杂志,2001,17(11):1145-1145
    [11]Zhang WJ,Wojta J,Binder BR.Notoginsenoside R1 counteracts endotoxin-induced activation of endothelial cells in vitro and endotoxin-induced lethality in mice in vivo.Arterioscler Thromb Vase Biol,1997,17(3):465-474
    [12]Carraway MS,Welty-Wolf KE,Miller DL.et al.Blockade of tissue factor:treatment for organ injury in established sepsis.Am J Respir Crit Care Med,2003,167(9):1200-1209
    [13]Paller MS,Hoidal JR,Ferris TF.Oxygen free radicals in ischemic acute renal failure in the rat.J Clin Invest,1984,74(4):1156-1164
    [14]Serr F,Lauer H,Armann B,Ludwig S,Thiery J,Fiedler M et al.Sirolimus improves early microcirculation,but impairs regeneration after pancreatic ischemia-reperfusion injury.Am J Transplant,2007,7(1):48-56
    [15]Thurman JM.Triggers of inflammation after renal ischemia/reperfusion.Clin Immunol,2007,123(1):7-13
    [16]Shimoda N,Fukazawa N,Nonomura K,Fairchild RL.Cathepsin g is required for sustained inflammation and tissue injury after reperfusion of ischemic kidneys.Am J Pathol,2007,170(3):930-940
    [17]Guo WP,Wang J,RX,Peng YW.Neuroprotective effects of neuregulin-1 in rat models of focal cerebral ischemia.Brain Res,2006,1087(1):180-185
    [18]Xie J,Guo Q.Apoptosis antagonizing transcription factor protects renal tubule cells against oxidative damage and apoptosis induced by ischemia-reperfusion.J Am Soc Nephrol,2006,17(12):3336-3346
    [19]李远明,叶启发,张毅,明英姿,刘斌,赵于军.三七总皂甙对大鼠移植肝缺血再灌注损伤的保护作用.中国普通外科杂志,2006,15(7):508-511
    [20]韩风,周进学,张玲,韩有志,叶启发.三七总皂甙对大鼠移植肝缺血再灌注的保护作用.中国医师杂志,2005,7(12):1628-1630
    [21]元文勇,叶启发,姜文泉,姜惟龙,申珞硕.三七总皂甙对大鼠肝脏缺血再灌注损伤肝细胞线粒体的自由基的清除作用.中国现代医学杂志,2005,15(20):3076-3078
    [22]倪世容,徐正衸,王万铁,周伟斌,方周溪.三七总皂甙对肺缺血再灌注损伤中细胞凋亡的影响.温州医学院学报,2005,35(5):359-362
    [23]元文勇,姜文泉,姜惟龙,申镕硕.三七总皂甙对大鼠肝脏缺血再灌注损伤中肝细胞线粒体的保护作用.新乡医学院学报 2005,22(2):109-111.
    [24]Kang ES,Woo IS,Kim HJ et al.Up-regulation of aldose reductase expression mediated by phosphatidylinositol 3-kinase/Akt and Nrf2 is involved in the protective effect of curcumin against oxidative damage.Free Radic Biol Med,2007,43(4):535-545
    [25]Lu N,Zhou H,Lin YH,Chen ZQ,Pan Y,Li XJ.Oxidative stress mediates CoC1(2)-induced prostate tumour cell adhesion:role of protein kinase C and p38mitogen-activated protein kinase.Basic Clin Pharmacol Toxicol,2007,101(i):41-46
    [26]Gaitanaki C,Kalpachidou T,Aggeli IK,Papazafiri P,Beis I.CoCl2 induces protective events via the p38-MAPK signalling pathway and ANP in the perfused amphibian heart. J Exp Biol, 2007,210(Pt 13):2267-2277
    [27]Lin HY, Shen SC, Lin CW, Yang LY, Chen YC. Baicalein inhibition of hydrogen peroxide-induced apoptosis via ROS-dependent heme oxygenase 1 gene expression. Biochim Biophys Acta ,2007,1773(7):1073-1086
    [28]Probin V, Wang Y, Zhou D. Busulfan-induced senescence is dependent on ROS production upstream of the MAPK pathway. Free Radic Biol Med ,2007,42(12):1858-1865
    [29]Chiang WC, Chien CT, Lin WW et al. Early activation of bradykinin B2 receptor aggravates reactive oxygen species generation and renal damage in ischemia/reperfusion injury. Free Radic Biol Med, 2006,41(8):1304-14
    [30]Palozza P, Serini S, Verdecchia S, Ameruso M, Trombino S, Picci N et al. Redox regulation of 7-ketocholesterol-induced apoptosis by beta-carotene in human macrophages. Free Radic Biol Med, 2007,42 (10):1579-1590
    [31]Kimura S, Zhang GX, Nishiyama A, Shokoji T, Yao L, Fan YY et al. Mitochondria-derived reactive oxygen species and vascular MAP kinases: comparison of angiotensin II and diazoxide. Hypertension, 2005,45(3):438-444
