第二代恶性疟原虫多表位人工抗原疫苗的构建和筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要
     疟疾是世界上最严重的传染病之一,2008年有2.43亿人感染疟原虫,约86.3万人因患疟疾死亡,而恶性疟原虫是造成严重危害的主要“元凶”。近年来,虽然在“疟疾控制”方面取得了显著的成绩,但对于预防性和治疗性疟疾疫苗的需求仍十分迫切。目前,针对疟原虫生活史复杂,抗原的表达具有阶段特异性、高度变异性等特点,亚单位、多表位嵌合疫苗成为抗恶性疟疫苗的研究热点。
     前期研究中,本实验室发明了“表位改组”技术,利用其构建了具有极高表位连接多样性的多表位基因文库,并筛选出了高免疫原性和体外抑制疟原虫生长能力的第一代多表位嵌合抗原M.RCAg-1,证实了“表位改组”技术的可行性。但是,由于其N端带有载体来源的43肽以及6×His蛋白标签,虽然能够用肠激酶(EK)切除,但成本过高,限制了M.RCAg-1的研究价值。
     本研究在前期工作的基础上,进行了一系列改进,包括:选择了12个以恶性疟原虫红内期主要的疫苗候选抗原为主的15个B细胞和Th细胞表位;在表位连接处引入特定的间隔序列;在多表位抗原的N、C端固定引入抗原侧翼序列FN和FC;所有多表位抗原序列均为疟原虫来源,不含任何载体肽和蛋白标签,符合国家《人用重组DNA制品质量控制技术指导原则》的标准规范。构建并筛选得到了第二代多表位嵌合抗原疫苗。与此同时,通过对多表位嵌合抗原序列(表位)组成、二级结构、免疫原性和疟原虫体外生长抑制率(GIA)水平的对比分析,初步探讨了几个参数间的关系。此外,建立了以C端固定肽的特异性多克隆IgY抗体为配基的免疫亲和层析,为文库中多表位嵌合抗原的高效纯化探索了新的途径。
     主要取得以下进展:
     1.成功构建并得到具有高免疫原性和表位连接多样性的第二代多表位嵌合基因文库,同时其小鼠免疫血清对培养恶性疟原虫天然蛋白具有识别多样性。
     2.从基因文库中筛选得到高免疫原性嵌合抗原D10,免疫大白兔后,总IgG和特异性IgG的GIA水平分别为47%和67%,高于阳性对照抗原MSP1抗体的44%。此外,对72份疫区患者血清的筛查发现,对D10抗原的识别率达到67%,且与患者虫血率显著负相关,提示D10可能与恶性疟疾保护有关。表明全序列为疟原虫来源的嵌合抗原D10,具有继续优化开发的价值。
     3.我们发现多表位嵌合抗原二级结构中的"Coil-Helix-Coil-Helix"结构影响抗原的免疫原性;同时,也发现含有“连续4个Th细胞表位”结构的多表位嵌合抗原具有更高的GIA水平。
     4.证实了在多表位嵌入肽段抗体中,抑制性和促进性抗体的存在,并推断其以级联或协同的方式影响总抗体的GIA水平。
     5.通过制备C端融合序列的特异性多克隆IgY抗体,建立了免疫亲和纯化文库多表位嵌合抗原的新途径。
     6.证实了基于Hydroethidine染料的流式细胞术,可以作为恶性疟原虫虫血率及其生长周期的相对定量分析方法,并将其工作浓度优化为10μg/ml。
     本研究利用部分改进的“表位改组”技术,构建并筛选得到了具有较大开发价值的多表位嵌合抗原D10。同时,通过大量实验数据证实了N、C端融合片段作为鉴定和免疫亲和纯化内源标签的实际应用性,以及多表位嵌入肽段序列对多表位嵌合抗原免疫原性和其特异性抗体对疟原虫体外生长抑制率的影响。以上实验结果为各类多表位嵌合抗原疫苗的设计提供了有意义的理论依据。
Malaria is one of the most severe infectious diseases in the world,there are 243 million cases and 0.86million deaths caused by malaria in 2008,and Plasmodium falciparum is the most deadly species. Recent years,though marked progresses have been obtained in"Malaria Control",there is still an urgent demand of preventive and therapeutic vaccine.To overcome the problem of highly antigenic variation and stage specincity in P.falciparum,sub-unit or polyepitope chimeric vaccine is a promising strategy.
     In previous study,we generated a novel approach named"epitope shuffling".Using the approach,we constructed a polyepitope gene library with high diversity of epitope combination,and from which our first generation of polyeptitope vaccine designated M.RCAg-1 with high immunogenicity and in vitro antipalasite efficacy was obtained.However,the antigen's further clinical study had been hampered by the redundancy of 43 amino acids from vector at N terminal and 6×His tag,though which could be cut off by Enterokinase with high cost.
     Based on the previous work,we have made several improvements,which includes:(1)15 B cell and Th cell epitopes from 12 main antigens of P.falciparum blood stage have been selected,(2)definite spacer sequences have been introduced between adjacent epitopes,(3)two parasite-derived fusion sequences FN and FC as flanking sequences have been fixed at N and C terminals of polyepitope antigen,(4)to meet the"national standard of DNA recombinant products",no vector peptides or tags are contained in the sequence.The second generation of polyepitope chimeric vaccine have been constructed and screened.Meanwhile,by comparative analysis,we have explored the relationship among epitope composition,second strueture,immunogenicity and in vitro antiparasite efficacy of the polyepitope antigens.Moreover,high efficient immunoaffinity purification of polyepitope antigens by IgY specific to FC has been investigated.The results are as follows:
     1. The second generation of polyepitope gene libraly with high immunogenicity and diversity of epitope combination had been successfully constructed.Besides,the immune serum from mice could recognize the native proteins of P.falciparum cultured in lab with high diversity.
     2.The chimeric antigen named D10 with high immunogenicity was screened from the gene library. The results of GIA using total and specific IgG from rabbit were 47% and 67%,which were both higher than 44% of the result fiom positive control MSP1 antibody.On the other hand,D10 could be recognized by 67% of 72 samples of patients' sera from epidemic area and the recognization was significantly negatively correlated with parasitemia of patients,which suggested that D10 could be correlated with the protection against P.falciparum.Based on these results,antigen D10, full sequences derived from P.falciparum,is worthy of further development.
     3."Coil-Helix-Coil-Helix"structure existed in the secondary structures of polyepitope antigens could reflect the immunogenicity.And the"4 successive Th cell epitope"structure contained polyepitope antigens had higher in vitro antiparasite efficacy of antibodies than others.
     4. Inhibiting and enhancing antibodies had been proved to be existed in the total antibodies against polyepitope fragments of chimeric antigens,which would probably affect the in vitro antiparasite efficacy of total antibodies by synergism mechanism.
     5. High efficiency of chimeric antigens' purification by immunoaffinity chromatography with polyclonal IgY antibodies specific to C-terminal fusion polypeptides had been confirmed.
     6. Hydroethidine-based flow cytometry,as a relative quantitative method,could be applied in the analysis of parasitemia and life cycle in the culture of P.falciparum,and the working concentration of Hydroethidine had been optimized with 10μg/ml.
     In conclusion,the second generation of polyepitope chimeric antigen D10 had been constructed and screened by the improved"epitope shuffling",which would be worthy of further development.And the present results indicated that N and C terminal fusions could be used as"endogenous tag"for the identification and immunoaffinity purification of the antigens.Besides,the assumption had been confirmed that polyepitope fragments could impact the immunogenicity and in vitro antiparasite efficacy of the chimeric antigens.These results would be valuable for the design and optimization of various kinds of polyepitope chimeric vaccines.
引文
[1]WHO World Malaria Report 2009.
    [2]Gupta S, Snow RW, Donnelly CA, Marsh K, Newbold C. Immunity to non-cerebral severe malaria is acquired after one or two infections. Nature medicine 1999 Mar;5(3):340-3.
    [3]Webster D, Hill AV. Progress with new malaria vaccines. Bulletin of the World Health Organization 2003;81(12):902-9.
    [4]Raghunath D. Malaria vaccine:are we anywhere close? Journal of postgraduate medicine 2004 Jan-Mar;50(1):51-4.
    [5]Clyde DF. Immunization of man against falciparum and vivax malaria by use of attenuated sporozoites. The American journal of tropical medicine and hygiene 1975 May;24(3):397-401.
    [6]Rieckmann KH, Beaudoin RL, Cassells JS, Sell KW. Use of attenuated sporozoites in the immunization of human volunteers against falciparum malaria. Bulletin of the World Health Organization 1979;57 Suppl 1:261-5.
