PPAR-γ激动剂吡格列酮抑制血管紧张素Ⅱ诱导树突状细胞免疫激活致动脉粥样硬化斑块不稳定的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
体外研究:PPAR-γ激动剂吡格列酮抑制外源性血管紧张素Ⅱ诱导树突状细胞功能活化及其信号转导机制
     目的:肾素血管紧张素系统在树突状细胞(dendritic cell, DC)上表达并具有功能活性,提示血管紧张素Ⅱ(angiotensinⅡ, AngⅡ)可能通过调节DC功能在免疫炎症反应过程中发挥重要的作用。本部分体外研究过氧化物酶体增生物激活受体-γ(peroxisome protiferator activated receptor-gamma, PPAR-γ)激动剂吡格列酮(pioglitazone, Pio)对外源性AngⅡI诱导DC功能活化的影响,并进一步探讨其内在的信号转导机制。
     方法:体外分离培养人外周血单核细胞来源的DC,直接加入AngⅡ干预,或者经PPAR-γ激动剂Pio预处理后再加入AngⅡ干预。然后采用流式细胞学技术检测DC表达表型分子CD80、CD86、CD83和HLA-DR的功能,酶联免疫吸附试验检测DC分泌细胞因子IL-6、TNF-α和IL-12的功能,混合淋巴细胞反应检测DC刺激T淋巴细胞增殖的功能。进一步通过蛋白印迹试验检测DC内丝裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)的磷酸化,电泳迁移率转变试验检测DC内核因子-κB(nuclear factor kappa B, NF-κB)的活性。
     结果:外源性AngⅡ的刺激能上调人单核细胞来源DC表面的成熟标记分子CD83和共刺激分子CD86,但对共刺激分子CD80和MHC-II类分子HLA-DR的表达无显著影响;能促进DC分泌炎症因子IL-6和TNF-a,但对T淋巴细胞刺激因子IL-12分泌的促进作用不明显;能显著增强成熟DC刺激的T淋巴细胞增殖反应,但对未成熟DC刺激T淋巴细胞增值能力的增加不明显。经PPAR-γ激动剂Pio预处理能明显抑制AngⅡ诱导DC上调CD83分子表达,但对AngⅡ上调CD86分子表达无显著影响;能减少Ang II促进DC分泌IL-12和TNF-a,但对Ang II刺激IL-6分泌影响不大;Pio还能够阻断Ang II协同刺激DC激活T淋巴细胞增殖反应。进一步研究发现,外源性AngⅡ刺激人单核细胞来源DC能促进DC内细胞外信号调节激酶(extracellular signal-related kinase, ERK)和P38 MAPK的磷酸化,但对c-Jun氨基末端激酶(c-Jun N-terminal kinase, JNK)磷酸化的作用不明显;还能增强DC内NF-κB/DNA结合活性。经PPAR-y激动剂Pio预处理能明显抑制AngⅡ促进DC内ERK和P38 MAPK的磷酸化,而且还能降低AngⅡ增强的DC内NF-κB/DNA结合活性。
     总结:PPAR-γ激动剂Pio能抑制外源性AngⅡ诱导DC功能活化,其内在的分子机制至少部分是通过阻断MAPK和NF-κB信号转导通路实现的。这些研究的发现进一步证实了上述多种介质相互作用在调节DC介导的免疫炎症过程中具有十分重要的作用。
     体内研究:PPAR-y激动剂吡格列酮抑制内源性血管紧张素Ⅱ致ApoE基因缺陷小鼠动脉粥样硬化斑块不稳定及其免疫炎症机制
     目的:动脉粥样硬化易损斑块破裂是引起急性心血管事件的主要原因,但是导致斑块失稳的具体机制至今仍未完全阐明。在前面的体外研究中我们已经发现PPAR-γ激动剂Pio能抑制外源性AngⅡ诱导DC功能活化,本部分实验通过建立内源性高AngⅡ动脉粥样硬化小鼠模型,研究在体情况下PPAR-γ激动剂Pio对内源性Ang II诱导ApoE-/-小鼠动脉粥样硬化斑块不稳定的影响,并进一步探讨DC介导的免疫炎症机制在动脉粥样硬化斑块易损中的作用。
     方法:在Apo-/-小鼠的基础上进行两肾一夹(two kidney one clip,2K1C)手术,建立内源性高AngⅡ动脉粥样硬化小鼠模型,另行假手术作为对照。2K1C术后小鼠分成两组,其中一组予PPAR-y激动剂Pio 20 mg/kg/d灌胃,称为2K1C+Pio组,另一组予等量生理盐水灌胃,称为2K1C组;假手术小鼠也分成两组,其中一组予Pio 20 mg/kg/d灌胃,称为sham+Pio组,另一组予等量生理盐水灌胃,称为sham组。各组小鼠严格按照实验计划连续处理12周,然后经有创颈动脉测压法测定动脉血压,常规生化检测血脂、血糖水平,放射免疫法检测血浆肾素活性和Ang II浓度;主动脉弓大体照片和胸腹主动脉油红O染色观测主动脉斑块负荷,主动脉根部组织切片苏木精-伊红染色和平滑肌细胞肌动蛋白免疫组化染色评价斑块易损性,CD3免疫组化染色T淋巴细胞,S-100蛋白和C-C家族趋化因子受体-7(C-C chemokine receptor type 7, CCR7)免疫组化双染色DC检测斑块内免疫炎症细胞的浸润及功能状态。
     结果:成功建立内源性高Ang II动脉粥样硬化小鼠模型,2K1C术后ApoE-/-小鼠动脉血压显著增高,血浆肾素活性明显增强,Ang II浓度显著增高;Pio药物干预以后ApoE-/-小鼠动脉血压无明显变化,虽然血浆肾素活性增强,但Ang II浓度未见明显差异;2K1C术后和Pio药物干预对ApoE-/-小鼠体重、心率,血脂、血糖水平均无明显影响。2K1C术后所致的内源性高Ang II能促进ApoE-/-小鼠动脉粥样硬化发展:主动脉弓和胸腹主动脉的斑块负荷增加,斑块面积增大;还能促进斑块易损性:斑块脂质核心增大,纤维帽变薄甚至破坏,斑块内平滑肌细胞含量减少,T淋巴细胞浸润增加。Pio药物治疗能延缓内源性Ang II所致的ApoE-/-小鼠动脉粥样硬化进展:主动脉弓和胸腹主动脉的斑块负荷降低,斑块面积减少;还能抑制斑块的易损性:脂质核心减小,纤维帽增厚并且连续完整,斑块内平滑肌细胞含量增加,T淋巴细胞浸润减少。进一步研究发现,2K1C术后所致的内源性高Ang II能促进ApoE-/-小鼠动脉粥样硬化斑块内DC浸润及功能活化:斑块内CCR7阳性DC含量增加,主要分布于斑块的肩部或斑块核心的边缘区域,并且与T淋巴细胞聚集在一起激活斑块内局部免疫炎症反应。Pio药物干预能抑制内源性AngⅡ所致的斑块内DC浸润,并降低斑块内CCR7阳性DC的含量。
     总结:PPAR-γ激动剂Pio能抑制内源性Ang II所致ApoE-/-小鼠动脉粥样硬化发展及斑块不稳定,其可能的机制之一与调节DC介导的免疫炎症反应相关。这些研究结果进一步证实了DC介导的免疫炎症机制在Ang II诱导动脉粥样硬化发展及斑块不稳定中的作用,同时也为临床选择使用PPAR-γ激动剂如噻唑烷二酮类药物以DC为靶点预防和治疗动脉粥样硬化提供科学的理论依据。
Research in vitro:PPAR-y agonist pioglitazone inhibits exogenous angiotensinⅡ-induced activation of dendritic cells via the MAPK and NF-κB pathways
     Objective:The renin-angiotensin system exerts a profound regulatory effect on the functional features of dendritic cells (DC), thus suggesting a new target of angiotensinⅡ(Ang II) action in the immune system. This study investigated whether peroxisome proliferator-activated receptor-gamma (PPAR-y) activation in DC with pioglitazone (Pio) regulated AngⅡ-induced activation of DC and exploited the possible molecular mechanisms, especially focused on the signaling pathways of mitogen-activated protein kinases (MAPK) and nuclear factor-kappa B (NF-κB).
