新型雌激素受体亚型ERα36在乳腺癌中作用的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳腺癌是女性最为常见的恶性肿瘤之一。美国癌症协会研究表明,美国每年新增乳腺癌病例约194280例,为女性发病率最高的恶性肿瘤,因乳腺癌死亡的病例达40610例,死亡率仅次于肺癌而居第二位。随着我国经济社会的不断发展,近来年我国乳腺癌发病率也呈现明显上升趋势,已位居女性恶性肿瘤发病率的首位。因此,如何有效对乳腺癌进行三级预防,提高综合治疗的效果,降低发病率与死亡率,已成为肿瘤学当前的研究重点之一
     目前乳腺癌的综合治疗包括外科手术切除,药物治疗以及局部放射治疗等手段。其中以三苯氧胺和芳香化酶抑制剂为代表的内分泌治疗(Endocrine therapy)因其具有确切的疗效和良好的耐受性,在乳腺癌的药物治疗中占有重要地位。而肿瘤组织中雌激素受体(Estrogen receptor, ER)的状态被广泛认为是预测患者对内分泌治疗反应性和预后的关键指标之一。目前一般认为,雌激素受体有两个亚型,即ERα和ERβ。其中分子量为66kD的ERa (ERa66)首先于1986年被克隆,属配体活化的核转录因子,具有六个功能区(A-F),构成数个结构域。其中N端的A/B区构成转录活化结构域AF-1,介导非配体依赖的转录活化功能。C区负责结合特定的DNA序列及形成受体二聚体,D区为铰链区。C端的E/F区构成另一个结构域AF-2,为配体依赖的转录活化结构域。
     近年来研究发现,由于剪切异构体(Splice variants)的存在,ERα尚有数个亚型。Wang等于2005年发现了一个分子量为36kD的新型ERα亚型,命名为ERα36。与全长ERα66相比,该亚型缺少转录活化结构域AF-1及AF-2,但仍保留DNA结合域及部分二聚体形成域和配体结合域,并在C端具有一个由27个氨基酸所组成的新型结构域。前期研究表明,ERα36在乳腺癌细胞系及乳腺癌组织中均有表达,且通过在人胚胎肾细胞系HEK293中的研究表明,由于缺乏内在的转录活性,ERα36可竞争性抑制ERα66所介导的受体依赖或非依赖的转录活化,但可介导MAPK/ERK信号通路的活化。目前尚未有文献系统报道ERα36在人乳腺癌发生发展中所起的作用。我们的前期工作表明,ERα36在结直肠癌中的表达低于临近正常组织,在结直肠癌的发生发展中起一定的作用。为了研究ERα36与人乳腺癌的关系,本课题检测了ERα36在74对乳腺癌及其相应临近正常乳腺组织中的表达水平;构建了ERα36的真核表达载体,并在低表达ERα36的人乳腺癌细胞系MCF-7中得到稳定表达;研究了ERα36转染前后乳腺癌细胞系MCF-7对雌激素、三苯氧胺的反应性以及对化疗药物紫杉醇敏感性的差异。具体内容如下:
     第一部分:ERα36和ERα66在乳腺癌及临近正常乳腺组织中的表达。采用实时定量PCR技术,检测ERα36和ERα66的mRNA在74对乳腺癌及其相应临近正常乳腺组织中表达的差异,分析其在乳腺癌发生过程中可能的作用。同时,结合上述病例的临床病理资料,如年龄、绝经状态、肿瘤大小、淋巴结受累情况及肿瘤分期等,分析乳腺癌组织中ERα36和ERα66的表达与上述指标之间的关系。结果表明,乳腺癌组织中ERα36的表达水平显著低于相应临近正常乳腺组织,且ERα36的低表达与较大的肿瘤直径、淋巴结受累及较高的肿瘤分期有关,提示ERα36表达降低与乳腺癌的发生过程及进展转移过程密切相关。我国女性乳腺癌及临近正常乳腺组织ERα66的表达规律与美国非洲裔女性乳腺癌相仿,提示二者具有共同的临床特征,可按照相似的策略进行内分泌治疗。
     第二部分:ERα36真核表达载体的构建表达及其对人乳腺癌MCF-7细胞系生物学行为的影响。本课题组的前期工作已克隆并鉴定了ERα36的全长编码序列并成功连接于真核表达载体pcDNA3.1(+)上,构建出ERα36的真核表达载体pcDNA3.1(+)-ERa36.由于尚未有商业化的特异性ERα36抗体,给鉴定细胞内的ERα36表达情况带来了很大的困难,因此,本课题将FLAG标签肽编码序列片段插入pcDNA3.1(+)-ERa36载体中,成功构建pcDN A3.1 (+)-FLAG-ERa36真核表达体系,并经测序确认。将上述ERα36表达载体稳定转染人乳腺癌细胞系MCF-7,经Westernblot鉴定该蛋白在MCF-7细胞中表达。应用MTT法检测转染ERα36前后,人乳腺癌细胞系MCF-7对雌激素、三苯氧胺的反应性以及对化疗药物紫杉醇敏感性的变化。结果表明,在雌激素的作用下,转染ERα36的MCF-7细胞的增殖能力明显高于转染空载体的对照细胞,而在三苯氧胺的作用下,转染ERα36的MCF-7细胞的增殖能力也明显提高。通过对治疗乳腺癌常用化疗药物紫杉醇的敏感性试验表明,转染ERα36的MCF-7细胞对紫杉醇的细胞毒作用更为敏感,生长抑制作用更明显。研究结果提示,肿瘤组织高表达ERα36的乳腺癌患者接受三苯氧胺治疗带来的获益更小,选择ERα阳性乳腺癌患者进行三苯氧胺治疗需考虑肿瘤组织中ERα36的表达状况。同时,对于肿瘤组织高表达ERα36的患者,选择紫杉醇化疗可能带来更大的生存获益。
Breast cancer is the most commonly diagnosed cancer type in women and ranks the second in female cancer deaths. American Cancer Sociaty estimates that about 194,280 new occurrences and 40,610 deaths are expected each year in the United States. The incidence rate of Chinese female breast cancer is also increasing. In certain industrialized cities, breast cancer has ranked first in female cancer incidences. Therefore, more understandings about breast cancer are needed for the improvement of early detection and comprehensive treatment.