    [7]Alonso PL, Smith T, Schellenberg JR, Masanja H, Mwankusye S, Urassa H, et al. Randomised trial of efficacy of SPf66 vaccine against Plasmodium falciparum malaria in children in southern Tanzania. Lancet 1994 Oct 29;344(8931):1175-81.
    [8]Alonso PL, Sacarlal J, Aponte JJ, Leach A, Macete E, Milman J, et al. Efficacy of the RTS,S/AS02A vaccine against Plasmodium falciparum infection and disease in young African children:randomised controlled trial. Lancet 2004 Oct 16-22;364(9443):1411-20.
    [9]McLean SA, Pearson CD, Phillips RS. Antigenic variation in Plasmodium chabaudi:analysis of parent and variant populations by cloning. Parasite immunology 1986 Sep;8(5):415-24.
    [10]Roberts DJ, Craig AG, Berendt AR, Pinches R, Nash G, Marsh K, et al. Rapid switching to multiple antigenic and adhesive phenotypes in malaria. Nature 1992 Jun 25;357(6380):689-92.
    [11]Waters A. Malaria:new vaccines for old? Cell 2006 Feb 24;124(4):689-93.
    [12]Richie TL, Saul A. Progress and challenges for malaria vaccines. Nature 2002 Feb 7;415(6872):694-701.
    [13]Patarroyo G, Franco L, Amador R, Murillo LA, Rocha CL, Rojas M, et al. Study of the safety and immunogenicity of the synthetic malaria SPf66 vaccine in children aged 1-14 years. Vaccine 1992; 10(3):175-8.
    [14]Targett GA. SPf66, a candidate synthetic malaria vaccine:Immunogenicity versus protection. Parasitology today (Personal ed 1992 Nov;8(11):354-5.
    [15]Valero MV, Amador LR, Galindo C, Figueroa J, Bello MS, Murillo LA, et al. Vaccination with SPf66, a chemically synthesised vaccine, against Plasmodium falciparum malaria in Colombia. Lancet 1993 Mar 20;341(8847):705-10.
    [16]Noya O, Gabaldon Berti Y, Alarcon de Noya B, Borges R, Zerpa N, Urbaez JD, et al. A population-based clinical trial with the SPf66 synthetic Plasmodium falciparum malaria vaccine in Venezuela. The Journal of infectious diseases 1994 Aug;170(2):396-402.
    [17]Sempertegui F, Estrella B, Moscoso J, Piedrahita L, Hernandez D, Gaybor J, et al. Safety, immunogenicity and protective effect of the SPf66 malaria synthetic vaccine against Plasmodium falciparum infection in a randomized double-blind placebo-controlled field trial in an endemic area of Ecuador. Vaccine 1994 Mar;12(4):337-42.
    [18]Beck HP, Felger I, Kabintik S, Tavul L, Genton B, Alexander N, et al. Assessment of the humoral and cell-mediated immunity against the Plasmodium falciparum vaccine candidates circumsporozoite protein and SPf66 in adults living in highly endemic malarious areas of Papua New Guinea. The American journal of tropical medicine and hygiene 1994 Sep;51(3):356-64.
    [19]D'Alessandro U, Leach A, Drakeley CJ, Bennett S, Olaleye BO, Fegan GW, et al. Efficacy trial of malaria vaccine SPf66 in Gambian infants. Lancet 1995 Aug 19;346(8973):462-7.
    [20]Nosten F, Luxemburger C, Kyle DE, Ballou WR, Wittes J, Wah E, et al. Randomised double-blind placebo-controlled trial of SPf66 malaria vaccine in children in northwestern Thailand. Shoklo SPf66 Malaria Vaccine Trial Group. Lancet 1996 Sep 14;348(9029):701-7.
    [21]Urdaneta M, Prata A, Struchiner CJ, Tosta CE, Tauil P, Boulos M. Evaluation of SPf66 malaria vaccine efficacy in Brazil. The American journal of tropical medicine and hygiene 1998 Mar;58(3):378-85.
    [22]Acosta CJ, Galindo CM, Schellenberg D, Aponte JJ, Kahigwa E, Urassa H, et al. Evaluation of the SPf66 vaccine for malaria control when delivered through the EPI scheme in Tanzania. Trop Med Int Health 1999 May;4(5):368-76.
    [23]Ockenhouse CF, Sun PF, Lanar DE, Wellde BT, Hall BT, Kester K, et al. Phase I/IIa safety, immunogenicity, and efficacy trial of NYVAC-Pf7, a pox-vectored, multiantigen, multistage vaccine candidate for Plasmodium falciparum malaria. The Journal of infectious diseases 1998 Jun; 177(6):1664-73.
    [24]Shi YP, Das P, Holloway B, Udhayakumar V, Tongren JE, Candal F, et al. Development, expression, and murine testing of a multistage Plasmodium falciparum malaria vaccine candidate. Vaccine 2000 Jun 15;18(25):2902-14.
    [25]Gordon DM, McGovern TW, Krzych U, Cohen JC, Schneider I, LaChance R, et al. Safety, immunogenicity, and efficacy of a recombinantly produced Plasmodium falciparum circumsporozoite protein-hepatitis B surface antigen subunit vaccine. The Journal of infectious diseases 1995 Jun;171(6):1576-85.
    [26]Bojang KA, Milligan PJ, Pinder M, Vigneron L, Alloueche A, Kester KE, et al. Efficacy of RTS,S/AS02 malaria vaccine against Plasmodium falciparum infection in semi-immune adult men in The Gambia:a randomised trial. Lancet 2001 Dec 8;358(9297):1927-34.
    [27]Alonso PL, Sacarlal J, Aponte JJ, Leach A, Macete E, Aide P, et al. Duration of protection with RTS,S/AS02A malaria vaccine in prevention of Plasmodium falciparum disease in Mozambican children: single-blind extended follow-up of a randomised controlled trial. Lancet 2005 Dec 10;366(9502):2012-8.
    [28]Cai QL, Wei F, Lin YH, Shao DD, Wang H. Immunogenicity of polyepitope libraries assembled by epitope shuffling:an approach to the development of chimeric gene vaccination against malaria. Vaccine 2004 Nov 25;23(2):267-77.
    [29]Cai Q, Peng G, Bu L, Lin Y, Zhang L, Lustigmen S, et al. Immunogenicity and in vitro protective efficacy of a polyepitope Plasmodium falciparum candidate vaccine constructed by epitope shuffling. Vaccine 2007 Jul 9;25(28):5155-65.
    [1]Waters A. Malaria:new vaccines for old? Cell 2006 Feb 24;124(4):689-93.
    [2]McLean SA, Pearson CD, Phillips RS. Antigenic variation in Plasmodium chabaudi:analysis of parent and variant populations by cloning. Parasite immunology 1986 Sep;8(5):415-24.
    [3]Roberts DJ, Craig AG, Berendt AR, Pinches R, Nash G, Marsh K, et al. Rapid switching to multiple antigenic and adhesive phenotypes in malaria. Nature 1992 Jun 25;357(6380):689-92.
    [4]Richie TL, Saul A. Progress and challenges for malaria vaccines. Nature 2002 Feb 7;415(6872):694-701.
    [5]Targett GA. SPf66, a candidate synthetic malaria vaccine:Immunogenicity versus protection. Parasitology today (Personal ed 1992 Nov;8(11):354-5.
    [6]Gordon DM, McGovern TW, Krzych U, Cohen JC, Schneider I, LaChance R, et al. Safety, immunogenicity, and efficacy of a recombinantly produced Plasmodium falciparum circumsporozoite protein-hepatitis B surface antigen subunit vaccine. The Journal of infectious diseases 1995 Jun;171(6):1576-85.
    [7]Ockenhouse CF, Sun PF, Lanar DE, Wellde BT, Hall BT, Kester K, et al. Phase I/IIa safety, immunogenicity, and efficacy trial of NYVAC-Pf7, a pox-vectored, multiantigen, multistage vaccine candidate for Plasmodium falciparum malaria. The Journal of infectious diseases 1998 Jun; 177(6):1664-73.
    [8]Shi YP, Das P, Holloway B, Udhayakumar V, Tongren JE, Candal F, et al. Development, expression, and murine testing of a multistage Plasmodium falciparum malaria vaccine candidate. Vaccine 2000 Jun 15;18(25):2902-14.