    [32]Ramesh G, Reeves WB. Inflammatory cytokines in acute renal failure. Kidney Int Suppl.2004, (91) :S56-61
    [33]Song HL, Lu S, Liu P. Tumor necrosis factor-alpha induces apoptosis of enterocytes in mice with fulminant hepatic failure. World J Gastroenterol, 2005,11(24):3701-3709
    [34]Yang BS, Ma YJ, Wang Y, Chen LY, Bi MR, Yan BZ et al. Protective effect and mechanism of stronger neo-minophagen C against fulminant hepatic failure. World J Gastroenterol, 2007,13(3) :462-466
    [35]Togbe D, Schnyder-Candrian S, Schnyder B et al. Toll-like receptor and tumour necrosis factor dependent endotoxin-induced acute lung injury. Int J Exp Pathol, 2007,88(6):387-391
    [36]Kern TS. Contributions of inflammatory processes to the development of the early stages of diabetic retinopathy. Exp Diabetes Res ,2007,2007:95103
    [37]Church LD, Cook GP, McDermott MF. Primer: inflammasomes and interleukin 1beta in inflammatory disorders.Nat Clin Pract Rheumatol,2008,4(1):34-42
    [1]Yuan RH,then HL,Chen HL,Hsu MK,Lee PH,Chang MH.Attenuation of Kupffer cell function in acute on chronic liver injury enhanced engraftment of transplanted hepatocytes.World J Surg,2007,31(6):1270-1277,discussion 1278-1279
    [2]韩德五.肝功能衰竭发病机制的研究--肠源性内毒素血症假说.肝脏病杂志1995,7(3):134-137
    [3]XuXW,Tan DM,LuMH.Protective effects of granulocyte colony-stimulating factor on acute hepatic failure induced by D-galactosamine/lipopolysaccharide in mice].Zhong Nan Da Xue Xue Bao Yi Xue Ban,2006,31(4):543-547
    [4]Qiu Z,Kwon AH,Tsuji K,Kamiyama Y,OkumuraT,Hirao Y.Fibronectin prevents D-galactosamine/lipopolysaccharide-induced lethal hepatic failure in mice.Shock,2006,25(1):80-87
    [5]Reidy MR,Ellis J,Schmitz EA,Kraus DM,Bulla GA.Apoptosis of dedifferentiated hepatoma ceils is independent of NF-kappaB activation in response to LPS.Biosci Rep,2007,27(4-5):235-246
    [6]Morrison DE,Bucklin SE.Evidence for antibiotic-mediated endotoxin release as a contributing factor to lethality in experimental gram-negative sepsis.Scand J Infect Dis Supp1,1996;101:3-8
    [7]Santos FA, Silva RM, Tome AR, Rao VS, Pompeu MM, Teixeira MJ et al. 1,8-cineole protects against liver failure in an in-vivo murine model of endotoxemic shock. J Pharm Pharmacol,2001,53(4):505-511
    [8]Silverstein R. D-galactosamine lethality model: scope and limitations. J Endotoxin Res, 2004,10(3):147-162
    [9]Avivi-Green C, Singal M, Vogel WF. Discoidin domain receptor 1-deficient mice are resistant to bleomycin-induced lung fibrosis. Am J Respir Crit Care Med, 2006,174(4):420-427
    [10]Ongusaha PP, Kim JI, Fang L, Wong TW, Yancopoulos GD, Aaronson SA et al. p53 induction and activation of DDRl kinase counteract p53-mediated apoptosis and influence p53 regulation through a positive feedback loop. Embo J, 2003,22(6):1289-1301
    [11]Matsuyama W, Mitsuyama H, Ono M, Shirahama Y, Higashimoto I, Osame M et al. Discoidin domain receptor 1 contributes to eosinophil survival in an NF-kappaB-dependent manner in Churg-Strauss syndrome. Blood , 2007,109(1): 22-30
    [12]Matsuyama W, Watanabe M, Shirahama Y, Hirano R, Mitsuyama H, Higashimoto I et al. Suppression of discoidin domain receptor 1 by RNA interference attenuates lung inflammation. J Immunol,2006,176(3):1928-1936
    [13]Vogel WF, Abdulhussein R, Ford CE. Sensing extracellular matrix: an update on discoidin domain receptor function. Cell Signal,2006,18(8):1108-16