     While surgery, chemotherapy, and radiotherapy have become established modalities for breast cancer treatment, endocrine therapy, such as tamoxifen and aromatase inhibitors, can provide further survival benefits with well tolerances. Among all molecular factors involved in breast cancer management, the expression status of estrogen receptor (ER) has been widely accepted as a prognostic marker and a predictor for endocrine therapy response. There are two subtypes of ER, ERa and ERβ.The 66kD ERα(here also termed ERα66), first cloned and sequenced in 1986, consists of six functional regions, from the N-terminal domain A/B to the C-terminal domain F. The N-terminal domain A/B is responsible for the ligand-independent transactivation function (AF-1). Domain C is responsible for receptor dimerization and DNA binding. Domain D is hinge region. The C-terminal domain E/F is responsible for the ligand-dependent transactivation (AF-2). Several ERβdomains show a high degree of homology to ERa, but its exact functions in breast cancer are still unclear.
     A single ERa66 was considered to be responsible for all ERa related estrogen biological actions in breast cancer until the discovery of its splice variants. These variants have been identified in both breast cancer cell lines. The novel 36kD variant (here termed ERa36) which was first identified and cloned in 2005 by Wang et al., lacks both transcriptional activation function domains (AF-1 and AF-2) but retains the DNA binding domain, partial dimerization, and ligand-binding domains campared to the full-length ERa66. Previous studies have confirmed ERa36 expression in breast cancer tissues and breast cancer cell lines. In human embryonic kidney cell line HEK293, it was found that ERa36 may influence ERa66 mediated transcriptional activity, but can induce the activation of the mitogenactivated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) pathway. Our earlier studies showed a decreased ERa36 mRNA level in colorectal cancers compared to their matched normal tissues. However, no critical study results on the effects of ERa36 in breast cancer were reported. In the present study, we compared the expression of ERa36 and ERa66 mRNA in 74 paired breast cancers and normal breast tissues, and investigated its function on cell growth and response to estrogen, tamoxifen and paclitaxel by transfecting ERa36 into ERa36-low-expression MCF-7 breast cancer cells. The details are listed below. Part One:The expression of ERa36 and ERa66 mRNA level in breast cancers and their matched normal tissues.
     Real-time quantitative PCR assay was applied to quantify the mRNA levels of ERa36 and ERa66 in 74 pairs of breast cancers and their matched normal tissues. The glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene was used as an endogenous control for normalization. Besides, the findings were correlated with the clinicopathological characteristics of these breast cancer patients, including age, menopausal status, tumor size, lymph node metastasis, and tumor stage. Quantitative analysis showed that the ERa36 mRNA levels in both ERa positive and negative breast cancers were significantly lower than those in their matched normal tissues (P<0.001). The ERa36 mRNA level in breast cancers over 2 cm was significantly lower compared with cancers less than 2 cm (P=0.014). Similarly, cancers with lymph node metastasis showed significantly decreased ERa36 mRNA levels than those without lymph nodes involvement (P=0.023). The ERa36 mRNA level was also decreased in advanced diseases compared to early stage cancers (P=0.031). These results all suggest that ERa36 may associate with breast carcinogenesis and progression. The expression pattern of ERa66 in Chinese female breast cancer patients showed a close resemblance to those from African-American and Taiwanese women. Part Two:Construction and expression of ERa36 eukaryotic expression system in breast cancer cell line MCF-7 and its effects on response to estrogen, tamoxifen and paclitaxel.
     Our previous work had finished cloning of the full length coding region of ERa36 and had ligated it with the eukaryotic expression vector pcDNA3.1(+). However, since there is no commercial antibody against ERa36 available currently, it was not possible to confirm the successful transfection of ERa36 into breast cancer cell lines. Therefore, the coding sequence of FLAG tag was cloned and inserted into the expression vector to construct the eukaryotic expression system pcDNA3.1 (+)-FLAG-ERα36, which was verified by sequencing later. The expression vector was successfully transfected into MCF-7 breast cancer cells and the expression of ERa36 protein was confirmed by Western blot.
     MTT assay was performed to evaluate the influence of ERa36 on the response to estrogen, tamoxifen and paclitaxel in MCF-7 cells. At the presence of estradiol, the growth rate of ERa36 transfected MCF-7 cells was higher than those control cells which transfected with empty vectors. Suprisingly, when incubated with tamoxifen, same growth acceleration of ERa36 transfected MCF-7 cells was observed. Besides, ERa36 transfected MCF-7 cells tended to be more sensitive to paclitaxel, which showed more significant growth suppression compared to those control cells. These findings suggest that patients express relative high level of ERa36 in breast cancers are less likely to benefit from tamoxifen therapy. However, these patients are the right population for paclitaxel treatment.
引文
1. Jemal A, Siegel R, Ward E, et al:Cancer statistics,2009. CA Cancer J Clin.2009; 59(4):225-249.
    2.杨玲,李连弟,陈育德。中国2000年及2005年恶性肿瘤发病死亡的估计与预测。中国卫生统计,2005;22(4):218-221.
    3. Early Breast Cancer Trialists' Collaborative Group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival:an overview of the randomised trials. Lancet.2005; 365(9472):1687-1717.
    4. Coombes RC, Kilburn LS, Snowdon CF, et al. Survival and safety of exemestane versus tamoxifen after 2-3 years' tamoxifen treatment (Intergroup Exemestane Study):a randomised controlled trial. Lancet.2007; 369(9561):559-570.
    5. Kaufmann M, Jonat W, Hilfrich J, et al. Improved overall survival in postmenopausal women with early breast cancer after anastrozole initiated after treatment with tamoxifen compared with continued tamoxifen:the ARNO 95 Study. J Clin Oncol.2007; 25(19):2664-2670.
    6. Goss PE, Ingle JN, Martino S, et al. Randomized trial of letrozole following tamoxifen as extended adjuvant therapy in receptor-positive breast cancer:updated findings from NCIC CTG MA.17. J Natl Cancer Inst.2005; 97(17):1262-1271.