    [9]Chauhan VS, Chatterjee S, Johar PK. Synthetic peptides based on conserved Plasmodium falciparum antigens are immunogenic and protective against Plasmodium yoelii malaria. Parasite immunology 1993 Apr;15(4):239-42.
    [10]Shi YP, Hasnain SE, Sacci JB, Holloway BP, Fujioka H, Kumar N, et al. Immunogenicity and in vitro protective efficacy of a recombinant multistage Plasmodium falciparum candidate vaccine. Proceedings of the National Academy of Sciences of the United States of America 1999 Feb 16;96(4):1615-20..
    [11]Alexander J, Sidney J, Southwood S, Ruppert J, Oseroff C, Maewal A, et al. Development of high potency universal DR-restricted helper epitopes by modification of high affinity DR-blocking peptides. Immunity 1994 Dec;1(9):751-61.
    [12]Falugi F, Petracca R, Mariani M, Luzzi E, Mancianti S, Carinci V, et al. Rationally designed strings of promiscuous CD4(+) T cell epitopes provide help to Haemophilus influenzae type b oligosaccharide:a model for new conjugate vaccines. European journal of immunology 2001 Dec;31(12):3816-24.
    [13]Caro-Aguilar I, Rodriguez A, Calvo-Calle JM, Guzman F, De la Vega P, Patarroyo ME, et al. Plasmodium vivax promiscuous T-helper epitopes defined and evaluated as linear peptide chimera immunogens. Infection and immunity 2002 Jul;70(7):3479-92.
    [14]Zhou Z, Todd CW, Wohlhueter RM, Price A, Xiao L, Schnake P, et al. Development, characterization and immunogenicity of a multi-stage, multi-valent Plasmodium falciparum vaccine antigen (FALVAC-IA) expressed in Escherichia coli. Human vaccines 2006 Jan-Feb;2(1):14-23.
    [15]Kironde FA, Rao KV, Shah S, Kumar A, Sahoo N. Towards the design of heterovalent anti-malaria vaccines:a hybrid immunogen capable of eliciting immune responses to epitopes of circumsporozoite antigens from two different species of the malaria parasite, Plasmodium. Immunology 1991 Oct;74(2):323-8.
    [16]Livingston BD, Newman M, Crimi C, McKinney D, Chesnut R, Sette A. Optimization of epitope processing enhances immunogenicity of multiepitope DNA vaccines. Vaccine 2001 Sep 14;19(32):4652-60.
    [17]Livingston B, Crimi C, Newman M, Higashimoto Y, Appella E, Sidney J, et al. A rational strategy to design multiepitope immunogens based on multiple Th lymphocyte epitopes. J Immunol 2002 Jun 1;168(11):5499-506.
    [18]Cai QL, Wei F, Lin YH, Shao DD, Wang H. Immunogenicity of polyepitope libraries assembled by epitope shuffling:an approach to the development of chimeric gene vaccination against malaria. Vaccine 2004 Nov 25;23(2):267-77.
    [19]Merritt K, Johnson AG. Studies on the Adjuvant Action of Bacterial Endotoxins on Antibody Formation. Vi. Enhancement of Antibody Formation by Nucleic Acids. J Immunol 1965 Mar;94:416-22.
    [20]Sourek J, Svobodova M, Dvorak R, Muller J, Sula K, Nouza K. Bacterial endotoxins:comparison of mitogenic, polyclonal, antibody-inducing and toxicity activities. Folia microbiologica 1991;36(2):192-7.
    [21]Hiki N, Berger D, Buttenschoen K, Boelke E, Seidelmann M, Strecker W, et al. Endotoxemia and specific antibody behavior against different endotoxins following multiple injuries. The Journal of trauma 1995 May;38(5):794-801.
    [22]McGregor IA. Mechanisms of acquired immunity and epidemiological patterns of antibody responses in malaria in man. Bulletin of the World Health Organization 1974;50(3-4):259-66.
    [23]Cohen S, Mc GI, Carrington S. Gamma-globulin and acquired immunity to human malaria. Nature 1961 Nov 25;192:733-7.
    [24]Sabchareon A, Burnouf T, Ouattara D, Attanath P, Bouharoun-Tayoun H, Chantavanich P, et al. Parasitologic and clinical human response to immunoglobulin administration in falciparum malaria. The American journal of tropical medicine and hygiene 1991 Sep;45(3):297-308.
    [25]Murhandarwati EE, Wang L, de Silva HD, Ma C, Plebanski M, Black CG, et al. Growth-inhibitory antibodies are not necessary for protective immunity to malaria infection. Infection and immunity 2010 Feb;78(2):680-7.
    [26]Celada F, Sercarz EE. Preferential pairing of T-B specificities in the same antigen:the concept of directional help. Vaccine 1988 Apr;6(2):94-8.
    [27]Cox JH, Ivanyi J, Young DB, Lamb JR, Syred AD, Francis MJ. Orientation of epitopes influences the immunogenicity of synthetic peptide dimers. European journal of immunology 1988 Dec; 18(12):2015-9.
    [28]Levely ME, Mitchell MA, Nicholas JA. Synthetic immunogens constructed from T-cell and B-cell stimulating peptides (T:B chimeras):preferential stimulation of unique T-and B-cell specificities is influenced by immunogen configuration. Cellular immunology 1990 Jan;125(1):65-78.
    [29]Theisen DM, Bouche FB, El Kasmi KC, von der Ahe I, Ammerlaan W, Demotz S, et al. Differential antigenicity of recombinant polyepitope-antigens based on loop-and helix-forming B and T cell epitopes. Journal of immunological methods 2000 Aug 28;242(1-2):145-57.
    [30]Leclerc C, Przewlocki G, Schutze MP, Chedid L. A synthetic vaccine constructed by copolymerization of B and T cell determinants. European journal of immunology 1987 Feb;17(2):269-73.
    [31]Singh B, Cabrera-Mora M, Jiang J, Galinski M, Moreno A. Genetic linkage of autologous T cell epitopes in a chimeric recombinant construct improves anti-parasite and anti-disease protective effect of a malaria vaccine candidate. Vaccine 2010 Mar 19;28(14):2580-92.
    [32]Pan W, Huang D, Zhang Q, Qu L, Zhang D, Zhang X, et al. Fusion of two malaria vaccine candidate antigens enhances product yield, immunogenicity, and antibody-mediated inhibition of parasite growth in vitro. J Immunol 2004 May 15;172(10):6167-74.
    [33]国家食品药品监督管理局.人用重组DNA制品质量控制技术指导原则.2003.
    [34]Huse K, Bohme HJ, Scholz GH. Purification of antibodies by affinity chromatography. Journal of biochemical and biophysical methods 2002 May 31;51(3):217-31.
    [35]Hage DS. Survey of recent advances in analytical applications of immunoaffinity chromatography. Journal of chromatography 1998 Sep 11;715(1):3-28.
    [36]Bergendahl V, Thompson NE, Foley KM, Olson BM, Burgess RR. A cross-reactive polyol-responsive monoclonal antibody useful for isolation of core RNA polymerase from many bacterial species. Protein expression and purification 2003 Sep;31(1):155-60.
    [37]Li P, Li Y, Li JY, Liu J. Characterization and utilization of two novel anti-erbB-2 monoclonal antibodies in detection of soluble ErbB-2 for breast cancer prognosis. Cancer letters 2003 Apr 25;193(2):139-48.
    [38]Zandian M, Jungbauer A. An immunoaffinity column with a monoclonal antibody as ligand for human follicle stimulating hormone. Journal of separation science 2009 May;32(10):1585-91.
    [39]Lee SC, Lee KN, Schwartzott DG, Jackson KW, Tae WC, McKee PA. Purification of human alpha 2-antiplasmin with chicken IgY specific to its carboxy-terminal peptide. Preparative biochemistry& biotechnology 1997 Nov;27(4):227-37.
    [40]Yang XD, Li WJ, Liu JY. Isolation and characterization of a novel PHGPx gene in Raphanus sativus. Biochimica et biophysica acta 2005 May 1;1728(3):199-205.
    [41]Nelson PN, Reynolds GM, Waldron EE, Ward E, Giannopoulos K, Murray PG. Monoclonal antibodies. Mol Pathol 2000 Jun;53(3):111-7.
    [42]Calton GJ. Immunosorbent separations. Methods in enzymology 1984;104:381-7.
    [43]Pfeiffer NE, Wylie DE, Schuster SM. Immunoaffinity chromatography utilizing monoclonal antibodies. Factors which influence antigen-binding capacity. Journal of immunological methods 1987 Feb 26;97(1):1-9.