    [14]ZhangHY, Han de W, Su AR, Zhang LT, Zhao ZF, Ji JQ et al. Intestinal endotoxemia plays a central role in development of hepatopulmonary syndrome in a cirrhotic rat model induced by multiple pathogenic factors. World J Gastroenterol, 2007,13(47):6385-6395
    [15]Xu CP, Liu J, Liu JC, Han DW, Zhang Y, Zhao YC. Dynamic changes and mechanism of intestinal endotoxemia in partially hepatectomized rats. World J Gastroenterol, 2007,13(26):3592-3597
    [16]Zhang HY, Han DW, Zhao ZF, Liu MS, Wu YJ, Chen XM et al. Multiple pathogenic factor-induced complications of cirrhosis in rats: a new model of hepatopulmonary syndrome with intestinal endotoxemia. World J Gastroenterol, 2007,13(25):3500-3507
    [17]Han DW.Intestinal endotoxemia as a pathogenetic mechanism in liver failure.World J Gastroenterol,2002,8(6):961-965
    [18]韩德五.肠源性内毒素血症与肝功能衰竭.临床肝胆病杂志,19965(1):50-53
    [19]Lehmann GL,Carreras FI,Soria LR,Gradilone SA,Marinelli RA.LPS induces the TNF-alpha-mediated downregulation of rat liver aquaporin-8:role in sepsis-associated cholestasis.Am J Physiol Gastrointest Liver Physiol,2008,294(2):G567-575
    [20]Lu JW,Wang H,Yan-Li J,Zhang C,Ning H,Li XY et al.Differential effects of pyrrolidine dithiocarbamate on TNF-alpha-mediated liver injury in two different models of fulminant hepatitis.J Hepato1,2008,48(3):442-452
    [21]Biburger M,Tiegs G.Alpha-galactosylceramide-induced liver injury in mice is mediated by TNF-alpha but independent of Kupffer cells.J Immunol,2005,175(3):1540-50
    [22]Van Lint P,Wielockx B,Puimege L,Noel A,Lopez-Otin C,Libert C.Resistance of collagenase-2(matrix metalloproteinase-8)-deficient mice to TNF-induced lethal hepatitis.J Immunol,2005,175(11):7642-7649
    [23]刘亮明,邓欢,张吉翔,罗杰.内毒素性急性肝损伤实验动物模型的建立.世界华人消化杂志,2006,14(1):12-18
    [24]Mignon A,Rouquet N,Fabre M,Martin S,Pages JC,Dhainaut JF et al.LPS challenge in D-galactosamine-sensitized mice accounts for caspase-dependent fulminant hepatitis,not for septic shock.Am J Respir Crit Care Med,1999,159(4 Pt 1):1308-1315
    [25]Kamohara H,Vamashiro S,Galligan C,Yoshimura T.Discoidin domain receptor 1isoform-a(DDRlalpha)promotes migration of leukocytes in three-dimensional collagen lattices.Faseb J,2001,15(14):2724-2726
    [26]Matsuyama W,Watanabe M,Shirahama Y,Oonakahara K,Higashimoto I,Yoshimura T et al.Activation of discoidin domain receptor 1 on CD14-positive bronchoalveolar lavage fluid cells induces chemokine production in idiopathic pulmonary fibrosis.J Immunol,2005,174(10):6490-6498
    [27]Matsuyama W, Wang L, Farrar WL, Faure M, Yoshimura T. Activation of discoidin domain receptor 1 isoform b with collagen up-regulates chemokine production in human macrophages: role of p38 mitogen-activated protein kinase and NF-kappa B. J Immunol, 2004,172(4):2332-2340
    [28]Matsuyama W, Faure M, Yoshimura T. Activation of discoidin domain receptor 1 facilitates the maturation of human monocyte-derived dendritic cells through the TNF receptor associated factor 6/TGF-beta-activated protein kinase 1 binding protein 1 beta/p38 alpha mitogen-activated protein kinase signaling cascade. J Immunol, 2003,171(7):3520-3532
    [29]Odashima M, Otaka M, Jin M, Komatsu K, Wada I, Matsuhashi T et al. Selective A2A adenosine agonist ATL-146e attenuates acute lethal liver injury in mice. J Gastroenterol, 2005,40 (5):526-529