    7. Buzdar A, Douma J, Davidson N, et al. Phase III, multicenter, double-blind, randomized study of letrozole, an aromatase inhibitor, for advanced breast cancer versus megestrol acetate. J Clin Oncol.2001; 19(14):3357-3366.
    8. Edwards DP. Regulation of signal transduction pathways by estrogen and progesterone. Annu Rev Physiol.2005; 67:335-376.
    9. Song RX, Barnes CJ, Zhang Z, et al. The role of Shc and insulin-like growth factor 1 receptor in mediating the translocation of estrogen receptor alpha to the plasma membrane. Proc Natl Acad Sci U S A.2004; 101(7):2076-2081.
    10. Yager JD. Endogenous estrogens as carcinogens through metabolic activation. J Natl Cancer Inst Monogr.2000; (27):67-73.
    11. Dunnwald LK, Rossing MA, Li CI. Hormone receptor status, tumor characteristics, and prognosis:a prospective cohort of breast cancer patients. Breast Cancer Res. 2007; 9(1):R6.
    12. Fisher B, Redmond C, Fisher ER, et al. Relative worth of estrogen or progesterone receptor and pathologic characteristics of differentiation as indicators of prognosis in node negative breast cancer patients:findings from National Surgical Adjuvant Breast and Bowel Project Protocol B-06. J Clin Oncol.1988; 6(7):1076-87.
    13. Goldhirsch A, Glick JH, Gelber RD, et al. Meeting highlights:International expert consensus on the primary therapy of early breast cancer 2005. Ann Oncol.2005; 16(10):1569-83.
    14. Strom A,'Hartman J, Foster JS, et al. Estrogen receptor beta inhibits 17beta-estradiol stimulated proliferation of the breast cancer cell line T47D. Proc Natl Acad Sci USA.2004; 101(6):1566-1571.
    15. Mangelsdorf DJ, Thummel C, Beato M, et al. The nuclear receptor superfamily:the second decade. Cell 1995; 83:835-839.
    16. Green S, Walter P, Kumar V, et al. Human oestrogen receptor cDNA:sequence, expression and homology to v-erb-A. Nature.1986; 320(6058):134-139.
    17. Greene GL, Gilna P, Waterfield M, et al. Sequence and expression of human estrogen receptor complementary DNA. Science.1986; 231(4742):1150-1154.
    18. Menasce LP, White GR, Harrison CJ, et al. Localization of the estrogen receptor locus (ESR) to chromosome 6q25.1 by FISH and a simple post-FISH banding technique. Genomics.1993; 17(1):263-265.
    19. Kong EH, Pike AC, Hubbard RE. Structure and mechanism of the oestrogen receptor. Biochem Soc Trans.2003; 31(Pt 1):56-59.
    20. Kuiper GG, Enmark E, Pelto-Huikko M, et al. Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci U S A.1996; 93(12):5925-5930.
    21. Mosselman S, Polman J, Dijkema R. ER beta:identification and characterization of a novel human estrogen receptor. FEBS Lett.1996; 392(1):49-53.
    22. Ogawa S, Inoue S, Watanabe T, et al. The complete primary structure of human estrogen receptor beta (hER beta) and its heterodimerization with ER alpha in vivo and in vitro. Biochem Biophys Res Commun.1998; 243(1):122-126.
    23. Weihua Z, Andersson S, Cheng G, et al. Update on estrogen signaling. FEBS Lett. 2003; 546(1):17-24.
    24. Bai Z, Gust R. Breast cancer, estrogen receptor and ligands. Arch Pharm (Weinheim).2009; 342(3):133-149.
    25. Kraus WL, Mcinerney EM, Katzenellenbogen BS. Ligand-dependent transcriptionally productive association of the amino and carboxy-terminal regions of a steroid hormone nuclear receptor. Proc Natl Acad Sci USA 1995; 92(12): 314-318.
    26. Mcinerney EM, Tsai MJ, Malley BW, et al. Analysis of estrogen receptor transcriptional enhancement by a nuclear receptor coactivator. Proc Natl Acad Sci USA 1996; 93(10):69-73.
    27. Kumar R, Johnson BH, Thompson EB. Essay in Biochemistry:The Nuclear Receptor Superfamily. London:Portland Press,2004,27-39.
    28. Gearhart MD, Holmbeck SM, Evans RM, et al. Monomeric complex of human orphan estrogen related receptor-2 with DNA:a pseudo-dimer interface mediates extended half-site recognition. J Mol Biol.2003; 327(4):819-32.
    29. McEwan IJ. Essays in Biochemistry:The Nuclear Receptor Superfamily. London: Portland Press,2004,1-10.
    30. Sentis S, Le Romancer M, Bianchin C, et al. Sumoylation of the estrogen receptor a hinge region regulates its transcriptional activity. Mol Endocrinol.2005; 19(11):2671-2684.
    31. Pearce ST, Jordan VC. The biological role of estrogen receptors alpha and beta in cancer. Crit Rev Oncol Hematol.2004; 50(1):3-22.
    32. Pratt WB, Toft DO. Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev.1997; 18(3):306-360.
    33. Matthews J, Gustafsson JA. Estrogen signaling:a subtle balance between ER alpha and ER beta. Mol Interv.2003; 3(5):281-92.
    34. Gustafsson JA. Estrogen receptor beta--a new dimension in estrogen mechanism of action. J Endocrinol.1999; 163(3):379-383.
    35. Muramatsu M, Inoue S. Estrogen receptors:how do they control reproductive and nonreproductive functions? Biochem Biophys Res Commun.2000; 270(1):1-10.
    36. Shao W, Brown M. Advances in estrogen receptor biology:prospects for improvements in targeted breast cancer therapy. Breast Cancer Res.2004; 6(1):39-52.
    37. Kumar VL, Kumar S, Srivastava A, et al. Observations on the presence of E domain variants of estrogen receptor-alpha in the breast tumors. J Surg Oncol.2006; 94(4):332-337.