    [44]Thompson NE, Aronson DB, Burgess RR. Purification of eukaryotic RNA polymerase II by immunoaffinity chromatography. Elution of active enzyme with protein stabilizing agents from a polyol-responsive monoclonal antibody. The Journal of biological chemistry 1990 Apr 25;265(12):7069-77.
    [45]Thompson NE, Hager DA, Burgess RR. Isolation and characterization of a polyol-responsive monoclonal antibody useful for gentle purification of Escherichia coli RNA polymerase. Biochemistry 1992 Aug 4;31(30):7003-8.
    [46]Thompson NE, Burgess RR. Immunoaffinity purification of RNA polymerase II and transcription factors using polyol-responsive monoclonal antibodies. Methods in enzymology 1996;274:513-26.
    [47]Burgess RR, Thompson NE. Advances in gentle immunoaffinity chromatography. Current opinion in biotechnology 2002 Aug;13(4):304-8.
    [1]World Malaria Report. World Health Organization,2009.
    [2]Subbarao SK, Sharma VP. Anopheline species complexes& malaria control. Indian J Med Res. 1997; 106:164-73.
    [3]Riehle MM, Markianos K, Niare O, Xu J, Li J, Toure AM, et al. Natural malaria infection in Anopheles gambiae is regulated by a single genomic control region. Science.2006;312:577-9.
    [4]Dubovsky F, Rabinovich NR. Malaria vaccines. In:Plotkin SA, Orenstein WA, editors. Vaccines.4th ed. Philadelphia:Saunders; 2004. p.1283-9.
    [5]Miller LH, Baruch DI, Marsh K, Doumbo OK. The pathogenic basis of malaria. Nature. 2002;415:673-9.
    [6]Good MF, Kaslow DC, Miller LH. Pathways and strategies for developing a malaria blood-stage vaccine. Annu Rev Immunol.1998;16:57-87.
    [7]Makobongo MO, Keegan B, Long CA, Miller LH. Immunization of Aotus monkeys with recombinant cysteine-rich interdomain region 1 alpha protects against severe disease during Plasmodium falciparum reinfection. J Infect Dis.2006; 193:731-40.
    [8]Favaloro JM, Coppel RL, Corcoran LM, et al. Structure of the RESA gene of Plasmodium falciparum. Nucleic Acids Res.1986;14:8265-8277.
    [9]Culvenor JG, Day KP, Anders RF. Plasmodium falciparum ring-infected erythrocyte surface antigen is released from merozoite dense granules after erythrocyte invasion. Infect Immun.1991;59:1183-1187.
    [10]Foley M, Tilley L, Sawyer WH, Anders RF. The ring-infected erythrocyte surface antigen of Plasmodium falciparum associates with spectrin in the erythrocyte membrane. Mol Biochem Parasitol. 1991;46:137-147.
    [11]Coppel RL, Lustigman S, Murray L, Anders RF. MESA is a Plasmodium falciparum phosphoprotein associated with the erythrocyte membrane skeleton. Mol Biochem Parasitol.1988;31:223-231.
    [12]Ahlborg, N., Iqbal J., Bjo(?)rk L. et al. Plasmodium falciparum:differential parasite growth inhibition mediated by antibodies to the antigens Pf332 and Pf155/RESA. Experimental Parasitology. 1996;82:155-163.
    [13]Ahlborg N., Iqbal J., Hansson M. et al. Immunogens containing sequences from antigen Pf332 induce Plasmodium falciparumreactive antibodies which inhibit parasite growth but not cytoadherence. Parasite Immunology.1995; 17:341-352.
    [14]Ahlborg N., Wa°hlin Flyg B., Iqbal J. et al. Epitope specificity and capacity to inhibit parasite growth in vitro of human antibodies to repeat sequences of the Plasmodium falciparum antigen Ag332. Parasite Immunology.1993;15:391-400.
    [15]Chopra N, Biswas S. Thomas B, Sabhnani L, Rao DN.Inducing protective antibodies against ring-infected erythrocyte surface peptide antigen of Plasmodium falciparum using immunostimulating complex (ISCOMs) delivery. Med Microbiol Immunol.2000;189:75-83.
    [16]Bhatia, A., Delplace, P., Fortier, B., Dubremetz, J. F., and Vernes, A. Immunochemical analysis of a major antigen of Plasmodium falciparum (P126) among ten geographic isolates. American Journal of Tropical Hygene.1987;36:15-19.
    [17]Fox, B. A., and Bzik, D. J. Analysis of stage-specific transcripts of the Plasmodium falciparum serine repeat antigen (SERA) gene and transcription from the SERA locus. Molecular and Biochemical Parasitology.1994;68:133-144.
    [18]Debrabant, A., Maes, P., Delplace, P., Dubremetz, J. F., Tartar, A., and Camus, D. Intramolecular mapping of Plasmodium falciparum p126 proteolytic fragments by N-terminal amino acid sequencing. Molecular and Biochemical Parasitology.1992;53:89-96.
    [19]Perkins, M. E., and Zeifer, A. Preferential binding of Plasmodium falciparum SERA and rhoptry proteins to erythrocyte membrane inner leaflet phospholipids. Infection and Immunity. 1994;62:1207-1212.
    [20]Debrabant, A., and Delplace, P. Leupeptin alters the proteolytic processing of P126, the major parasitophorous vacuole antigen of Plasmodium falciparum. Molecular and Biochemical Parasitology. 1989;33:151-158.
    [21]Higgins, D. G., Mcconnell, D. J., and Sharp, P. M. Malarial proteinase? Nature.1989;340:604.
    [22]Sugiyama, T., Suzue, K., Okamoto, M., Inselburg, J., Tai, K., and Horii, T. Production of recombinant SERA proteins of Plasmodium falciparum in Escherichia coli by using synthetic genes. Vaccine. 1996; 14:1069-1076.
    [23]Perrin, L. H., Merkli, B., Loche, M., Chizzolini, C., Smart, J., and Richle, R. Antimalarial immunity in saimiri monkeys:Immunization with surface components of blood stages. Journal of Experimental Medicine.1984;160:441-451.
    [24]Inselburg, J., Bzik, D. J., Li, W.B., Green, K. M., Kansopon, J., Hahn, B. K., Bathurst, I. C., BARR, P. J., and Rossan, R. N. Protective immunity induced in Aotus monkeys by recombinant SERA proteins of Plasmodium falciparum. Infection and Immunity.1991;59:1247-1250.
    [25]Inselburg, J., Bathurst, I. C., Kansopon, J., Barchfeld, G. L., Barr, P. J., and Rossan, R. N. Protective immunity induced in Aotus monkeys by a recombinant SERA protein of Plasmodium falciparum:Adjuvant effects on induction of protective immunity. Infection and Immunity.1993a;61:2041-2047.
    [26]Inselburg, J., Bathurst, I. C., Kansopon, J., Barr, P. J., and Rossan, R. Protective immunity induced in Aotus monkeys by a recombinant SERA protein of Plasmodium falciparum:Further studies using SERA 1 and MF75.2 adjuvant. Infection and Immunity.1993b;61:2048-2052.
    [27]Leech JH, Barnwell JW, Miller LH, Howard RJ. Identification of a strain-specific malarial antigen exposed on the surface of Plasmodium falciparum-infected erythrocytes. J Exp Med.1984; 159:1567-75.
    [28]Smith JD, Chitnis CE, Craig AG, Roberts DJ, Hudson-Taylor DE, Peterson DS, Pinches R, Newbold CI, Miller LH. Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell.1995;82:101-10.
    [29]Roberts DJ, Craig AG, Berendt AR, Pinches R, Nash G, Marsh K, Newbold CI. Rapid switching to multiple antigenic and adhesive phenotypes in malaria. Nature.1992;357:689-92.
    [30]Saul A. The role of variant surface antigens on malaria-infected red blood cells. Parasitol Today. 1999;15:455-7.
    [31]Urban BC, Ferguson DJ, Pain A, Willcox N, Plebanski M, Austyn JM, Roberts DJ. Plasmodium falciparum-infected erythrocytes modulate the maturation of dendritic cells. Nature.1999;400:73-7.
    [32]Hayward RE, Tiwari B, Piper KP, Baruch DI, Day KP. Virulence and transmission success of the malarial parasite Plasmodium falciparum. Proc Natl Acad Sci USA.1999;96:4563-8.
    [33]Alister Craig, Artur Scherf. Molecules on the surface of the Plasmodium falciparum infected erythrocyte and their role in malaria pathogenesis and immune evasion. Molecular& Biochemical Parasitology.2001;115:129-143.