     Methods:DC derived from human peripheral blood monouclear cells were cultured in vitro and stimulated with exogenous AngⅡin the presence or absence of the PPAR-y agonist Pio. Then, flow cytometry was used for DC phenotypic analysis, enzyme-linked immunosorbent assay for cytokines secretion of DC, mixed lymphocyte reaction for T-cell proliferation stimulated by DC. Furthermore, MAPK phosphorylation state in DC was analyzed by western blot test and NF-κB/DNA binding activity in DC was assayed by electrophoretic mobility shift assay.
     Results:Exogenous AngⅡstimulation of human monocyte-derived DC displayed an intermediate state of DC maturation and function characterized of up-regulation of the DC mature marker CD83 and costimulatory molecule CD86 expression but not significant alteration of the costimulatory molecule CD80 and MHC class II molecule HLA-DR, increase secretion of inflammatory cytokines (IL-6 and TNF-a) but not T cell stimulatory cytokines (IL-12), and enhance of allogenic T cell proliferation induced by mature DC but not immature DC. We next pretreated human DC with Pio before Ang II and found that Pio partially inhibited Ang II-induced activation of DC in terms of decrease of CD83 expression but not CD86, reduction of IL-12 and TNF-a secretion but not IL-6, and diminution of T cell activation. In addition, we found that Ang II stimulation of human DC induced the phosphorylation of extracellular regulated kinase (ERK) and p38 MAPK, but not c-Jun N-terminal kinase (JNK). And also AngⅡincreased the DNA binding activity of NF-κB in DC. Finally, when pretreatment of human DC with Pio before Ang II, it was expected that Pio inhibited ERK and p38 MAPK phosphorylation and NF-κB/DNA binding activity in DC induced by AngⅡ.
     Conclusions:PPAR-y activation in human DC with Pio inhibits the functional activation of DC induced by Ang II, with which involves the regulation of MAPK and NF-κB signaling pathways. These findings may support the important role of these mediators in the regulation of DC-mediated inflammatory and immunologic processes.
     Research in vivo:PPAR-γagonist pioglitazone inhibits endogenous angiotensinⅡ-induced activation of dendritic cells and increase of atherosclerotic plaque vulnerability in apolipoprotein E deficient mice
     Objective:Rupture of vulnerable plaques is the main cause of acute cardiovascular events, mechanisms responsible for atherosclerotic plaque destabilization remain elusive. As we had found previously in vitro research that PPAR-γactivation with Pio inhibited the functional activation of DC induced by AngⅡ, we next generated endogenous AngⅡincreased and atherosclerotic ApoE-/- mice to study whether the PPAR-y agonist Pio inhibits the atherosclerotic plaque vulnerability induced by AngⅡin vivo, and exploited the possible mechanisms, especially focused on the inflammatory and immunologic processes mediated by DC.
     Methods:Two kidney one clip (2K1C) was operated on ApoE-/- mice to generate endogenous high AngⅡatherosclerotic mouse model, and a sham procedure was applied in control mice. The 2K1C ApoE-/- mice were randomly divided into two groups: one group received the PPAR-y agonist Pio (20 mg/kg/d, orally by gastric gavage), named 2K1C+Pio group; and the other group received equivalent normal saline, named 2K1C group. The sham ApoE-/- mice were also randomly divided into two groups:one group received Pio (20 mg/kg/d, orally by gastric gavage), named sham+Pio group; and the other group received equivalent normal saline, named sham group. After treatment for 12 weeks as the protocol, blood pressure were measured by carotid artery manometry, lipid profile and glucose level in blood were detected by biochemical test, plasma rennin activity (PRA) and concentration of AngⅡwere examined by radioimmunology assay. Aortic arch photos and thoracic and abdominal aorta staining with oil-red O were prepared to estimate the plaque burden. The root of aorta was dissected and sections were performed with hematoxylin and eosin staining and smooth muscle cell a-actin immunohistostaining to evaluate the plaque vulnerability, and CD3 immunohistostaining for T lymphocytes, S-100 and C-C chemokine receptor type 7 (CCR7) immunohistochemistry double staining for DC to detect the infiltrating and functional status of immune cells in atherosclerotic plaques.
     Results:The endogenous high Ang II atherosclerotic mouse model was successfully created. As expected, the blood pressure, PRA and AngⅡwere significantly increased in 2K1C ApoE-/- mice. Treatment of Pio exhibited no difference in blood pressure and Ang II concentration, although higher PRA compared with sham ApoE-/- mice. No difference in body weight, heart rate, lipid profile and glucose level was observed among the various groups of mice. Endogenous high AngⅡin 2K1C ApoE-/- mice promoted atherosclerosis progression in terms of increased plaque burden and enlarged plaque area in aortas; and also led to plaque vulnerability with larger lipid core, thinner fibrous cap or even rupture, decreased smooth muscle cells and increased T lymphocytes in plaques. However, Pio treatment significantly prevented the progression of atherosclerosis in 2K1C ApoE-/- mice in terms of reduced plaque burden and decreased plaque area in aortas; and also inhibited the plaque vulnerability by reducing lipid core, thickening fibrous cap, increasing content of smooth muscle cells and decreasing T lymphocytes infiltrating in plaques. Further study revealed that endogenous high Ang II in 2K1C ApoE-/- mice induced infiltrating and activation of DC in atherosclerotic plaque in terms of increased CCR7 positive DC accumulating in the plaque shoulder and in the marginal parts of the plaque core together with T lymphocytes. In addition, Pio treatment of 2K1C ApoE-/- mice obviously inhibited DC infiltratiing and activation in the atherosclerotic plaque induced by endogenous high AngⅡ.