    38. Flouriot G, Brand H, Denger S, et al. Identification of a new isoform of the human estrogen receptor-alpha (hER-alpha) that is encoded by distinct transcripts and that is able to repress hER-alpha activation function 1. EMBO J.2000; 19(17):4688-4700.
    39. Li L, Haynes MP, Bender JR. Plasma membrane localization and function of the estrogen receptor alpha variant (ER46) in human endothelial cells. Proc Natl Acad Sci USA.2003; 100(8):4807-4812.
    40. Wang Z, Zhang X, Shen P, et al. Identification, cloning, and expression of human estrogen receptor-alpha36, a novel variant of human estrogen receptor-alpha66. Biochem Biophys Res Commun.2005; 336(4):1023-1027.
    41. Lee LM, Cao J, Deng H, et al. ER-alpha36, a novel variant of ER-alpha, is expressed in ER-positive and-negative human breast carcinomas. Anticancer Res. 2008; 28(1B):479-483.
    42. Wang Z, Zhang X, Shen P, et al. A variant of estrogen receptor-{alpha}, hER-{alpha} 36:transduction of estrogen-and antiestrogen-dependent membrane-initiated mitogenic signaling. Proc Natl Acad Sci U S A.2006; 103(24):9063-9068.
    43. Jiang H, Teng R, Wang Q, et al. Transcriptional analysis of estrogen receptor alpha variant mRNAs in colorectal cancers and their matched normal colorectal tissues. J Steroid Biochem Mol Biol.2008; 112(1-3):20-24.
    44. Wolff AC, Hammond ME, Schwartz JN, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol.2007; 25(1):118-145.
    45. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method. Methods.2001; 25(4):402-408.
    46. Wilson KJ, Gilmore JL, Foley J, et al. Functional selectivity of EGF family peptide growth factors:implications for cancer. Pharmacol Ther.2009; 122(1):1-8.
    47. Kim JH, Cho YH, Park YL, et al. Prognostic significance of insulin growth factor-I receptor and insulin growth factor binding protein-3 expression in primary breast cancer. Oncol Rep.2010; 23(4):989-995.
    48. Osborne CK, Schiff R, Fuqua SA, et al. Estrogen receptor:Current understanding of its activation and modulation. Clin Cancer Res.2001; 7(12 Suppl):4338s-4342s
    49. Fuqua SA, Schiff R. Diseases of the Breast (3rd ed). Philadelphia:Lippincott Williams & Wilkins,2004:585-602.
    50. McKenna NJ, Lanz RB, O'Malley BW. Nuclear receptor coregulators:cellular and molecular biology. Endocr Rev.1999; 20(3):321-344.
    51.Horwitz KB, Jackson TA, Bain DL, et al:Nuclear receptor coactivators and corepressors. Mol Endocrinol.1996; 10(10):1167-1177.
    52. Howell A, Osborne CK, Morris C, et al. ICI 182,780 (Faslodex):development of a novel, "pure" antiestrogen. Cancer.2000:89(4):817-825.
    53. Buzdar AU. Advances in endocrine treatments for postmenopausal women with metastatic and early breast cancer. Oncologist.2003;8(4):335-341.
    54. Castles CG, Fuqua SA, Klotz DM, et al. Expression of a constitutively active estrogen receptor variant in the estrogen receptor-negative BT-20 human breast cancer cell line. Cancer Res.1993; 53(24):5934-5939
    55. Chaidarun SS, Alexander JM. A tumor-specific truncated estrogen receptor splice variant enhances estrogen-stimulated gene expression. Mol Endocrinol.1998; 12(9):1355-1366.
    56. Bollig A, Miksicek RJ. An estrogen receptor-alpha splicing variant mediates both positive and negative effects on gene transcription. Mol Endocrinol.2000; 14(5):634-649.
    57. Wang Y, Miksicek RJ. Identification of a dominant negative form of the human estrogen receptor. Mol Endocrinol.1991; 5(11):1707-1715.
    58. Ohlsson H, Lykkesfeldt AE, Madsen MW, et al. The estrogen receptor variant lacking exon 5 has dominant negative activity in the human breast epithelial cell line HMT-3522S1. Cancer Res.1998; 58(19):4264-4268
    59. Vladusic EA, Hornby AE, Guerra-Vladusic FK, et al. Expression and regulation of estrogen receptor beta in human breast tumors and cell lines. Oncol Rep.2000; 7(1):157-167.
    60. Zhang S, Li X, Burghardt R, et al. Role of estrogen receptor (ER) alpha in insulin-like growth factor (IGF)-I-induced responses in MCF-7 breast cancer cells. J Mol Endocrinol.2005; 35(3):433-447.
    61. Zhao C, Lam EW, Sunters A, et al. Expression of estrogen receptor beta isoforms in normal breast epithelial cells and breast cancer:regulation by methylation. Oncogene.2003; 22(48):7600-7606.
    62. Chang HG, Kim SJ, Chung KW, et al. Tamoxifen-resistant breast cancers show less frequent methylation of the estrogen receptor beta but not the estrogen receptor alpha gene. J Mol Med.2005; 83(2):132-139.
    63. Zhao C, Matthews J, Tujague M, et al. Estrogen receptor beta2 negatively regulates the transactivation of estrogen receptor alpha in human breast cancer cells. Cancer Res.2007; 67(8):3955-3962.
    64. Bartucci M, Morelli C, Mauro L, et al. Differential insulin-like growth factor I receptor signaling and function in estrogen receptor (ER)-positive MCF-7 and ER-negative MDA-MB-231 breast cancer cells. Cancer Res.2001; 61(18):6747-6754.
    65. Oesterreich S, Zhang P, Guler RL, et al. Re-expression of estrogen receptor alpha in estrogen receptor alpha-negative MCF-7 cells restores both estrogen and insulin-like growth factor-mediated signaling and growth. Cancer Res.2001; 61(15):5771-5777.
    66. Koduri S, Fuqua SA and Poola I. Alterations in the estrogen receptor alpha mRNA in the breast tumors of African American women. J Cancer Res Clin Oncol.2000; 126(5):291-297.