    [1]Gillespie DL,Whang K,Ragel BT,Flynn JR,Kelly DA,Jensen RL.Silencing of Hypoxia Inducible Factor-l{alpha} by RNA Interference Attenuates Human Glioma Cell Growth In vivo.Clin Cancer Res,2007,13(8):2441-2448
    [2]Tan C,Xuan B,Hong J,Dai Z,Hao R,Li Z et al.RNA interference against hepatitis B virus with endoribonuclease-prepared siRRA despite of the target sequence variations.Virus Res,2007,126(1-2):172-8
    [3]Kumar LD,Clarke AR.Gene manipulation through the use of small interfering RNA (siRRA):From in vitro to in vivo applications.Adv Drug Deliv Rev,2007,59(2-3):87-100
    [4]Peng Y,Murr MM.Establishment of immortalized rat Kupffer cell lines.Cytokine,2007,37(3):185-191
    [5]Wesche-Soldato DE,Chung CS,Lomas-Neira J,Doughty LA,Gregory SH,Ayala A.In vivo delivery of caspase-8 or Fas siRRA improves the survival of septic mice.Blood,2005,106(7):2295-2301
    [6]Andrianaivo F,Lecocq M,Wattiaux-Oe Coninck S,Wattiaux R,Jadot M.Hydrodynamics-based transfection of the liver:entrance into hepatocytes of DNA that causes expression takes place very early after injection.J Gene Med,2004,6(8):877-883
    [7]Matsuyama W,Watanabe M,Shirahama Y,Hirano R,Mitsuyama H,Higashimoto I et al.Suppression of discoidin domain receptor 1 by RNA interference attenuates lung inflammation.J Immunol,2006,176(3):1928-1936
    [8]Mignon A,Rouquet N,Fabre M,Martin S,Pages JC,Dhainaut JF et al.LPS challenge in D-galactosamine-sensitized mice accounts for caspase-dependent fulminant hepatitis,not for septic shock,Am J Respir Crit Care Med,1999,159(4 Pt 1):1308-1315
    [9]Odashima M, Otaka M, Jin M, Komatsu K, Wada I, Matsuhashi T et al. Selective A2A adenosine agonist ATL-146e attenuates acute lethal liver injury in mice. J Gastroenterol,2005,40(5):526-529
    [10]Wang H, Xu DX, Lv JW, Ning H, Wei W. Melatonin attenuates lipopolysaccharide (LPS)-induced apoptotic liver damage in D-galactosamine-sensitized mice. Toxicology, 2007,237(1-3):49-57
    [11]Ho DW, Yang ZF, Lau CK, Tam KH, To JY, Poon RT et al. Therapeutic potential of cardiotrophin 1 in fulminant hepatic failure: dual roles in antiapoptosis and cell repair. Arch Surg, 2006,141(11):1077-1084
    [12]Matsuyama W, Mitsuyama H, Ono M, Shirahama Y, Higashimoto I, Osame M et al. Discoidin domain receptor 1 contributes to eosinophil survival in an NF-kappaB-dependent manner in Churg-Strauss syndrome. Blood, 2007,109(1): 22-30
    [13]Song E, Lee SK, Wang J, Ince N, Ouyang N, Min J et al. RNA interference targeting Fas protects mice from fulminant hepatitis. Nat Med, 2003,9(3):347-351
    [14]Ito H, Koide N, Hassan F, Islam S, Tumurkhuu G, Mori I et al. Lethal endotoxic shock using alpha-galactosylceramide sensitization as a new experimental model of septic shock. Lab Invest, 2006,86(3):254-261
    [15]Latta M, Kunstle G, Lucas R, Hentze H, Wendel A. ATP-depleting carbohydrates prevent tumor necrosis factor receptor 1-dependent apoptotic and necrotic liver injury in mice. J Pharmacol Exp Ther, 2007,321(3):875-883
    [16]Dajani R, Sanlioglu S, Zhang Y, Li Q, Monick MM, Lazartigues E et al. Pleiotropic functions of TNF-alpha determine distinct IKKbeta-dependent hepatocellular fates in response to LPS. Am J Physiol Gastrointest Liver Physiol, 2007, 292(1):G242-252
    [17]Song HL, Lu S, Liu P. [Tumor necrosis factor alpha and enterocyte apoptosis in mice with fulminant hepatic failure]. Zhonghua Gan Zang Bing Za Zhi ,2005,13(4):290-293