    [34]Qijun Chen et al. The naturally acquired immunity in severe malaria and its implication for a PfEMP-1 based vaccine. Microbes and Infection.2007;9:777-783.
    [35]Magowan C, Coppel RL, Lau AO, Moronne MM, Tchernia G, Mohandas N. Role of the Plasmodium falciparum mature-parasite-infected erythrocyte surface antigen (MESA/PfEMP-2) in malarial infection of erythrocytes. Blood.1995;86:3196-204.
    [36]Pasloske BL, et al. Cloning and characterization of a Plasmodium falciparum gene encoding a novel high-molecular weight host membrane-associated protein, PfEMP3. Mol Biochem Parasitol. 1993;59:59-72.
    [37]Gruner AC, Brahimi K, Eling W et al. The Plasmodium falciparum knob-associated PfEMP3 antigen is also expressed at pre-erythrocytic stages and induces antibodies which inhibit sporozoite invasion. Mol Biochem Parasitol.2001;112:253-61.
    [38]Hinterberg K, Scherf A, Gysin J et al. Plasmodium falciparum. The Pf332 antigen is secreted from the parasite by a Brefeldin A dependent pathway and is translocated to the erythrocyte membrane via the Maurer's clefts. Exp Parasitol.1994;79:279-91.
    [39]Mattei D, Scherf A. The Pf332 gene codes for a megadalton protein of Plasmodium falciparum asexual blood stages. Mem Inst Oswaldo Cruz.1992;87:163-8.
    [40]Wiesner J, Mattei D, Scherf A, Lanzer M. Biology of giant proteins of Plasmodium:resolution on polyacrylamide-agarose composite gels. Parasitol Today.1998; 14:38-40.
    [41]Ahlborg N, Iqbal J, Bjork L, Stahl S, Perlmann P, Berzins K. Plasmodium falciparum:differential parasite growth inhibition mediated by antibodies to the antigens Pf332 and Pf155/RESA. Exp Parasitol. 1996;82:155-63.
    [42]Ahlborg N, Haddad D, Siddique AB, Roussilhon C, Rogier C, Trape JF, Troye-Blomberg M, Berzins K. Antibody responses to the repetitive Plasmodium falciparum antigen Pf332 in humans naturally primed to the parasite. Clin Exp Immunol.2002;129:318-25.
    [43]Holder AA, Blackman MJ. What is the function of MSP-1 on the malaria merozoite? Parasitol Today. 1994; 10:182-4.
    [44]Blackman MJ, Heidrich HG, Donachie S, McBride JS, Holder AA. A singl fragment of a malaria merozoite surface protein remains on the parasite during red cell invasion and is the target of invasion-inhibiting antibodies. J Exp Med.1990;172:397-82.
    [45]Holder AA, Freeman RR. Immunization against blood-stage rodent malaria using purified parasite antigens. Nature.1981;294:361-4.
    [46]Ling IT, Ogun SA, Holder AA. Immunization against malaria with a recombinant protein. Parasite Immunol.1994; 16:63-7.
    [47]W.D. Morgan, B. Birdsall, T.A. Frenkiel, M.G. Gradwell, P.A. Burghaus, S.E. Syed, C.H. Uthaipibull, A.A. Holder, J. Feeney, Solution structure of an EGF module pair from the Plasmodium falciparum merozoite surface protein 1, J. Mol. Biol.1999;289:113-122.
    [48]V. Chitarra, I. Holm, G.A. Bentley, S. Petres, S. Longacre, The crystal structure of C-terminal merozoite surface protein 1 at 1.8A resolution, a highly protective malaria vaccine candidate, Mol Cell. 1999;3:457-464.
    [49]Kumar S, Collins W, Egan A et al. Immunogenicity and efficacy in Aotus monkey of four recombinant Plasmodium falciparum vaccines in multiple adjuvant formulations based on the 19-kilodalton C terminal of merozoite surface protein 1. Infect Immun.2000;68:2215-23.
    [50]Thomas AW, Carr DA, Carter JM, Lyon JA. Sequence comparison of allelic forms of the Plasmodium falciparum merozoite surface antigen MSA2. Mol Biochem Parasitol.1990;43:211-20.
    [51]Rzepczyk CM, Csurhes PA, Saul AJ, Jones GL, Dyer S, Chee D, Goss N, Irving DO. Comparative study of the T cell response to two allelic forms of a malarial vaccine candidate protein. J Immunol. 1992;148:1197-204.
    [52]Saul A, Lord R, Jones GL, Spencer L. Protective immunization with invariant peptides of the Plasmodium falciparum antigen MSA2. J Immunol.1992;148:208-11.
    [53]Polley SD, Conway DJ, Cavanagh DR, McBride JS, Lowe BS, Williams TN, Mwangi TW, Marsh K. High levels of serum antibodies to merozoite surface protein 2 of Plasmodium falciparum are associated with reduced risk of clinical malaria in coastal Kenya. Vaccine.2006;24:4233-46.
    [54]Fluck C, Schopflin S, Smith T, Genton B, Alpers MP, Beck HP, Felger I. Effect of the malaria vaccine Combination B on merozoite surface antigen 2 diversity. Infect Genet Evol.2007;7:44-51.
    [55]Oeuvray C, Bouharoun-Tayoun H, Gras-Masse H, et al. Merozoite surface protein-3:a malaria protein inducing antibodies that promote Plasmodium falciparum killing by co-operation with blood monocytes. Blood 1994;84:1594-602.
    [56]Mills KE, Pearce JA, Crabb BS, Cowman AF. Truncation of merozoite surface protein-3 disrupts its trafficking and that of acidic-basic repeat protein to the surface of P. falciparum merozoites. Mol Microbiol. 2002;43:1401-11.
    [57]McColl DJ, Anders RF. Conservation of structural motifs and antigenic diversity in the Plasmodium falciparum merozoite surface protein-3 (MSP-3). Mol Biochem Parasitol.1997;90:21-31.
    [58]Huber W, Felger I, Matile H, Lipps HJ, Steiger S, Beck H. Limited sequence polymorphism in the Plasmodium falciparum merozoite surface protein 3. Mol Biochem Parasitol. 1997;87:231-4.
    [59]Hisaeda H, Saul A, Reece JJ, et al. Merozoite surface protein-3 and protection against malaria in Aotus nancymai monkeys. J Infect Dis.2002; 185:657-64.
    [60]Subhash Singh, Soe Soe, Juan-Pedro Mejia, Christian Roussilhon, Michael Theisen, Giampietro Corradin, and Pierre Druilhe. Identification of a conserved region of plasmodium falciparum MSP3 targeted by biologically active antibodies to improve vaccine design. The Journal of Infectious Diseases. 2004;190:1010-8.
    [61]Marshall VM, Silva A, Foley M, et al. A second merozoite surface protein (MSP-4) of Plasmodium falciparum that contains an epidermal growth factor-like domain. Infect Immun.1997;65:4460-7.
    [62]Lina Wang, John G.T. Menting, Anthony Stowers, Yupin Charoenvit, John B. Sacci Jr, Ross L. Coppel. Antigens cross reactive with Plasmodium falciparum merozoite surface protein 4 are found in pre-erythrocytic and sexual stages. Molecular and Biochemical Parasitology.2000; 109:189-194.
    [63]Lina Wang, Casilda G. Black, Vikki M. Marshall, and Ross L. Coppel. Structural and Antigenic Properties of Merozoite Surface Protein 4 of Plasmodium falciparum. Infect Immun.1999;67:2193-2200.
    [64]Lina Wang, Thomas L. Richie, Anthony Stowers, Doan Hanh Nhan, and Ross L. Coppel. Naturally Acquired Antibody Responses to Plasmodium falciparum Merozoite Surface Protein 4 in a Population Living in an Area of Endemicity in Vietnam. Infect Immun.2001;69:4390-4397.
    [65]Marshall VM, Wu T, Coppel RL. Close linkage of three merozoite surface protein genes on chromosome 2 of Plasmodium falciparum. Mol Biochem Parasitol.1998;94:13-25.
    [66]Wu, T., C. G. Black, L. Wang, A. R. Hibbs, and R. L. Coppel. Lack of sequence diversity in the gene encoding merozoite surface protein 5 of Plasmodium falciparum. Mol. Biochem. Parasitol. 1999; 103:243-250.
    [67]Kedzierski, L., C. G. Black, and R. L. Coppel. Immunization with recombinant Plasmodium yoelii merozoite surface protein 4/5 protects mice against lethal challenge. Infect Immun.2000;68:6034-6037.