    67. Anandappa SY, Sibson R, Platt-Higgins A, et al. Variant estrogen receptor alpha mRNAs in human breast cancer specimens. Int J Cancer.2000; 88(2):209-216.
    68. Poola I, Speirs V. Expression of alternatively spliced estrogen receptor alpha mRNAs is increased in breast cancer tissues. J Steroid Biochem Mol Biol.2001; 78(5):459-69.
    69. Poola I, Clarke R, DeWitty R, et al. Functionally active estrogen receptor isoform profiles in the breast tumors of African American women are different from the profiles in breast tumors of Caucasian women. Cancer.2002:94(3):615-623.
    70. Hsiao WC, Cho WC, Lin PW, et al. Quantitative profile of estrogen receptor variants/isoforms in Taiwanese women with breast cancer. Eur J Surg Oncol.2006; 32(5):492-497.
    71. Xu BZ, Lin SL, Li M, et al. Changes in estrogen receptor-alpha variant (ER-alpha36) expression during mouse ovary development and oocyte meiotic maturation. Histochem Cell Biol.2009; 131(3):347-354.
    72. Shi L, Dong B, Li Z, et al. Expression of ER-{alpha}36, a novel variant of estrogen receptor{alpha}, and resistance to tamoxifen treatment in breast cancer. J Clin Oncol.2009; 27(21):3423-3429.
    73. Hopp TP. Protein surface analysis. Methods for identifying antigenic determinants and other interaction sites. J Immunol Methods.1986; 88(1):1-18.
    74. Hopp TP, Woods KR. Prediction of protein antigenic determinants from'amino acid sequences. Proc Natl Acad Sci U S A.1981; 78(6):3824-3828.
    75. Pluckthun A. Mono-and bivalent antibody fragments produced in Escherichia coli: engineering, folding and antigen binding Immunol Rev.1992; 130:151-188.
    76. Schuster M, Einhauer A, Wasserbauer E, et al. Protein expression in yeast; comparison of two expression strategies regarding protein maturation. J Biotechnol. 2000; 84(3):237-248.
    77. Chubet RG, Brizzard BL. Vectors for expression and secretion of FLAG epitope-tagged proteins in mammalian cells. Biotechniques.1996; 20(1):136-141.
    78. Group EBCTC. Systemic treatment of early breast cancer by hormonal, cytotoxic, or immune therapy.133 randomised trials involving 31,000 recurrences and 24,000 deaths among 75,000 women. Lancet.1992; 339(8785):71-85.
    79. Rusthoven JJ. The evidence for tamoxifen and chemotherapy as treatment for metastatic melanoma. Eur J Cancer.1998; 34 Suppl 3:S31-36.
    80. Huang HJ, Norris JD, McDonnell DP. Identification of a negative regulatory surface within estrogen receptor alpha provides evidence in support of a role for corepressors in regulating cellular responses to agonists and antagonists. Mol Endocrinol.2002; 16(8):1778-1792.
    81. Shang Y, Brown M. Molecular determinants for the tissue specificity of SERMs. Science.2002; 295(5564):2465-2468.
    82. Aronica SM, Kraus WL, Katzenellenbogen BS. Estrogen action via the cAMP signaling pathway:stimulation of adenylate cyclase and cAMP-regulated gene transcription. Proc Natl Acad Sci U S A.1994; 91(18):8517-8521.
    83. Le Mellay V, Lasmoles F, Lieberherr M. Galpha(q/11) and gbetagamma proteins and membrane signaling of calcitriol and estradiol. J Cell Biochem.1999; 75(1):138-146.
    84. Razandi M, Pedram A, Greene GL, et'al. Cell membrane and nuclear estrogen receptors (ERs) originate from a single transcript:studies of ERalpha and ERbeta expressed in Chinese hamster ovary cells. Mol Endocrinol.1999; 13(2):307-319.
    85. Marquez DC, Pietras RJ. Membrane-associated binding sites for estrogen contribute to growth regulation of human breast cancer cells. Oncogene.2001; 20(39):5420-5430.
    86. Watters JJ, Campbell JS, Cunningham MJ, et al. Rapid membrane effects of steroids in neuroblastoma cells:effects of estrogen on mitogen activated protein kinase signalling cascade and c-fos immediate early gene transcription. Endocrinology.1997; 138(9):4030-4033.
    87. Osborne CK, Schiff R. Estrogen-receptor biology:continuing progress and therapeutic implications. J Clin Oncol.2005; 23(8):1616-1622.
    88. Figtree GA, McDonald D, Watkins H, et al. Truncated estrogen receptor alpha 46-kDa isoform in human endothelial cells:relationship to acute activation of nitric oxide synthase. Circulation.2003; 107(1):120-126.
    89. Levin ER. Cellular functions of plasma membrane estrogen receptors. Steroids. 2002; 67(6):471-475.
    90. Shou J, Massarweh S, Osborne CK, et al. Mechanisms of tamoxifen resistance: Increased estrogen receptor-HER-2/neu cross-talk in ER/HER-2-positive breast cancer. J Natl Cancer Inst.2004; 96(12):926-935.
    91. Henderson IC, Berry DA, Demetri GD, et al. Improved outcomes from adding sequential paclitaxel but not from escalating doxorubicin dose in an adjuvant chemotherapy regimen for patients with nodepositive primary breast cancer. J Clin Oncol.2003; 21(6):976-983.
    92. Mamounas EP, Bryant J, Lembersky B, et al. Paclitaxel after doxorubicin plus cyclophosphamide as adjuvant chemotherapy for node-positive breast cancer: results from NSABP B-28. J Clin Oncol.2005; 23(16):3686-3696.
    93. Martin M, Pienkowski T, Mackey J, et al. TAC improves DFS and OS over FAC in node positive eraly breast cancer patients, BCRIG 001. Breast Cancer Res Treat 2003; 82(Suppl.1):43.
    94. Biganzoli L, Cufer T, Bruning P, et al. Doxorubicin and paclitaxel versus doxorubicin and cyclophosphamide as first-line chemotherapy in metastatic breast cancer:The European Organization for Research and Treatment of Cancer 10961 Multicenter Phase III Trial. J Clin Oncol.2002; 20(14):3114-3121.