     Conclusion:PPAR-γagonist Pio inhibits the atherosclerosis progression and plaque vulnerability induced by endogenous AngⅡin ApoE-/- mouse, with which involves the regulation of the inflammatory and immunologic processes mediated by DC. These findings may support the important role of DC-mediated inflammatory and immunologic mechanism in atherosclerosis progression and plaque vulnerability induced by AngⅡ. That may also provide us more scientific evidence for the potential beneficial effects of PPAR-γagonists such as thiazolidinediones in the prevention or treatment of atherosclerosis.
引文
Aiba S, Manome H, Nakagawa S, Mollah ZU, Mizuashi M, Ohtani T, Yoshino Y and Tagami H. p38 Mitogen-activated protein kinase and extracellular signal-regulated kinases play distinct roles in the activation of dendritic cells by two representative haptens, NiC12 and 2,4-dinitrochlorobenzene. J Invest Dermatol 2003; 120:390-399.
    Aicher A, Heeschen C, Mohaupt M, Cooke JP, Zeiher AM and Dimmeler S. Nicotine strongly activates dendritic cell-mediated adaptive immunity:potential role for progression of atherosclerotic lesions. Circulation 2003;107:604-611.
    Ait-Oufella H, Salomon BL, Potteaux S, Robertson AK, Gourdy P, Zoll J, Merval R, Esposito B, Cohen JL, Fisson S, Flavell RA, Hansson GK, Klatzmann D, Tedgui A and Mallat Z. Natural regulatory T cells control the development of atherosclerosis in mice. Nat Med 2006;12:178-180.
    Angeli V, Hammad H, Staels B, Capron M, Lambrecht BN and Trottein F. Peroxisome proliferator-activated receptor gamma inhibits the migration of dendritic cells: consequences for the immune response. J Immunol 2003;170:5295-5301.
    Appel S, Mirakaj V, Bringmann A, Weck MM, Grunebach F and Brossart P. PPAR-gamma agonists inhibit toll-like receptor-mediated activation of dendritic cells via the MAP kinase and NF-kappaB pathways. Blood 2005;106:3888-3894.
    Ardeshna KM, Pizzey AR, Devereux S and Khwaja A. The PⅠ3 kinase, p38 SAP kinase, and NF-kappaB signal transduction pathways are involved in the survival and maturation of lipopolysaccharide-stimulated human monocyte-derived dendritic cells. Blood 2000;96:1039-1046.
    Arrighi JF, Rebsamen M, Rousset F, Kindler V and Hauser C. A critical role for p38 mitogen-activated protein kinase in the maturation of human blood-derived dendritic cells induced by lipopolysaccharide, TNF-alpha, and contact sensitizers. J Immunol 2001;166:3837-3845.
    Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B and Palucka K. Immunobiology of dendritic cells. Annu Rev Immunol 2000;18:767-811.
    Banchereau J and Steinman RM. Dendritic cells and the control of immunity. Nature 1998;392:245-252.
    Bobryshev YV. Dendritic cells and their involvement in atherosclerosis. Curr Opin Lipidol 2000;11:511-517.
    Bobryshev YV. Dendritic cells in atherosclerosis:current status of the problem and clinical relevance. Eur Heart J 2005;26:1700-1704.
    Bobryshev YV and Lord RS. S-100 positive cells in human arterial intima and in atherosclerotic lesions. Cardiovasc Res 1995;29:689-696.
    Bobryshev YV and Lord RS. Ultrastructural recognition of cells with dendritic cell morphology in human aortic intima. Contacting interactions of Vascular Dendritic Cells in athero-resistant and athero-prone areas of the normal aorta. Arch Histol Cytol 1995;58:307-322.
    Bobryshev YV and Lord RS. Mapping of vascular dendritic cells in atherosclerotic arteries suggests their involvement in local immune-inflammatory reactions. Cardiovasc Res 1998;37:799-810.
    Calkin AC, Forbes JM, Smith CM, Lassila M, Cooper ME, Jandeleit-Dahm KA and Allen TJ. Rosiglitazone attenuates atherosclerosis in a model of insulin insufficiency independent of its metabolic effects. Arterioscler Thromb Vasc Biol 2005;25:1903-1909.
    Choi JH, You SH, Kim BS, Hong SJ, Ahn CM, Kim JS, Park JH and Lim DS. The effects of pioglitazone in reducing atherosclerosis progression and neointima in diabetic patients:prospective randomized study with IVUS volumetry. J Am Coll Cardiol 2010;55:A168-E1575.
    Clark RB. The role of PPARs in inflammation and immunity. J Leukoc Biol 2002;71:388-400.
    Clark RB, Bishop-Bailey D, Estrada-Hernandez T, Hla T, Puddington L and Padula SJ. The nuclear receptor PPAR gamma and immunoregulation:PPAR gamma mediates inhibition of helper T cell responses. J Immunol 2000;164:1364-1371.
    Daugherty A, Manning MW and Cassis LA. Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice. J Clin Invest 2000;105:1605-1612.
    Daynes RA and Jones DC. Emerging roles of PPARs in inflammation and immunity. Nat Rev Immunol 2002;2:748-759.
    de Boer RA, Martens FM, Kuipers I, Boomsma F and Visseren FL. The effects of the PPAR-gamma agonist pioglitazone on plasma concentrations of circulating vasoactive factors in type II diabetes mellitus. JHum Hypertens 2010;24:74-76.
    Dobrian AD, Schriver SD, Khraibi AA and Prewitt RL. Pioglitazone prevents hypertension and reduces oxidative stress in diet-induced obesity. Hypertension 2004;43:48-56.
    Dormandy J, Bhattacharya M and van Troostenburg de Bruyn AR. Safety and tolerability of pioglitazone in high-risk patients with type 2 diabetes:an overview of data from PROactive. Drug Saf 2009;32:187-202.
    Dormandy JA, Charbonnel B, Eckland DJ, Erdmann E, Massi-Benedetti M, Moules IK, Skene AM, Tan MH, Lefebvre PJ, Murray GD, Standl E, Wilcox RG, Wilhelmsen L, Betteridge J, Birkeland K, Golay A, Heine RJ, Koranyi L, Laakso M, Mokan M, Norkus A, Pirags V, Podar T, Scheen A, Scherbaum W, Schernthaner G, Schmitz O, Skrha J, Smith U and Taton J. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macro Vascular Events):a randomised controlled trial. Lancet 2005;366:1279-1289.
    Erbel C, Sato K, Meyer FB, Kopecky SL, Frye RL, Goronzy JJ and Weyand CM. Functional profile of activated dendritic cells in unstable atherosclerotic plaque. Basic Res Cardiol 2007;102:123-132.