    [68]Kedzierski, L., C. G. Black, A. W. Stowers, M. W. Goschnick, D. C. Kaslow, and R. L. Coppel. Comparison of the protective efficacy of yeast-derived and E. coli-derived recombinant merozoite surface protein 4/5 against lethal challenge by Plasmodium yoelii. Vaccine.2001; 19:4661-4668.
    [69]M. W. Goschnick, C. G. Black, L. Kedzierski, A. A. Holder, and R. L. Coppel. Merozoite Surface Protein 4/5 Provides Protection against Lethal Challenge with a Heterologous Malaria Parasite Strain. Infect. Immun.2004;72:5840-5849.
    [70]Nicholls SC, Hillman Y, Lockyer MJ, Odink KG, Holder AA. An S-antigen gene from Plasmodium falciparum contains a novel repetitive sequence. Mol Biochem Parasitol.1988;28:11-9.
    [71]Weber JL, et al. Primary structure of a Plasmodium falciparum parasitophorous vacuole. J Biol Chem. 1986;263:11421-5.
    [72]Borre MB, et al. Primary structure and localization of a conserved immunogenic Plasmodium falciparum glutamate rich protein (GLURP)expressed in both the pre-erythrocytic and erythrocytic stages of the vertebrate life cycle. Mol Biochem Parasitol.1991;49:119-32.
    [73]Trucco C, Fernandez-Reyes D, Howell S, Stafford WH, Scott-Finnigan TJ, Grainger M, et al. The merozoite surface protein 6 gene codes for a 36 kDa protein associated with the Plasmodium falciparum merozoite surface protein-1 complex. Mol Biochem Parasitol.2001;112:91-101.
    [74]McColl DJ, et al. Molecular variation in a novel polymorphic antigen associated with Plasmodium falciparum merozoites. Mol Biochem Parasitol.1994;68:53-67.
    [75]Pearce JA, Triglia T, Hodder AN, Jackson DC, Cowman AF, Anders RF. Plasmodium falciparum merozoite surface protein 6 is a dimorphic antigen. Infect Immun.2004;72:2321-8.
    [76]Justin A. Pachebat, Irene T. Ling, Munira Grainger, Carlotta Trucco, Steven Howell, Delmiro Fernandez-Reyes, Ruwani Gunaratne, Anthony A. Holder. The 22 kDa component of the protein complex on the surface of Plasmodium falciparum merozoites is derived from a larger precursor, merozoite surface protein 7. Molecular& Biochemical Parasitology.2001;117:83-89.
    [77]Stafford WHL, Gunder B, Harris A, Heidrich HG, Holder AA, Blackman MJ. A 22 kDa Protein associated with the Plasmodium falciparum merozoite surface protein-1 complex. Mol Biochem Parasitol. 1996;80:159-69.
    [78]Stafford WHL, Blackman MJ, Harris A, Shai S, Grainger M, Holder AA. N-terminal amino-acid-sequence of the Plasmodium falciparum merozoite surface protein-1 polypeptides. Mol Biochem Parasitol.1994;66:157-60.
    [79]Mello K, Daly TM, Long CA, Burns JM, Bergman LW. Members of the merozoite surface protein 7 family with similar expression patterns differ in ability to protect against Plasmodium yoelii malaria. Infect Immun.2004;72:1010-8.
    [80]Kauth CW, Woehlbier U, Kern M, Mekonnen Z, Lutz R, Mucke N, Langowski J, Bujard H. Interactions between merozoite surface proteins 1,6, and 7 of the malaria parasite Plasmodium falciparum. J Biol Chem.2006;281:31517-27.
    [81]Black CG, Wu T, Wang L, Hibbs AR, Coppel RL. Merozoite surface protein 8 of Plasmodium falciparum contains two epidermal growth factor-like domains. Mol Biochem Parasitol.2001;114:217-26.
    [82]Blackman MJ, Heidrich HG, Donachie S, McBride JS, Holder AA. A singl fragment of a malaria merozoite surface protein remains on the parasite during red cell invasion and is the target of invasion-inhibiting antibodies. J Exp Med.1990;172:397-82. (同MSP-2的[2])
    [83]Marshall VM, Silva A, Foley M, et al. A second merozoite surface protein (MSP-4) of Plasmodium falciparum that contains an epidermal growth factor-like domain. Infect Immun.1997;65:4460-7.
    [84]Wu T, Black CG, Wang L, Hibbs AR, Coppel RL. Lack of sequence diversity in the gene encoding merozoite surface protein 5 of Plasmodium falciparum. Mol Biochem Parasitol.1999; 103:243-50.
    [85]Casilda G. Black, Lina Wang, Tieqiao Wu, Ross L. Coppel. Apical location of a novel EGF-like domain-containing protein of Plasmodium falciparum. Molecular& Biochemical. Parasitology. 2003;127:59-68.
    [86]Tieqiao Wu, Casilda G. Black, Lina Wang, Alan R. Hibbs, Ross L. Coppel. Lack of sequence diversity in the gene encoding merozoite surface protein 5 of Plasmodium falciparum. Molecular and Biochemical Parasitology.1999;103:243-250.
    [87]Burns JM, Belk CC, Dunn PD. A protective glycosylphosphatidylinositol-anchored membrane protein of Plasmodium yoelii trophozoites and merozoites contains two epidermal growth factor-like domains. Infect Immun.2000;68:6189-95.
    [88]Shi Q, Lynch MM, Romero M, Burns JM Jr. Enhanced protection against malaria by a chimeric merozoite surface protein vaccine. Infect Immun.2007;75:1349-58.
    [89]Casilda G. Black, Lina Wang, Tieqiao Wu, Ross L. Coppel. Apical location of a novel EGF-like domain-containing protein of Plasmodium falciparum. Molecular& Biochemical Parasitology. 2003; 127:59-68.
    [90]Blackman MJ, Heidrich HG, Donachie S, McBride JS, Holder AA. A singl fragment of a malaria merozoite surface protein remains on the parasite during red cell invasion and is the target of invasion-inhibiting antibodies. J Exp Med.1990; 172:397-82. (同 MSP-2的[2])
    [91]Marshall VM, Silva A, Foley M, et al. A second merozoite surface protein (MSP-4) of Plasmodium falciparum that contains an epidermal growth factor-like domain. Infect Immun.1997;65:4460-7.
    [92]Wu T, Black CG, Wang L, Hibbs AR, Coppel RL. Lack of sequence diversity in the gene encoding merozoite surface protein 5 of Plasmodium falciparum. Mol Biochem Parasitol.1999; 103:243-50.
    [93]Black CG, Wu T, Wang L, Hibbs AR, Coppel RL. Merozoite surface protein 8 of Plasmodium falciparum contains two epidermal growth factor-like domains. Mol Biochem Parasitol.2001;114:217-26.
    [94]Borre, M. B., M. Dziegiel, B. Hogh, E. Petersen, K. Rieneck, E. Riley, J. F. Meis, M. Aikawa, K. Nakamura, M. Harada, A. Wind, P. H. Jakobsen, J. Cowland, S. Jepsen, N. H. Axelsen, and J. Vuust. Primary structure and localization of a conserved immunogenic Plasmodium falciparum glutamate rich protein (GLURP) expressed in both the preerythrocytic anderythrocytic stages of the vertebrate life cycle. Mol. Biochem. Parasitol.1991;49:119-132.
    [95]Dodoo D, Theisen M, Kurtzhals JA, et al. Naturally acquired antibodies to the glutamate-rich protein are associated with protection against Plasmodium falciparum malaria. J Infect Dis.2000; 181:1202-5.
    [96]Oeuvray C, Theisen M, Rogier C, Trape JF, Jepsen S, Druilhe P. Cytophilic immunoglobulin responses to Plasmodium falciparum glutamate-rich protein are correlated with protection against clinical malaria in Dielmo Senegal. Infect Immun.2000;68:2617-20.
    [97]Theisen M, Dodoo D, Toure-Balde A, et al. Selection of glutamate-rich protein long synthetic peptides for vaccine development:antigenicity and relationship with clinical protection and immunogenicity. Infect Immun.2001;69:5223-9.
    [98]Soe S, Theisen M, Roussilhon C, Aye KS, Druilhe P. Association between protection against clinical malaria and antibodies to merozoite surface antigens in an area of hyperendemicity in Myanmar: complementaritybetween responses to merozoite surface protein 3 and the 220-kilodalton glutamate-rich protein. Infect Immun.2004;72:247-52.