    95. Bonneterre J, Dieras V, Tubiana-Hulin M, et al. Phase II multicentre randomized study of docetaxel plus epirubicin vs 5-fluorouracil plus epirubicin and cyclophosphamide in metastatic breast cancer. Br J Cancer.2004; 91(8):1466-1471.
    96. Jassem J, Pienkowski T, Pluzanska A, et al. Doxorubicin and paclitaxel versus fluorouracil, doxorubicin, and cyclophosphamide as first-line therapy for women with metastatic breast cancer:final results of a randomized phase III multicenter trial. J Clin Oncol.2001;19(6):1707-1715.
    97. Lyman GH, Green SJ, Ravdin PM, et al. A Southwest Oncology Group Randomized Phase II Study of doxorubicin and paclitaxel as frontline chemotherapy for women with metastatic breast cancer. Breast Cancer Res Treat. 2004;85(2):143-150.
    98. Nabholtz JM, Falkson C, Campos D, et al. Docetaxel and doxorubicin compared with doxorubicin and cyclophosphamide as first-line chemotherapy for metastatic breast cancer; results of a randomized, multicenter, phase III trial. J Clin Oncol. 2003;21(6):968-975.
    99. Zielinski C, Beslija S, Mrsic-Krmpotic Z, et al. Gemcitabine, epirubicin, and paclitaxel versus fluorouracil, epirubicin, and cyclophosphamide as first-line chemotherapy in metastatic breast cancer:a Central European Cooperative Oncology Group International, multicenter, prospective, randomized phase III trial. J Clin Oncol.2005; 23(7):1401-1408.
    100. Piccart-Gebhart MJ, Burzykowski T,Buyse M, et al. Taxanes alone or in combination with anthracyclines as first-line therapy of patients with metastatic breast cancer. J Clin Oncol.2008; 26(12):1980-1986.
    101. Razandi M, Pedram A, Levin ER. Plasma membrane estrogen receptors signal to antiapoptosis in breast cancer. Mol Endocrinol.2000; 14(9):1434-1447.
    102. Sui M, Huang Y, Park BH, et al. Estrogen receptor alpha mediates breast cancer cell resistance to paclitaxel through inhibition of apoptotic cell death. Cancer Res.2007; 67(11):5337-44.
    1. Mok TS, Wu YL, Thongprasert S, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med.2009; 361(10):947-957.
    2. Joensuu H, Kellokumpu-Lehtinen PL, Bono P, et al. Adjuvant docetaxel or vinorelbine with or without trastuzumab for breast cancer. N Engl J Med.2006; 354(8):809-820.
    3. Piccart-Gebhart MJ, Procter M, Leyland-Jones B, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med.2005; 353(16):1659-1672.
    4. Jemal A, Siegel R, Ward E, et al:Cancer statistics,2009. CA Cancer J Clin.2009; 59(4):225-249.
    5. Mangelsdorf DJ, Thummel C, Beato M, et al. The nuclear receptor superfamily:the second decade. Cell 1995; 83:835-839.
    6. Green S, Walter P, Kumar V, et al. Human oestrogen receptor cDNA:sequence, expression and homology to v-erb-A. Nature.1986; 320(6058):134-139.
    7. Greene GL, Gilna P, Waterfield M, et al. Sequence and expression of human estrogen receptor complementary DNA. Science.1986; 231 (4742):1150-1154.
    8. Menasce LP, White GR, Harrison CJ, et al. Localization of the estrogen receptor locus (ESR) to chromosome 6q25.1 by FISH and a simple post-FISH banding technique. Genomics.1993; 17(1):263-265.
    9. Kong EH, Pike AC, Hubbard RE. Structure and mechanism of the oestrogen receptor. Biochem Soc Trans.2003; 31(Pt 1):56-59.
    10. Kuiper GG, Enmark E, Pelto-Huikko M, et al. Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci U S A.1996; 93(12):5925-5930.
    11. Mosselman S, Polman J, Dijkema R. ER beta:identification and characterization of a novel human estrogen receptor. FEBS Lett.1996; 392(1):49-53.
    12. Ogawa S, Inoue S, Watanabe T, et al. The complete primary structure of human estrogen receptor beta (hER beta) and its heterodimerization with ER alpha in vivo and in vitro. Biochem Biophys Res Commun.1998; 243(1):122-126.
    13. Weihua Z, Andersson S, Cheng G, et al. Update on estrogen signaling. FEBS Lett. 2003; 546(1):17-24.
    14. Bai Z, Gust R. Breast cancer, estrogen receptor and ligands. Arch Pharm (Weinheim).2009; 342(3):133-149.
    15. Kraus WL, Mcinerney EM, Katzenellenbogen BS. Ligand-dependent transcriptionally productive association of the amino and carboxy-terminal regions of a steroid hormone nuclear receptor. Proc Natl Acad Sci USA 1995; 92(12): 314-318.
    16. Mcinerney EM, Tsai MJ, Malley BW, et al. Analysis of estrogen receptor transcriptional enhancement by a nuclear receptor coactivator. Proc Natl Acad Sci USA 1996; 93(10):69-73.
    1.7. Kumar R, Johnson BH, Thompson EB. Essay in Biochemistry:The Nuclear Receptor Superfamily. London:Portland Press,2004,27-39.
    18. Gearhart MD, Holmbeck SM, Evans RM, et al. Monomeric complex of human orphan estrogen related receptor-2 with DNA:a pseudo-dimer interface mediates extended half-site recognition. J Mol Biol.2003; 327(4):819-32.
    19. McEwan IJ. Essays in Biochemistry:The Nuclear Receptor Superfamily. London: Portland Press,2004,1-10.
    20. Sentis S, Le Romancer M, Bianchin C, et al. Sumoylation of the estrogen receptor a hinge region regulates its transcriptional activity. Mol Endocrinol.2005; 19(11):2671-2684.
    21. Pearce ST, Jordan VC. The biological role of estrogen receptors alpha and beta in cancer. Crit Rev Oncol Hematol.2004; 50(1):3-22.