    [18]Sass G, Shembade ND, Haimerl F, Lamoureux N, Hashemolhosseini S, Tannapfel A et al. TNF pretreatment interferes with mitochondrial apoptosis in the mouse liver by A20-mediated down-regulation of Bax. J Immunol, 2007,179(10): 7042-7049
    [19]Groesdonk HV, Wagner F, Hoffarth B, Georgieff M, Senftleben U. Enhancement of NF-kappaB activation in lymphocytes prevents T cell apoptosis and improves survival in murine sepsis. J Immunol, 2007,179(12):8083-8089
    [20]Ji LL, Gomez-Cabrera MC, Vina J. Role of nuclear factor kappaB and mitogen-activated protein kinase signaling in exercise-induced antioxidant enzyme adaptation. Appl Physiol Nutr Metab,2007,32(5):930-935
    [21]Huh JE, Yim JH, Lee HK, Moon EY, Rhee DK, Pyo S. Prodigiosin isolated from Hahella. chejuensis suppresses lipopolysaccharide-induced NO production by inhibiting p38 MAPK, JNK and NF-kappaB activation in murine peritoneal macrophages. Int Immunopharmacol, 2007,7(13):1825-1833
    [22]Jomphe C, Gabriac M, Hale TM, Heroux L, Trudeau LE, Deblois D et al. Chondroitin sulfate inhibits the nuclear translocation of nuclear factor-kappaB in interleukin-1beta-stimulated chondrocytes. Basic Clin Pharmacol Toxicol, 2008,102(1): 59-65
    [23]Saha RN, Jana M, Pahan K. MAPK p38 regulates transcriptional activity of NF-kappaB in primary human astrocytes via acetylation of p65. J Immunol, 2007,179(10):7101-7109
    [24]Suh SJ, Jin UH, Kim KW, Son JK, Lee SH, Son KH et al. Triterpenoid saponin, oleanolic acid 3-O-beta-d-glucopyranosyl(1-->3)-alpha-1-rhamnopyranosyl (1-->2)-alpha-1-arabinopy ranoside (OA) from Aralia elata inhibits LPS-induced nitric oxide production by down-regulated NF-kappaB in raw 264. 7 cells. Arch Biochem Biophys, 2007,467(2):227-233
    [25]Zhang Z, Reenstra W, Weiner DJ, Louboutin JP, Wilson JM. The p38 mitogen-activated protein kinase signaling pathway is coupled to Toll-like receptor 5 to mediate gene regulation in response to Pseudomonas aeruginosa infection in human airway epithelial cells. Infect Immun, 2007,75(12) :5985-5992
    [26]Chen P, Zhang Y, Qiao M, Yuan Y. Activated protein C, an anticoagulant polypeptide, ameliorates severe acute pancreatitis via regulation of mitogen-activated protein kinases. J Gastroenterol, 2007,42(11):887-896
    [27]Wang Y, Singh R, Lefkowitch JH, Rigoli RM, Czaja MJ. Tumor necrosis factor-induced toxic liver injury results from JNK2-dependent activation of caspase-8 and the mitochondrial death pathway. J Biol Chem, 2006,281(22):15258-15267
    [28]Xiao ZY, Zhou WX, Zhang YX, Cheng JP, He JF, Yang RF et al. Inhibitory effect of linomide on lipopolysaccharide-induced proinflammatory cytokine tumor necrosis factor-alpha production in RAW264. 7 macrophages through suppression of NF-kappaB, p38, and JNK activation. Immunol Lett,2007,114(2):81-85
    [29]Jiao S, Liu BC, Shi XL, Huang CS, Gao A, Ye M et al. [c-Jun NH2-terminal kinase and extracellular signal-regulated protein kinase signaling pathways in regulation of benzo(a)pyrene-induced c-Jun activation in human embryo lung fibroblasts]. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi, 2007,25(7):385-388
    [30]Chen G, Shi J, Ding Y, Yin H, Hang C. Progesterone prevents traumatic brain injury-induced intestinal nuclear factor kappa B activation and proinf lammatory cytokines expression in male rats. Mediators Inflamm, 2007,2007:93431