    Erdmann E and Wilcox R. Pioglitazone and mechanisms of CV protection. QJM 2010;103:213-228.
    Frye RL, August P, Brooks MM, Hardison RM, Kelsey SF, MacGregor JM, Orchard TJ, Chaitman BR, Genuth SM, Goldberg SH, Hlatky MA, Jones TL, Molitch ME, Nesto RW, Sako EY and Sobel BE. A randomized trial of therapies for type 2 diabetes and coronary artery disease. N Engl J Med 2009;360:2503-2515.
    Game BA, He L, Jarido V, Nareika A, Jaffa AA, Lopes-Virella MF and Huang Y. Pioglitazone inhibits connective tissue growth factor expression in advanced atherosclerotic plaques in low-density lipoprotein receptor-deficient mice. Atherosclerosis 2007;192:85-91.
    Geese WJ, Achanzar W, Rubin C, Hariharan N, Cheng P, Tomlinson L, Ordway N, Dracopoli NC, Delmonte T, Hui L, Krishnan B, Cosma G and Ranade K. Genetic and gene expression studies implicate reniin and endothelin-1 in edema caused by peroxisome proliferator-activated receptor gamma agonists. Pharmacogenet Genomics 2008; 18:903-910.
    Gerstein HC, Ratner RE, Cannon CP, Serruys PW, Garcia-Garcia HM, van Es GA, Kolatkar NS, Kravitz BG, Miller DM, Huang C, Fitzgerald PJ and Nesto RW. Effect of rosiglitazone on progression of coronary atherosclerosis in patients with type 2 diabetes mellitus and coronary artery disease:the assessment on the prevention of progression by rosiglitazone on atherosclerosis in diabetes patients with cardiovascular history trial. Circulation 2010; 121:1176-1187.
    Giles TD and Sander GE. Effects of thiazolidinediones on blood pressure. Curr Hypertens Rep 2007;9:332-337.
    Gosset P, Charbonnier AS, Delerive P, Fontaine J, Staels B, Pestel J, Tonnel AB and Trottein F. Peroxisome proliferator-activated receptor gamma activators affect the maturation of human monocyte-derived dendritic cells. Eur J Immunol 2001;31:2857-2865.
    Gotsman I, Grabie N, Gupta R, Dacosta R, MacConmara M, Lederer J, Sukhova G, Witztum JL, Sharpe AH and Lichtman AH. Impaired regulatory T-cell response and enhanced atherosclerosis in the absence of inducible costimulatory molecule. Circulation 2006;114:2047-2055.
    Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A, Dikalov S, Goronzy J, Weyand C and Harrison DG. Role of the T cell in the genesis of angiotensin Ⅱ induced hypertension and vascular dysfunction. J Exp Med 2007;204:2449-2460.
    Hansson GK and Libby P. The immune response in atherosclerosis:a double-edged sword. Nat Rev Immunol 2006;6:508-519.
    He L, Game BA, Nareika A, Garvey WT and Huang Y. Administration of pioglitazone in low-density lipoprotein receptor-deficient mice inhibits lesion progression and matrix metalloproteinase expression in advanced atherosclerotic plaques. J Cardiovasc Pharmacol 2006;48:212-222.
    Home PD, Pocock SJ, Beck-Nielsen H, Curtis PS, Gomis R, Hanefeld M, Jones NP, Komajda M and McMurray JJ. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD):a multicentre, randomised, open-label trial. Lancet 2009;373:2125-2135.
    Hsueh WA and Bruemmer D. Peroxisome proliferator-activated receptor gamma: implications for cardiovascular disease. Hypertension 2004;43:297-305.
    Hutter R, Valdiviezo C, Sauter BV, Savontaus M, Chereshnev Ⅰ, Carrick FE, Bauriedel G, Luderitz B, Fallon JT, Fuster V and Badimon JJ. Caspase-3 and tissue factor expression in lipid-rich plaque macrophages:evidence for apoptosis as link between inflammation and atherothrombosis. Circulation 2004; 109:2001-2008.
    Jones A, Deb R, Torsney E, Howe F, Dunkley M, Gnaneswaran Y, Gaze D, Nasr H, Loftus IM, Thompson MM and Cockerill GW. Rosiglitazone reduces the development and rupture of experimental aortic aneurysms. Circulation 2009;119:3125-3132.
    Jurewicz M, McDermott DH, Sechler JM, Tinckam K, Takakura A, Carpenter CB, Milford E and Abdi R. Human T and natural killer cells possess a functional renin-angiotensin system:further mechanisms of angiotensin II-induced inflammation. J Am Soc Nephrol 2007;18:1093-1102.
    Kaneda H, Shiono T, Miyashita Y, Takahashi S, Taketani Y, Domae H, Matsumi J, Mizuno S, Minami Y, Sugitatsu K and Saito S. Efficacy and safety of pioglitazone in patients with ST elevation myocardial infarction treated with primary stent implantation. Heart 2009;95:1079-1084.
    Kantengwa S, Jornot L, Devenoges C and Nicod LP. Superoxide anions induce the maturation of human dendritic cells. Am J Respir Crit Care Med 2003;167:431-437.
    Kaul S, Bolger AF, Herrington D, Giugliano RP and Eckel RH. Thiazolidinedione drugs and cardiovascular risks:a science advisory from the american heart association and American college of cardiology foundation. Circulation 2010;121:1868-1877.
    Keidar S, Attias J, Heinrich R, Coleman R and Aviram M. Angiotensin II atherogenicity in apolipoprotein E deficient mice is associated with increased cellular cholesterol biosynthesis. Atherosclerosis 1999; 146:249-257.
    Klotz L, Dani I, Edenhofer F, Nolden L, Evert B, Paul B, Kolanus W, Klockgether T, Knolle P and Diehl L. Peroxisome proliferator-activated receptor gamma control of dendritic cell function contributes to development of CD4+ T cell anergy. J Immunol 2007;178:2122-2131.
    Komiyama N, Kikutani T, Koizumi T, Tamaki T, Yamazaki T, Sakamato A, Takagi E and Nishimura S. Impact of pioglitazone on coronary atherosclerosis in patients with intravascular ultrasound. J Am Coll Cardiol 2010;55:A48-E459.
    Lago RM, Singh PP and Nesto RW. Congestive heart failure and cardiovascular death in patients with prediabetes and type 2 diabetes given thiazolidinediones:a meta-analysis of randomised clinical trials. Lancet 2007;370:1129-1136.
    Lapteva N, Ide K, Nieda M, Ando Y, Hatta-Ohashi Y, Minami M, Dymshits G, Egawa K, Juji T and Tokunaga K. Activation and suppression of renin-angiotensin system in human dendritic cells. Biochem Biophys Res Commun 2002;296:194-200.