    [99]Lusingu JP, Vestergaard LS, Alifrangis M, et al. Cytophilic antibodies to Plasmodium falciparum glutamate rich protein are associated with malaria protection in an area of holoendemic transmission. Malar J.2005;29:48.
    [100]Theisen M, Soe S, Oeuvray C, et al. The glutamate-rich protein (GLURP) of Plasmodium falciparum is a target for antibody-dependent monocyte-mediated inhibition of parasite growth in vitro. Infect Immun. 1998;66:11-7.
    [101]Chulay, J. D., J. A. Lyon, J. D. Haynes, A. I. Meierovics, C. T. Atkinson, and M. Aikawa. Monoclonal antibody characterization of Plasmodium falciparum antigens in immune complexes formed when schizonts rupture in the presence of immune serum. J. Immunol.1987; 139:2768-2774.
    [102]Garber, G. E., L. T. Lemchuk-Favel, K. C. Meysick, and K. Dimock. A Trichomonas vaginalis cDNA with partial protein sequence homology with a Plasmodium falciparum excreted protein ABRA. Appl. Parasitol.1993;34:245-249.
    [103]Green, T. J., M. Morhardt, R. G. Brackett, and R. L. Jacobs. Serum inhibition of merozoite dispersal from Plasmodium falciparum schizonts:indicator of immune status. Infect. Immun.1981;31:1203-1208.
    [104]Miller, L. H., M. Aikawa, and J. A. Dvorak. Malaria (Plasmodium knowlesi) merozoites:immunity and the surface coat. J. Immunol.1975;114:1237-1242.
    [105]Weber, J. L., J. A. Lyon, R. H. Wolff, T. Hall, G. H. Lowell, and J. D. Chulay. Primary structure of a Plasmodium falciparum malaria antigen located at the merozoite surface and within the parsitophorous vacuole. J. Biol. Chem.1988;263:11427-11431.
    [106]Nwagwu, M., J. D. Haynes, P. A. Orlandi, and J. D. Chulay. Plasmodium falciparum: chymotryptic-like proteolysis associated with a 101-kDa acidic-basic repeat antigen. Exp. Parasitol. 1992;75:399-414.
    [107]Sharma P, Kumar A, Singh B, et al. Characterization of protective epitopes in a highly conserved Plasmodium falciparum antigenic protein containing repeats of acidic and basic residues. Infect Immun. 1998;66:2895-904.
    [108]Lobo CA, Kar SK, Ravindran B, Kabilan L& Sharma S. Novel proteins of Plasmodium falciparum identified by differential immunoscreening using immune and patient sera. Infect Immun. 1994;62:651-656.
    [109]Singh NJ, Sehgal A& Sharma S. Characterization of a differential immunoscreen epitope of Plasmodium falciparum using combinatorial agents. Parasite Immunol.2000;22:333-340.
    [110]A. Sehgal, N. J. Singh, T. Chakraborty and S. Sharma. Plasmodium antigen shares epitope with Paramecium A protective merozoite protein of Plasmodium falciparum shares an epitope with surface antigens of Paramecium. Parasite Immunology.2004;26:219-227.
    [111]Peterson, M. G., M. V. Marshall, J. A. Smythe, P. E. Crewther, A. Lew, A. Silva, R. F. Anders, and D. J. Kemp. Integral membrane protein located in the apical complex of Plasmodium falciparum. Mol. Cell. Biol.1989;9:3151-3154.
    [112]Anders, R., and A. J. Saul. Candidate antigens for an asexual blood stage vaccine against falciparum malaria, p.169. In M. F. Good and A. J. Saul (ed.), Molecular immunological considerations in malaria vaccine development-1994. CRC Press, Boca Raton, Fla.
    [113]Crewther, P. E., J. G. Culvenor, A. Silva, J. A. Cooper, and R. F. Anders. Plasmodium falciparum:two antigens of similar size are located in different compartments of the rhoptry. Exp. Parasitol. 1990;70:193-206.
    [114]Waters, A. P., A. W. Thomas, J. A. Deans, G. H. Mitchell, D. E. Hudson, L. H. Miller, T. F. McCutchan, and S. Cohen. A merozoite receptor protein from Plasmodium knowlesi is highly conserved and distributed throughout Plasmodium. J. Biol. Chem.1990;265:17974-17979.
    [115]Triglia T, Healer J, Caruana SR et al. Apical memebrane antigen 1 plays a central role in erythrocyte invasion by Plasmodium species. Mol Microbiol.2000;38:706-18.
    [116]Narum DL, Ogun SA, Thomas AW, Holder AA. Immunization with parasite-derived apical membrane antigen 1 or passive immunization with a specific monoclonal antibody protects BALB/c mice against lethal Plasmodium yoelii yoelii YM blood-stage infection. Infect Immun.2000;68:2899-906.
    [117]Deans JA, Knight AM, Jean WC, Waters AP, Cohen S, Mitchell GH. Vaccination trials in rhesus monkeys with a minor, invariant, Plasmodium knowlesi 66kD merozoite antigen. Parasite Immunol. 1988;10:535-52.
    [118]Collins WE, Pye D, Crewther PE et al. Protective immunity induced in squirrel monkeys with recombinant apical membrane antigen-1 of Plasmodium fragile. Am J Trop Med Hyg.1994;51:711-9.
    [119]Howard, R. J. and B. L. Pasloske. Target antigens for asexual malaria vaccine development. Parasitol Today.1993;9:369-372.
    [120]Howard RF, Reese RT. Plasmodium falciparum:heterooligomeric complexes of rhoptry polypeptides. Exp Parasitol.1990;71:330-342.
    [121]Howard RF, Peterson C. Limited RAP-1 sequence diversity in field isolates of Plasmodium falciparum. Mol Biochem Parasitol.1996;77:95-98.
    [122]R.G. Ridley, B. Takacs, H. Etlinger, J.G. Scaife, A rhoptry antigen of Plasmodium falciparum is protective in Saimiri monkeys, Parasitology.1990;101:187-272.
    [123]Berzins K, Ander RF. The malaria antigens. In:Wahlgren M, Perlmann P, (eds) Malaria; Molecular and Clinical Aspects. Amsterdam, Netherlands:Harwood Academic Publishers.1999;181.
    [124]Howard RF, Jacobson KC, Rickel E, Thurman J. Analysis of inhibitory epitopes in the Plasmodium falciparum rhoptry protein RAP-1 including identification of a second inhibitory epitope. Infect. Immun. 1998;66:380.
    [125]Collins WE, Walduck A, Sullivan JS et al. Efficacy of vaccines containing rhoptry-associated proteins RAP1 and RAP2 of Plasmodium falciparum in Saimiri Boliviensis monkeys. Am. J Trop. Med. Hyg.2000;62:466.
    [126]Camus, D., and Hadley, T.J. A Plasmodium falciparum antigen that binds to host erythrocytes and merozoites. Science.1985;230:553-556.
    [127]Adams, J.H., Sim, B.K., Dolan, S.A., Fang, X., Kaslow, D.C., and Miller, L.H. A family of erythrocyte binding proteins of malaria parasites. Proc. Natl. Acad. Sci. USA 1992;89:7085-7089.
    [128]Orlandi, P.A., Klotz, F.W., and Haynes, J.D. A malaria invasion receptor, the 175-kilodalton erythrocyte binding antigen of Plasmodium falciparum recognizes the terminal Neu5Ac(alpha2-3)Gal-sequences of glycophorin A. J. Cell Biol.1992;116:901-909.
    [129]Liang, H., and Sim, B.K. Conservation of structure and function of the erythrocyte-binding domain of Plasmodium falciparum EBA-175. Mol. Biochem. Parasitol.1997;84:241-245.
    [130]Jones, T.R., Narum, D.L., Gozalo, A.S., Aguiar, J., Fuhrmann, S.R., Liang, H., Haynes, J.D., Moch, J.K., Lucas, C., Luu, T., et al. Protection of Aotus monkeys by Plasmodium falciparum EBA-175 region II DNA prime-protein boost immunization regimen. J. Infect. Dis.2001;183:303-312.
    [131]Niraj H. Tolia, Eric J. Enemark, B. Kim Lee Sim, and Leemor Joshua-Tor. Structural basis for the EBA-175 erythrocyte invasion pathway of the malaria parasite Plasmodium falciparum. Cell. 2005;122:183-193.
    [132]Chitnis CE, Miller LH. Identification of the erythrocyte binding domains of Plasmodium vivax and Plasmodium knowlesi proteins involved in erythrocyte invasion. J Exp Med.1994; 180:497-506.