    22. Gustafsson JA. Estrogen receptor beta-a new dimension in estrogen mechanism of action. J Endocrinol.1999; 163(3):379-383.
    23. Muramatsu M, Inoue S. Estrogen receptors:how do they control reproductive and nonreproductive functions? Biochem Biophys Res Commun.2000; 270(1):1-10.
    24. Shao W, Brown M. Advances in estrogen receptor biology:prospects for improvements in targeted breast cancer therapy. Breast Cancer Res.2004; 6(1):39-52.
    25. Osborne CK, Schiff R, Fuqua SA, et al. Estrogen receptor:Current understanding of its activation and modulation. Clin Cancer Res.2001; 7(12 Suppl):4338s-4342s
    26. Fuqua SA, Schiff R. Diseases of the Breast (3rd ed). Philadelphia:Lippincott Williams & Wilkins,2004:585-602.
    27. McKenna NJ, Lanz RB; O'Malley BW. Nuclear receptor coregulators:cellular and molecular biology. Endocr Rev.1999; 20(3):321-344.
    28. Horwitz KB, Jackson TA, Bain DL, et al:Nuclear receptor coactivators and corepressors. Mol Endocrinol.1996; 10(10):1167-1177.
    29. Aronica SM, Kraus WL, Katzenellenbogen BS. Estrogen action via the cAMP signaling pathway:stimulation of adenylate cyclase and cAMP-regulated gene transcription. ProcNatl Acad Sci U S A.1994; 91(18):8517-8521.
    30. Le Mellay V, Lasmoles F, Lieberherr M. Galpha(q/11) and gbetagamma proteins and membrane signaling of calcitriol and estradiol. J Cell Biochem.1999; 75(1):138-146.
    31.Razandi M, Pedram A, Greene GL, et al. Cell membrane and nuclear estrogen receptors (ERs) originate from a single transcript:studies of ERalpha-and ERbeta expressed in Chinese hamster ovary cells. Mol Endocrinol.1999; 13(2):307-319.
    32. Marquez DC, Pietras RJ. Membrane-associated binding sites for estrogen contribute to growth regulation of human breast cancer cells. Oncogene.2001; 20(39):5420-5430.
    33. Watters JJ, Campbell JS, Cunningham MJ, et al. Rapid membrane effects of steroids in neuroblastoma cells:effects of estrogen on mitogen activated protein kinase signalling cascade and c-fos immediate early gene transcription. Endocrinology.1997; 138(9):4030-4033.
    34. Anderson WF, Chatterjee N. Ershler WB, et al. Estrogen receptor breast cancer phenotypes in the surveillance, epidemiology, and end results database. Breast Cancer Res Treat.2002; 76(1):27-36.
    35. Group EBCTC Systemic treatment of early breast cancer by hormonal, cytotoxic, or immune therapy.133 randomised trials involving 31,000 recurrences and 24,000 deaths among 75,000 women. Lancet.1992; 339(8785):71-85.
    36. Rusthoven JJ. The evidence for tamoxifen and chemotherapy as treatment for metastatic melanoma. Eur J Cancer.1998; 34 Suppl 3:S31-36.
    37. Osborne CK. Steroid hormone receptors in breast cancer management. Breast Cancer Res Treat.1998; 51(3):227-238.
    38. Harvey JM, Clark GM, Osborne CK, et al. Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breast cancer. J Clin Oncol.1999; 17(5):1474-1481.
    39. Gong Y, Yan K, Lin F, et al. Determination of oestrogen-receptor status and ERBB2 status of breast carcinoma:Agene-expression profiling study. Lancet Oncol. 2007; 8(3):203-211.
    40. McClelland RA, Barrow D, Madden TA, et al. Enhanced epidermal growth factor receptor signaling in MCF7 breast cancer cells after long-term culture in the presence of the pure antiestrogen ICI 182,780 (Faslodex). Endocrinology.2001; 142(7):2776-2788.
    41. Shou J, Massarweh S, Osborne C, et al. Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J Natl Cancer Inst.2004; 96(12):926-935.
    42. Berry DA, Cirrincione C, Henderson IC, et al. Estrogen-receptor status and outcomes of modern chemotherapy for patients with node-positive breast cancer. JAMA.2006; 295(14):1658-1667.
    43. Mazouni C, Kau SW, Frye D, et al. Inclusion of taxanes, particularly weekly paclitaxel, in preoperative chemotherapy improves pathologic complete response rate in estrogen receptor-positive breast cancers. Ann Oncol.2007; 18(5):874-880.
    44. Slamon DJ, Clark GM, Wong SG, et al. Human breast cancer:correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science.1987; 235(4785):177-82.
    45. Burstein HJ. The distinctive nature of HER2-positive breast cancers. N Engl J Med. 2005; 353(16):1652-1654.
    46. Yamauchi H, Stearns V, Hayes DF. When is a tumor marker ready for prime time? A case study of c-erbB-2 as a predictive factor in breast cancer. J Clin Oncol.2001; 19(8):2334-2356.
    47. Lipton A, Leitzel K, Ali SM, et al. Serum HER-2/neu conversion to positive at the time of disease progression in patients with breast carcinoma on hormone therapy. Cancer.2005; 104(2):257-263.
    48. Pritchard KI, Shepherd LE, O'Malley FP, et al. HER2 and responsiveness of breast cancer to adjuvant chemotherapy. N Engl J Med.2006; 354(20):2103-2111.
    49. Konecny GE, Thomssen C, Luck HJ, et al. Her-2/neu gene amplification and response to paclitaxel in patients with metastatic breast cancer. J Natl Cancer Inst. 2004;96(15):1141-1151.
    50. Andre F, Mazouni C, Liedtke C, et al. HER2 expression and efficacy of preoperative paclitaxel/FAC chemotherapy in breast cancer. Breast Cancer Res Treat.2008; 108(2):183-190.
    51.Joensuu H, Kellokumpu-Lehtinen PL, Bono P, et al. Adjuvant docetaxel or vinorelbine with or without trastuzumab for breast cancer. N Engl J Med.2006; 354(8):809-820.