    Lapteva N, Nieda M, Ando Y, Ide K, Hatta-Ohashi Y, Dymshits G, Ishikawa Y, Juji T and Tokunaga K. Expression of renin-angiotensin system genes in immature and mature dendritic cells identified using human cDNA microarray. Biochem Biophys Res Commun 2001;285:1059-1065.
    Le Naour F, Hohenkirk L, Grolleau A, Misek DE, Lescure P, Geiger JD, Hanash S and Beretta L. Profiling changes in gene expression during differentiation and maturation of monocyte-derived dendritic cells using both oligonucleotide microarrays and proteomics. JBiol Chem 2001;276:17920-17931.
    Levi Z, Shaish A, Yacov N, Levkovitz H, Trestman S, Gerber Y, Cohen H, Dvir A, Rhachmani R, Ravid M and Harats D. Rosiglitazone (PPARgamma-agonist) attenuates atherogenesis with no effect on hyperglycaemia in a combined diabetes-atherosclerosis mouse model. Diabetes Obes Metab 2003;5:45-50.
    Li AC, Brown KK, Silvestre MJ, Willson TM, Palinski W and Glass CK. Peroxisome proliferator-activated receptor gamma ligands inhibit development of atherosclerosis in LDL receptor-deficient mice. J Clin Invest 2000;106:523-531.
    Libby P. Inflammation in atherosclerosis. Nature 2002;420:868-874.
    Lincoff AM, Wolski K, Nicholls SJ and Nissen SE. Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus:a meta-analysis of randomized trials. JAMA 2007;298:1180-1188.
    Liu P, Yu YR, Spencer JA, Johnson AE, Vallanat CT, Fong AM,Patterson C and Patel DD.CX3CR1 deficiency impairs dendritic cell accumulation in arterial intima and reduces atherosclerotic burden. Arterioscler Thromb Vasc Biol 2008;28:243-250.
    Lord RS and Bobryshev YV. Clustering of dendritic cells in athero-prone areas of the aorta. Atherosclerosis 1999; 146:197-198.
    Luo Y, Liang C, Xu C, Jia Q, Huang D, Chen L, Wang K, Wu Z and Ge J. Ciglitazone inhibits oxidized-low density lipoprotein induced immune maturation of dendritic cells. J Cardiovasc Pharmacol 2004;44:381-385.
    Marchesi C, Paradis P and Schiffrin EL. Role of the renin-angiotensin system in vascular inflammation. Trends Pharmacol Sci 2008;29:367-374.
    Marx N, Wohrle J, Nusser T, Walcher D, Rinker A, Hombach V, Koenig W and Hoher M. Pioglitazone reduces neointima volume after coronary stent implantation:a randomized, placebo-controlled, double-blind trial in nondiabetic patients. Circulation 2005;112:2792-2798.
    Mazzolai L, Duchosal MA, Korber M, Bouzourene K, Aubert JF, Hao H, Vallet V, Brunner HR, Nussberger J, Gabbiani G and Hayoz D. Endogenous angiotensin Ⅱ induces atherosclerotic plaque vulnerability and elicits a Thl response in ApoE-/-mice. Hypertension 2004;44:277-282.
    Mazzone T, Meyer PM, Feinstein SB, Davidson MH, Kondos GT, D'Agostino RB, Sr., Perez A, Provost JC and Haffner SM. Effect of pioglitazone compared with glimepiride on carotid intima-media thickness in type 2 diabetes:a randomized trial. JAMA 2006;296:2572-2581.
    Mehta PK and Griendling KK. Angiotensin II cell signaling:physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol 2007;292:C82-97.
    Meisner F, Walcher D, Gizard F, Kapfer X, Huber R, Noak A, Sunder-Plassmann L, Bach H, Haug C, Bachem M, Stojakovic T, Marz W, Hombach V, Koenig W, Staels B and Marx N. Effect of rosiglitazone treatment on plaque inflammation and collagen content in nondiabetic patients:data from a randomized placebo-controlled trial. Arterioscler Thromb Vasc Biol 2006;26:845-850.
    Mor A, Planer D, Luboshits G, Afek A, Metzger S, Chajek-Shaul T, Keren G and George J. Role of naturally occurring CD4+ CD25+ regulatory T cells in experimental atherosclerosis. Arterioscler Thromb Vasc Biol 2007;27:893-900.
    Moreno PR. Vulnerable plaque:definition, diagnosis, and treatment. Cardiol Clin 2010;28:1-30.
    Muller DN, Shagdarsuren E, Park JK, Dechend R, Mervaala E, Hampich F, Fiebeler A, Ju X, Finckenberg P, Theuer J, Viedt C, Kreuzer J, Heidecke H, Haller H, Zenke M and Luft FC. Immunosuppressive treatment protects against angiotensin II-induced renal damage. Am JPathol 2002; 161:1679-1693.
    Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, Badimon JJ, Stefanadis C, Moreno P, Pasterkamp G, Fayad Z, Stone PH, Waxman S, Raggi P, Madjid M, Zarrabi A, Burke A, Yuan C, Fitzgerald PJ, Siscovick DS, de Korte CL, Aikawa M, Juhani Airaksinen KE, Assmann G, Becker CR, Chesebro JH, Farb A, Galis ZS, Jackson C, Jang IK, Koenig W, Lodder RA, March K, Demirovic J, Navab M, Priori SG, Rekhter MD, Bahr R, Grundy SM, Mehran R, Colombo A, Boerwinkle E, Ballantyne C, Insull W, Jr., Schwartz RS, Vogel R, Serruys PW, Hansson GK, Faxon DP, Kaul S, Drexler H, Greenland P, Muller JE, Virmani R, Ridker PM, Zipes DP, Shah PK and Willerson JT. From vulnerable plaque to vulnerable patient:a call for new definitions and risk assessment strategies:Part I. Circulation 2003; 108:1664-1672.
    Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, Badimon JJ, Stefanadis C, Moreno P, Pasterkamp G, Fayad Z, Stone PH, Waxman S, Raggi P, Madjid M, Zarrabi A, Burke A, Yuan C, Fitzgerald PJ, Siscovick DS, de Korte CL, Aikawa M, Airaksinen KE, Assmann G, Becker CR, Chesebro JH, Farb A, Galis ZS, Jackson C, Jang IK, Koenig W, Lodder RA, March K, Demirovic J, Navab M, Priori SG, Rekhter MD, Bahr R, Grundy SM, Mehran R, Colombo A, Boerwinkle E, Ballantyne C, Insull W, Jr., Schwartz RS, Vogel R, Serruys PW, Hansson GK, Faxon DP, Kaul S, Drexler H, Greenland P, Muller JE, Virmani R, Ridker PM, Zipes DP, Shah PK and Willerson JT. From vulnerable plaque to vulnerable patient:a call for new definitions and risk assessment strategies:Part II. Circulation 2003;108:1772-1778.