    [31]Hamalainen M, Nieminen R, Vuorela P, Heinonen M, Moilanen E. Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-kappaB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-kappaB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediators Inflamm, 2007, 2007:45673
    [32]Uchida K. Lipid peroxidation and redox-sensitive signaling pathways. Curr Atheroscler Rep, 2007, 9(3):216-221
    [33]Hotta N, Ichiyama T, Shiraishi M, Takekawa T, Matsubara T, Furukawa S. Nuclear factor-kappaB activation in peripheral blood mononuclear cells in children with sepsis. Crit Care Med,2007,35(10):2395-2401
    [34]Ferris RL, Grandis JR. NF-kappaB gene signatures and p53 mutations in head and neck squamous cell carcinoma. Clin Cancer Res, 2007,13(19):5663-5664
    [35]The FO, Boeckxstaens GE, Snoek SA, Cash JL, Bennink R, Larosa GJ et al. Activation of the cholinergic anti-inflammatory pathway ameliorates postoperative ileus in mice. Gastroenterology,2007,133(4):1219-1228
    [36]Tanaka Y, Chen C, Maher JM, Klaassen CD. Kupffer cell-mediated downregulation of hepatic transporter expression in rat hepatic ischemia-reperfusion. Transplantation, 2006,82(2):258-266
    [37]Tukov FF, Luyendyk JP, Ganey PE, Roth RA. The role of tumor necrosis factor alpha in lipopolysaccharide/ranitidine-induced inflammatory liver injury. Toxicol Sci, 2007,100(1): 267-280
    [38] You Q, Cheng L, Reilly TP, Wegmann D, Ju C. Role of neutrophils in a mouse model of halothane-induced liver injury. Hepatology, 2006,44(6):1421-1431
    [39]Peng Y, Murr MM. Establishment of immortalized rat Kupffer cell lines. Cytokine, 2007,37:185-191
    [1]马兵,夏照帆.促/抗炎性细胞因子对外科脓毒症效应机制的研究进展.中华医学杂志,2005,85(41):2943-2948
    [2]Wuyts WA,Vanaudenaerde BM,Dupont LJ,et al.Involvement of p38MAPK,JNK,p42/p44ERK and NF-kappaB in IL-lbeta-induced chemokine release in human airway smooth muscle cells.Respir Med,2003,97(7):811-7
    [3]Chen SE,Gerken E,Zhang Y,et al.Role of TNF-{alpha} signaling in regeneration of cardiotoxin-injured muscle.Am J Physiol Cell Physiol,2005,289(5):C1179-87
    [4]陈旭林,夏照帆,韦多,等.p38丝裂原活化蛋白激酶信号转导通路在严重烧伤大鼠枯否细胞肿瘤坏死因子α和白细胞介素1β产生中的作用.中华外科杂志,2005,43(3):185-189
    [5]Lee JC,Kumar S,Griswold DE,et al.Inhibition of p38MAP kinase as a therapeutic strategy.Immunopharmacology,2000,47(2-3):185-201
    [6]Jang BC,Paik JH,Kim SP,Shin DH,Song DK,Park JG,Suh MH,Park JW,Suh SI.Catalase induced expression of inflammatory mediators via activation of NF-kappaB,PI3K/AKT,p7OS6K,and iNKs in BV2 microglia.Cell Signal,2005,17(5):625-33
    [7]Oltmanns U,Issa R,Sukkar M B,et al.Role of c-jun N-terminalkinase in the induced release of GM-CSF,RANTES and 1L- 8 from human airway smooth muscle cells.Br J Pharmaeol,2003,139(6):1228-1234
    [8]Hallsworth M P,Moir LM,Lai D,et al.Inhibitors of mitogenactivated protein kinases differentially regulate eosinophilactivating cytokine release from human airway smooth muscle.Am J Respir Crit Care Med,2001,164(4):688-697
    [9]Tamura S,Hanada M,Ohnishi M,et al.Regulation of stress-activated protein kinase signaling pathways by protein phosphatases.Eur J Biochem, 2002,269(4):1060-6
    [10]李晓燕,路程,吴宁华,等.热激活Rac-MEKK-JNK信号通路与hsp90基因表达.中国医学科学院学报,2002,24(3):264-269
    [11]Dong C,Yang DD,Tournier C,et al.JNK is required for effectorT-eell function but not fort-cell activation.Nature,2000,405(6782):91-94
    [12]范鹏举,黄跃生,黄晓元,等.机械牵张对烧伤血清复合缺氧培养大鼠心肌细胞p38、JNK、c-jun、ATF-2表达的影响.第三军医大学学报,2004,26(23):2089-92
    [13]郭军,朱红,德伟.丝裂原活化蛋白激酶ERKs和JNKs在脑缺血损伤中的差异激活及其调控机制.中国神经科学杂志,2004,20(3):217-221

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700