    52. Romond EH, Perez EA, Bryant J, et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med.2005; 353(16):1673-84.
    53. Smith I, Procter M, Gelber RD, et al.2-year follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer:a randomised controlled trial. Lancet.2007; 369(9555):29-36.
    54. Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med.2001; 344(11):783-792.
    55. Keyomarsi K, Tucker SL, Buchholz TA, et al. Cyclin E and survival in patients with breast cancer. N Engl J Med.2002; 347(20):1566-1575.
    56. Nielsen NH, Arnerlov C, Emdin SO, et al. Cyclin E overexpression, a negative prognostic factor in breast cancer with strong correlation to oestrogen receptor status. Br J Cancer.1996; 74(6):874-880.
    57. Kenny FS, Hui R, Musgrove EA, et al. Overexpression of cyclin D1 messenger RNA predicts for poor prognosis in estrogen receptor-positive breast cancer. Clin Cancer Res.1999; 5(8):2069-2076.
    58. Garber JE, Goldstein AM, Kantor AF, et al. Follow-up study of twenty-four families with Li-Fraumeni syndrome. Cancer Res.1991; 51(22):6094-6097.
    59. Lee JS, Kim HS, Jung JJ, et al. Expression of vascular endothelial growth factor in invasive ductal carcinoma of the breast and the relation to angiogenesis and p53 and HER-2/neu protein expression. Appl Immunohistochem Mol Morphol.2002; 10(4):289-295.
    60. Linjawi A, Kontogiannea M, Halwani F, et al. Prognostic significance of p53, bcl-2, and Bax expression in early breast cancer.J Am Coll Surg.2004; 198(1):83-90.
    61. Arun B, Kilic G, Yen C, et al. Loss of FHIT expression in breast cancer is correlated with poor prognostic markers. Cancer Epidemiol Biomarkers Prev.2005; 14(7):1681-1685.
    62. Negrini M, Monaco C, Vorechovsky I, et al. The FHIT gene at 3pl4.2 is abnormal in breast carcinomas. Cancer Res.1996; 56(14):3173-3179.
    63. Ginestier C, Bardou VJ, Popovici C, et al. Loss of FHIT protein expression is a marker of adverse evolution in good prognosis localized breast cancer. Int J Cancer. 2003; 107(5):854-862.
    64. Bennett IC, Gattas M, Teh BT. The management of familial breast cancer. Breast. 2000; 9(5):247-263.
    65. Armstrong K, Eisen A, Weber B. Assessing the risk of breast cancer. N Engl J Med. 2000;342(8):564-571.
    66. Robson M, Levin D, Federici M, et al. Breast conservation therapy for invasive breast cancer in Ashkenazi women with BRCA gene founder mutations. J Natl Cancer Inst.1999; 91(24):2112-2117.
    67. Noruzinia M, Coupier I, Pujol P. Is BRCA 1/BRCA2-related breast carcinogenesis estrogen dependent? Cancer.2005; 104(8):1567-1574.
    68. Thull DL, Vogel VG. Recognition and management of hereditary breast cancer syndromes. Oncologist.2004; 9(1):13-24.
    69. Fackenthal JD, Marsh DJ, Richardson AL, et al. Male breast cancer in Cowden syndrome patients with germline PTEN mutations. J Med Genet.2001; 38(3):159-164.
    70. Lee JS, Kim HS, Kim YB, et al. Reduced PTEN expression is associated with poor outcome and angiogenesis in invasive ductal carcinoma of the breast. Appl Immunohistochem Mol Morphol.2004; 12(3):205-210.
    71. Tsutsui S, Inoue H, Yasuda K, et al. Reduced expression of PTEN protein and its prognostic implications in invasive ductal carcinoma of the breast. Oncology.2005; 68(4-6):398-404.
    72. Depowski PL, Rosenthal SI, Ross JS. Loss of expression of the PTEN gene protein product is associated with poor outcome in breast cancer. Mod Pathol.2001; 14(7):672-676.
    73. Pandolfi PP. Breast cancer-loss of PTEN predicts resistance to treatment. N Engl J Med.2004; 351(22):2337-2338.
    74. Easton DF. The inherited component of cancer. Br Med Bull.1994; 50(3):527-535.
    75. Lim W, Hearle N, Shah B, et al. Further observations on LKB1/STK11 status and cancer risk in Peutz-Jeghers syndrome. Br J Cancer.2003; 89(2):308-313.
    76. Nakanishi C, Yamaguchi T, Iijima T, et al. Germline mutation of the LKB1/STK11 gene with loss of the normal allele in an aggressive breast cancer of Peutz-Jeghers syndrome. Oncology.2004; 67(5-6):476-479.
    77. Suzuki T, Nakata T, Miki Y, et al. Estrogen sulfotransferase and steroid sulfatase in human breast carcinoma. Cancer Res.2003; 63(11):2762-2770.
    78. Mao H, Liu H, Fu X, et al. Loss of nm23 expression predicts distal metastases and poorer survival for breast cancer. Int J Oncol.2001; 18(3):587-591.
    79. Galani E, Sgouros J, Petropoulou C, et al. Correlation of MDR-1, nm23-H1 and H Sema E gene expression with histopathological findings and clinical outcome in ovarian and breast cancer patients. Anticancer Res.2002; 22(4):2275-2280.
    80. Dhar S, Bhargava R, Yunes M, et al. Analysis of normal epithelial cell specific-1 (NES1)/kallikrein 10 mRNA expression by in situ hybridization, a novel marker for breast cancer. Clin Cancer Res.2001; 7(11):3393-3398.
    81. Yunes MJ, Neuschatz AC, Bornstein LE, et al. Loss of expression of the putative tumor suppressor NES1 gene in biopsy-proven ductal carcinoma in situ predicts for invasive carcinoma at definitive surgery. Int J Radiat Oncol Biol Phys.2003; 56(3):653-657.
    82. Mommers EC, Leonhart AM, von Mensdorff-Pouilly S, et al. Aberrant expression of MUC1 mucin in ductal hyperplasia and ductal carcinoma In situ of the breast. Int J Cancer.1999; 84(5):466-469.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700