    Nahmod KA, Vermeulen ME, Raiden S, Salamone G, Gamberale R, Fernandez-Calotti P, Alvarez A, Nahmod V, Giordano M and Geffner JR. Control of dendritic cell differentiation by angiotensin II. Faseb J 2003; 17:491-493.
    Nakagawa S, Ohtani T, Mizuashi M, Mollah ZU, Ito Y, Tagami H and Aiba S. p38 Mitogen-Activated protein kinase mediates dual role of ultraviolet B radiation in induction of maturation and apoptosis of monocyte-derived dendritic cells. J Invest Dermatol 2004; 123:361-370.
    Nakahara T, Moroi Y, Uchi H and Furue M. Differential role of MAPK signaling in human dendritic cell maturation and Thl/Th2 engagement. J Dermatol Sci 2006;42:1-11.
    Nakahara T, Uchi H, Urabe K, Chen Q, Furue M and Moroi Y. Role of c-Jun N-terminal kinase on lipopolysaccharide induced maturation of human monocyte-derived dendritic cells. Int Immunol 2004;16:1701-1709.
    Nakaya H, Summers BD, Nicholson AC, Gotto AM, Jr., Hajjar DP and Han J. Atherosclerosis in LDLR-knockout mice is inhibited, but not reversed, by the PPARgamma ligand pioglitazone. Am J Pathol 2009; 174:2007-2014.
    Nataraj C, Oliverio MI, Mannon RB, Mannon PJ, Audoly LP, Amuchastegui CS, Ruiz P, Smithies O and Coffman TM. Angiotensin II regulates cellular immune responses through a calcineurin-dependent pathway. J Clin Invest 1999;104:1693-1701.
    Nencioni A, Grunebach F, Zobywlaski A, Denzlinger C, Brugger W and Brossart P. Dendritic cell immunogenicity is regulated by peroxisome proliferator-activated receptor gamma. J Immunol 2002;169:1228-1235.
    Nencioni A, Wesselborg S and Brossart P. Role of peroxisome proliferator-activated receptor gamma and its ligands in the control of immune responses. Crit Rev Immunol 2003;23:1-13.
    Neumann M, Fries H, Scheicher C, Keikavoussi P, Kolb-Maurer A, Brocker E, Serfling E and Kampgen E. Differential expression of Rel/NF-kappaB and octamer factors is a hallmark of the generation and maturation of dendritic cells. Blood 2000;95:277-285.
    Ni W, Kitamoto S, Ishibashi M, Usui M, Inoue S, Hiasa K, Zhao Q, Nishida K, Takeshita A and Egashira K. Monocyte chemoattractant protein-1 is an essential inflammatory mediator in angiotensin II-induced progression of established atherosclerosis in hypercholesterolemic mice. Arterioscler Thromb Vasc Biol 2004;24:534-539.
    Nicoletti A, Caligiuri G and Hansson GK. Immunomodulation of atherosclerosis:myth and reality. J Intern Med 2000;247:397-405.
    Nie W, Yan H, Li S, Zhang Y, Yu F, Zhu W, Fan F and Zhu J. Angiotensin-(1-7) enhances angiotensin II induced phosphorylation of ERK1/2 in mouse bone marrow-derived dendritic cells. Mol Immunol 2009;46:355-361.
    Niessner A, Sato K, Chaikof EL, Colmegna I, Goronzy JJ and Weyand CM. Pathogen-sensing plasmacytoid dendritic cells stimulate cytotoxic T-cell function in the atherosclerotic plaque through interferon-alpha. Circulation 2006;114:2482-2489.
    Niessner A, Shin MS, Pryshchep O, Goronzy JJ, Chaikof EL and Weyand CM. Synergistic proinflammatory effects of the antiviral cytokine interferon-alpha and Toll-like receptor 4 ligands in the atherosclerotic plaque. Circulation 2007; 116:2043-2052.
    Nishio K, Shigemitsu M, Kodama Y, Konno N, Katagiri T and Kobayashi Y. Comparison of bare metal stent with pioglitazone versus sirolimus-eluting stent for percutaneous coronary intervention in patients with Type 2 diabetes mellitus. Cardiovasc Revasc Med 2009;10:5-11.
    Nissen SE, Nicholls SJ, Wolski K, Nesto R, Kupfer S, Perez A, Jure H, De Larochelliere R, Staniloae CS, Mavromatis K, Saw J, Hu B, Lincoff AM and Tuzcu EM. Comparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes:the PERISCOPE randomized controlled trial. JAMA 2008;299:1561-1573.
    Nissen SE and Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 2007;356:2457-2471.
    Okamura A, Rakugi H, Ohishi M, Yanagitani Y, Takiuchi S, Moriguchi K, Fennessy PA, Higaki J and Ogihara T. Upregulation of renin-angiotensin system during differentiation of monocytes to macrophages. JHypertens 1999;17:537-545.
    Okura H, Takagi T and Toda I. Pioglitazone affects left ventricular filling pressure in patients with ischemic heart disease and type 2 diabetes who underwent coronary intervention:an echo doppler sub-analysis from the prevention of in-stent neointimal proliferation by pioglitazone study (POPPS). J Am Coll Cardiol 2010;55:A16-E150.
    Perrin-Cocon L, Coutant F, Agaugue S, Deforges S, Andre P and Lotteau V. Oxidized low-density lipoprotein promotes mature dendritic cell transition from differentiating monocyte. J Immunol 2001;167:3785-3791.
    Puig-Kroger A, Relloso M, Fernandez-Capetillo O, Zubiaga A, Silva A, Bernabeu C and Corbi AL. Extracellular signal-regulated protein kinase signaling pathway negatively regulates the phenotypic and functional maturation of monocyte-derived human dendritic cells. Blood 2001;98:2175-2182.
    Reaven PD, Schwenke DC and Buchanan TZ. Pioglitazone reduces long-term progression of carotid atherosclerosis in IGT. American Diabetes Association 2009 Scientific Sessions; June 7,2009; New Orleans, LA. Abstract 15-LB.
    Rescigno M, Martino M, Sutherland CL, Gold MR and Ricciardi-Castagnoli P. Dendritic cell survival and maturation are regulated by different signaling pathways.J Exp Med 1998; 188:2175-2180.
    Robertson AK and Hansson GK. T cells in atherogenesis:for better or for worse? Arterioscler Thromb Vasc Biol 2006;26:2421-2432.
    Romani N, Reider D, Heuer M, Ebner S, Kampgen E, Eibl B, Niederwieser D and Schuler G. Generation of mature dendritic cells from human blood. An improved method with special regard to clinical applicability. J Immunol Methods 1996;196:137-151.
    Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med 1999;340:115-126.
    Ryan MJ, Didion SP, Mathur S, Faraci FM and Sigmund CD. PPAR(gamma) agonist rosiglitazone improves vascular function and lowers blood pressure in hypertensive transgenic mice. Hypertension 2004;43:661-666.
    Sanchez-Sanchez N, Riol-Blanco L and Rodriguez-Fernandez JL. The multiple personalities of the chemokine receptor CCR7 in dendritic cells. J Immunol 2006; 176:5153-5159.
    Shaposhnik Z, Wang X, Weinstein M, Bennett BJ and Lusis AJ. Granulocyte macrophage colony-stimulating factor regulates dendritic cell content of atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2007;27:621-627.
    Simo R, Rodriguez A and Caveda E. Different Effects of Thiazolidinediones on Cardiovascular Risk in Patients with Type 2 Diabetes Mellitus:Pioglitazone versus Rosiglitazone. Curr Drug Saf 2010 Mar 7. [Epub ahead of print]
    Song S, Wang Y, Zhang Y, Wang F, He Y, Ren D, Guo Y and Sun S. Augmented induction of CD8+ cytotoxic T-cell response and antitumor effect by DCs pulsed with virus-like particles packaging with CpG. Cancer Lett 2007;256:90-100.
    Steinman RM and Banchereau J. Taking dendritic cells into medicine. Nature 2007;449:419-426.
    Steinman RM and Hemmi H. Dendritic cells:translating innate to adaptive immunity. Curr Top Microbiol Immunol 2006;311:17-58.
    Sun P, Zhang W, Zhu W, Yan H and Zhu J. Expression of renin-angiotensin system on dendritic cells of patients with coronary artery disease. Inflammation 2009;32:347-356.
    Suzuki Y, Gomez-Guerrero C, Shirato I, Lopez-Franco O, Hernandez-Vargas P, Sanjuan G, Ruiz-Ortega M, Sugaya T, Okumura K, Tomino Y, Ra C and Egido J. Susceptibility to T cell-mediated injury in immune complex disease is linked to local activation of renin-angiotensin system:the role of NF-AT pathway. J Immunol 2002; 169:4136-4146.
    Szatmari I and Nagy L. Nuclear receptor signalling in dendritic cells connects lipids, the genome and immune function. Embo J2008;27:2353-2362.
    Szatmari I, Rajnavolgyi E and Nagy L. PPARgamma, a lipid-activated transcription factor as a regulator of dendritic cell function. Ann N Y Acad Sci 2006;1088:207-218.
    Szeles L, Torocsik D and Nagy L. PPARgamma in immunity and inflammation:cell types and diseases. Biochim Biophys Acta 2007;1771:1014-1030.
    Takagi T, Okura H, Kobayashi Y, Kataoka T, Taguchi H, Toda I, Tamita K, Yamamuro A, Sakanoue Y, Ito A, Yanagi S, Shimeno K, Waseda K, Yamasaki M, Fitzgerald PJ, Ikeno F, Honda Y, Yoshiyama M and Yoshikawa J. A prospective, multicenter, randomized trial to assess efficacy of pioglitazone on in-stent neointimal suppression in type 2 diabetes:POPPS (Prevention of In-Stent Neointimal Proliferation by Pioglitazone Study). JACC Cardiovasc Interv 2009;2:524-531.
    Tian Y, Yuan Z, Liu Y, Liu W, Zhang W, Xue J, Shen Y, Liang X, Chen T and Kishimoto C. Pioglitazone modulates the balance of effector and regulatory T cells in apolipoprotein E deficient mice. Nutr Metab Cardiovasc Dis 2009 Oct 9. [Epub ahead of print].
    Toba H, Miki S, Shimizu T, Yoshimura A, Inoue R, Sawai N, Tsukamoto R, Murakami M, Morita Y, Nakayama Y, Kobara M and Nakata T. The direct antioxidative and anti-inflammatory effects of peroxisome proliferator-activated receptors ligands are associated with the inhibition of angiotensin converting enzyme expression in streptozotocin-induced diabetic rat aorta. Eur J Pharmacol 2006;549:124-132.
    Todorov VT, Desch M, Schmitt-Nilson N, Todorova A and Kurtz A. Peroxisome proliferator-activated receptor-gamma is involved in the control of renin gene expression. Hypertension 2007;50:939-944.
    Tontonoz P, Nagy L, Alvarez JG, Thomazy VA and Evans RM. PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 1998;93:241-252.
    Virmani R, Burke AP, Farb A and Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol 2006;47:C13-18.
    Virmani R, Kolodgie FD, Burke AP, Farb A and Schwartz SM. Lessons from sudden coronary death:a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2000;20:1262-1275.
    Waxman S, Ishibashi F and Muller JE. Detection and treatment of vulnerable plaques and vulnerable patients:novel approaches to prevention of coronary events. Circulation 2006; 114:2390-2411.
    Weber C, Zernecke A and Libby P. The multifaceted contributions of leukocyte subsets to atherosclerosis:lessons from mouse models. Nat Rev Immunol 2008;8:802-815.
    Weiss D, Kools JJ and Taylor WR. Angiotensin II-induced hypertension accelerates the development of atherosclerosis in apoE-deficient mice. Circulation 2001; 103:448-454.
    Wick G, Knoflach M and Xu Q. Autoimmune and inflammatory mechanisms in atherosclerosis. Annu Rev Immunol 2004;22:361-403.
    Wick G, Romen M, Amberger A, Metzler B, Mayr M, Falkensammer G and Xu Q. Atherosclerosis, autoimmunity, and vascular-associated lymphoid tissue. Faseb J 1997:11:1199-1207.
    Wiesel P, Mazzolai L, Nussberger J and Pedrazzini T. Two-kidney, one clip and one-kidney, one clip hypertension in mice. Hypertension 1997;29:1025-1030.
    Yilmaz A, Lipfert B, Cicha I, Schubert K, Klein M, Raithel D, Daniel WG and Garlichs CD. Accumulation of immune cells and high expression of chemokines/chemokine receptors in the upstream shoulder of atherosclerotic carotid plaques. Exp Mol Pathol 2007;82:245-255.
    Yilmaz A, Lochno M, Traeg F, Cicha I, Reiss C, Stumpf C, Raaz D, Anger T, Amann K, Probst T, Ludwig J, Daniel WG and Garlichs CD. Emergence of dendritic cells in rupture-prone regions of vulnerable carotid plaques. Atherosclerosis 2004;176:101-110.
    Yilmaz A, Weber J, Cicha I, Stumpf C, Klein M, Raithel D, Daniel WG and Garlichs CD. Decrease in circulating myeloid dendritic cell precursors in coronary artery disease. J Am Coll Cardiol 2006;48:70-80.
    Yoshimura S, Bondeson J, Foxwell BM, Brennan FM and Feldmann M. Effective antigen presentation by dendritic cells is NF-kappaB dependent:coordinate regulation of MHC, co-stimulatory molecules and cytokines. Int Immunol 2001;13:675-683.
    Yu Q, Kovacs C, Yue FY and Ostrowski MA. The role of the p38 mitogen-activated protein kinase, extracellular signal-regulated kinase, and phosphoinositide-3-OH kinase signal transduction pathways in CD40 ligand-induced dendritic cell activation and expansion of virus-specific CD8+ T cell memory responses. J Immunol 2004; 172:6047-6056.
    Zanchi A, Chiolero A, Maillard M, Nussberger J, Brunner HR and Burnier M. Effects of the peroxisomal proliferator-activated receptor-gamma agonist pioglitazone on renal and hormonal responses to salt in healthy men. J Clin Endocrinol Metab 2004;89:1140-1145.
    Admyre C, Johansson SM, Paulie S, and Gabrielsson S. Direct exosome stimulation of peripheral human T cells detected by ELISPOT. Eur J Immunol 2006;36:1772-1781.
    Chaput N, Flament C, Viaud S, Taieb J, Roux S, Spatz A, Andre F, LePecq JB, Boussac M, Garin J, Amigorena S, Thery C, and Zitvogel L. Dendritic cell derived-exosomes:biology and clinical implementations. J Leukoc Biol 2006;80:471-478.
    Dhodapkar MV, Steinman RM, Krasovsky J, Munz C, and Bhardwaj N. Antigen-specific inhibition of effector T cell function in humans·after injection of immature dendritic cells. J Exp Med 2001;193:233-238.
    Escudier B, Dorval T, Chaput N, Andre F, Caby MP, Novault S, Flament C, Leboulaire C, Borg C, Amigorena S, Boccaccio C, Bonnerot C, Dhellin O, Movassagh M, Piperno S, Robert C, Serra V, Valente N, Le Pecq JB, Spatz A, Lantz O, Tursz T, Angevin E, and Zitvogel L. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes:results of thefirst phase I clinical trial. J Transl Med 2005;3:10.
    Hao S, Bai O, Li F, Yuan J, Laferte S, and Xiang J. Mature dendritic cells pulsed with exosomes stimulate efficient cytotoxic T-lymphocyte responses and antitumour immunity. Immunology 2007;120:90-102.
    Hsu DH, Paz P, Villaflor G, Rivas A, Mehta-Damani A, Angevin E, Zitvogel L, and Le Pecq JB. Exosomes as a tumor vaccine:enhancing potency through direct loading of antigenic peptides. J Immunother (1997) 2003;26:440-450.
    Ichim TE, Zhong R, and Min WP.Prevention of allograft rejection by in vitro generated tolerogenic dendritic cells. Transpl Immunol 2003;11:295-306.
    Kim SH, Bianco N, Menon R, Lechman ER, Shufesky WJ, Morelli AE, and Robbins PD. Exosomes derived from genetically modified DC expressing FasL are anti-inflammatory and immunosuppressive. Mol Ther 2006; 13:289-300.
    Kim SH, Bianco NR, Shufesky WJ, Morelli AE, and Robbins PD. Effective treatment of inflammatory disease models with exosomes derived from dendritic cells genetically modified to express IL-4. J Immunol 2007; 179:2242-2249.
    Kim SH, Lechman ER, Bianco N, Menon R, Keravala A, Nash J, Mi Z, Watkins SC, Gambotto A, and Robbins PD. Exosomes derived from IL-10-treated dendritic cells can suppress inflammation and collagen-induced arthritis. J Immunol 2005; 174:6440-6448.
    Lamparski HG, Metha-Damani A, Yao JY, Patel S, Hsu DH, Ruegg C, and Le Pecq JB. Production and characterization of clinical grade exosomes derived from dendritic cells. J Immunol Methods 2002;270:211-226.
    Luketic L, Delanghe J, Sobol PT, Yang P, Frotten E, Mossman KL, Gauldie J, Bramson J, and Wan Y. Antigen presentation by exosomes released from peptide-pulsed dendritic cells is not suppressed by the presence of active CTL. J Immunol 2007; 179:5024-5032.
    Montecalvo A, Shufesky WJ, Stolz DB, Sullivan MG, Wang Z, Divito SJ, Papworth GD, Watkins SC, Robbins PD, Larregina AT, and Morelli AE. Exosomes as a short-range mechanism to spread alloantigen between dendritic cells during T cell allorecognition. J Immunol 2008; 180:3081-3090.
    Morelli AE, Larregina AT, Shufesky WJ, Sullivan ML, Stolz DB, Papworth GD, Zahorchak AF, Logar AJ, Wang Z, Watkins SC, Falo LD, Jr., and Thomson AW. Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood 2004; 104:3257-3266.
    Morse MA, Garst J, Osada T, Khan S, Hobeika A, Clay TM, Valente N, Shreeniwas R, Sutton MA, Delcayre A, Hsu DH, Le Pecq JB, and Lyerly HK. A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J Transl Med 2005;3:9.
    Peche H, Heslan M, Usal C, Amigorena S, and Cuturi MC. Presentation of donor major histocompatibility complex antigens by bone marrow dendritic cell-derived exosomes modulates allograft rejection. Transplantation 2003;76:1503-1510.
    Peche H, Renaudin K, Beriou G, Merieau E, Amigorena S, and Cuturi MC. Induction of tolerance by exosomes and short-term immunosuppression in a fully MHC-mismatched rat cardiac allograft model. Am J Transplant 2006;6:1541-1550.
    Segura E, Amigorena S, and Thery C. Mature dendritic cells secrete exosomes with strong ability to induce antigen-specific effector immune responses. Blood Cells Mol Dis 2005;35:89-93.
    Segura E, Nicco C, Lombard B, Veron P, Raposo G, Batteux F, Amigorena S, and Thery C. ICAM-1 on exosomes from mature dendritic cells is critical for efficient naive T-cell priming. Blood 2005;106:216-223.
    Stoorvogel W, Kleijmeer MJ, Geuze HJ, and Raposo G. The biogenesis and functions of exosomes. Traffic 2002;3:321-330.
    Tacken PJ, de Vries IJ, Torensma R, and Figdor CG. Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat Rev Immunol 2007;7:790-802.
    Thery C, Boussac M, Veron P, Ricciardi-Castagnoli P, Raposo G, Garin J, and Amigorena S. Proteomic analysis of dendritic cell-derived exosomes:a secreted subcellular compartment distinct from apoptotic vesicles. J Immunol 2001;166:7309-7318.
    Thery C, Duban L, Segura E, Veron P, Lantz O, and Amigorena S. Indirect activation of naive CD4+ T cells by dendritic cell-derived exosomes. Nat Immunol 2002;3:1156-1162.
    Thery C, Zitvogel L, and Amigorena S. Exosomes:composition, biogenesis and function. Nat Rev Immunol 2002;2:569-579.
    Zitvogel L, Regnault A, Lozier A, Wolfers J, Flament C, Tenza D, Ricciardi-Castagnoli P, Raposo G, and Amigorena S. Eradication of established murine tumors using a novel cell-free vaccine:dendritic cell-derived exosomes. Nat Med 1998;4:594-600.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700