    [133]Hill AV. Pre-erythrocytic malaria vaccines:towards greater efficacy. Nat Rev Immunol. 2006;6:21-32.
    [1]Petrovsky N, Aguilar JC. Vaccine adjuvants:current state and future trends. Immunol Cell Biol 2004;82(5):488-96.
    [2]Vogel FR. Adjuvants in perspective. In:Brown F, Haaheim LR, editors. Modulation of the immune response to vaccine antigens. Dev. Biol. Stand. vol 92. Basel:Karger; 1998. p.241-8.
    [3]Lindblad EB. Aluminium adjuvants. In:Stewart-Tull DES, editor. The theory and practical application of adjuvants. JohnWiley& Sons Ltd.; 1995. p.21-35.
    [4]Byars NE, Allison AC. Immunologic adjuvants:general properties, advantages, and limitations. In: Zola H, editor. Laboratory Methods in Immunology.1990. p.39-51.
    [5]Edelman R. Vaccine adjuvants. Rev Infect Dis 1980;2:370-83.
    [6]Glenny AT, Pope CG,Waddington H,Wallace V. The antigenic value of toxoid precipitated by potassium-alum. J Path Bact 1926;29:38-45.
    [7]AllisonAC, Byars NE. Immunological adjuvants:desirable properties and side-effects. Mol Immunol 1991;28:279-84.
    [8]Schirmbeck R, Melber K, Mertens T, Reimann J. Antibody and cytotoxic T-cell responses to soluble hepatitis B virus (HBV) S antigen in mice:implications for the pathogenesis of HBV-induced hepatitis. J Virol 1994;68:1418-25.
    [9]Traquina P, Morandi M, Contorni M, Van Nest G. MF59 adjuvant enhances the antibody response to recombinant hepatitis B surface antigen vaccine in primates. J Infect Dis 1996;174:1168-75.
    [10]Brewer JM, Conacher M, Satoskar A, Bluethmann H, Alexander J. In interleukin-4-deficient mice, alum not only generates T helper 1 responses equivalent to Freund's complete adjuvant, but continues to induce T helper 2 cytokine production. Eur J Immunol 1996;26:2062-6.
    [11]Blagowechensky NN. Dur'ee du s'ejour de l'antig'ene dans l'organisme et immunit'e. Rev Immunol Paris 1938;4:161.
    [12]Walls RS. Eosinophil response to alum adjuvants:involvement of T cells in non-antigen-dependent mechanisms. Proc Soc Exp Biol Med 1977; 156:431-5.
    [13]Gupta RK, Rost BE, Relyveld E, Siber GR. Adjuvant properties of aluminium and calcium compounds. In:Powell MF, Newman MJ, editors.Vaccine design:the subunit and adjuvant approach. NewYork:Plenum Press; 1995. p.229-48.
    [14]Butler NR, Voyce MA, Burland WL, Hilton ML. Advantages of aluminum hydroxide adsorbed diphtheria, tetanus and pertussis vaccines for the immunization of infants. Br Med J 1969; 1:663-6.
    [15]Straw BE, MacLachlan NJ, Corbett WT, Carter PB, Schey HM. Comparison of tissue reactions produced by Haemophilus pleuropneumoniae vaccines made with six different adjuvants in swine. Can J Comp Med 1985;49:149.
    [16]Audibert FM, Lise LD. Adjuvants:current status, clinical perspectives and future prospects. Immunol Today 1993;14:281-4.
    [17]Bomford R. Aluminium salts:perspectives in their use as adjuvants. In:Gregoriadis G, Allison AC, Poste G, editors. Immunological adjuvants and vaccines. New York:Plenum Press; 1989. p.35-41.
    [18]Goto N, Kato H, Maeyama J-I, Eto K, Yoshihara S. Studies on the toxicities of aluminium hydroxide and calcium phosphate as immunological adjuvants for vaccines. Vaccine 1993; 11:914-8.
    [19]Relyveld EH, Hencoq E, Raynaud M. Etude de la vaccination antidiphterique de sujets alergiques avec une anatoxine pure adsorbee sur phosphate de calcium. Bull WHO 1964;30:321-5.
    [20]Gupta RK, Siber GR. Adjuvants for human vaccines-current status, problems and future prospects. Vaccine 1995; 13:1263-76.
    [21]Relyveld EH. Preparation and use of calcium phosphate adsorbed vaccines. Dev Biol Stand 1986;65:131-6.
    [22]Kensil CR. Saponins as vaccine adjuvants. Crit Rev Ther Drug Carrier Syst 1996;13:1-55.
    [23]Takahashi H, Takeshita T, Morein B, Putney S, Germain RN, Berzofsky JA. Induction of CD8+ cytotoxic T cells by immunization with purified HIV-1 envelope protein in ISCOMs. Nature 1990;344:873-5.
    [24]Kensil CR, Wu J-Y, Soltysik S. Structural and immunological characterization of the vaccine adjuvant QS-21. In:Powell MF, Newman MJ, editors. Vaccine design:the subunit and adjuvant approach. New York: Plenum Press; 1995. p.525-41.
    [25]Kotani S, Watanabe Y, Shimoto T, Narita T, Kato K, Stewart-Tull DES, et al. Immunoadjuvant activities of cells walls, their water soluble fractions and peptidoglycan subunits, prepared from various gram-positive bacteria, and of synthetic N-acetylmuramyl peptides. Z Immunitatsforsch 1975;149S:302-5.
    [26]Warren HS, Chedid LA. Future prospects for vaccine adjuvants. CRC Crit Rev Immunol 1986;4:369-88.
    [27]Audibert F, Leclerc C, Chedid L. Muramyl peptides as immunopharmacological response modifiers. In:Torrence PF, editor. Biological response moodifiers. Newapproaches to disease prevention. Orlando: Academic Press; 1985. p.307.
    [28]Audibert F, Chedid L, Lefrancier P, Choay J. Distinctive adjuvanticity of synthetic analogs of mycobacterialwater-soluble components. Cell Immunol 1976;21:243-5.
    [29]Parant MA, Audibert FM, Chedid LA, Level MR, Lefrancier PL, Choay JP, et al. Immunostimulant activities of a lipophilic muramyl dipeptide derivative and of a desmuramyl peptidolipid analogue. Infect Immun 1980;27:826-30.
    [30]Tomai MA, JohnsonAG. T cell and interferon-gamma involvement in the adjuvant action of a detoxified endotoxin. J Biol Resp Modifiers 1989;8:625-30.
    [31]Hilleman MR, Woodhour AF, Friedman A, Phelps AH. Studies for safety of adjuvant 65. Ann Allergy 1972;30:477-80. [53] Smith JWG, Fletcher WB, Peters M, Westwood M, Perkins FT. Response to influenza vaccine in adjuvant 65-4. J Hyg (Camb) 1975;74:251-5.
    [32]Weibel RE, McLean A, Woodhour AF, Friedman A, Hilleman MR. Ten-year follow-up study for safety of Adjuvant 65 influenza vaccine in man. Proc Soc Exp Biol Med 1973;143:1053-6.
    [33]Freund J. The mode of action immunological adjuvants. Adv Tuberc Res 1956;7:50-5.
    [34]Aucouturier J, Dupuis L, Ganne V. Adjuvants designed for veterinary and human vaccines[J]. Vaccine, 2001,19(17-19):2666-2672
    [35]Storni T, Kundig TM, Senti G, Johansen P. Immunity in response to particulate antigen-delivery systems. Adv Drug Deliv Rev 2005;57:333-55.
    [36]Bramwell VW, Perrie Y. Particulate delivery systems for vaccines. Crit Rev Ther Drug Carrier Syst 2005;22:151-214.
    [37]Shek PN, Yung BYK, Stanacev NZ. Comparison between multilamellar and unilamellar liposomes in enhancing antibody formation. Immunology 1983;49:37-40.
    [38]Allison AC, Gregoriadis G. Liposomes as immunological adjuvants. Nature 1974;252:252-8.
    [39]Heath TD, Edwards DC, Ryman BE. The adjuvant properties of liposomes. Biochem Soc Trans 1976;4:49-52.
    [40]Tyrrel DA, Heath TD, Colley CM, Ryman BE. New aspects of liposomes. Biochim Biophys Acta 1976;457:259-63.
    [41]van Rooijen N, van Nieuwmegen R. Use of liposomes as biodegradable and harmless adjuvants. Methods Enzymol 1983;93:83-5.
    [42]Taneichi M, Ishida H, Kajino K, Ogasawara K, Tanaka Y, Kasai M, et al. Antigen chemically coupled to the surface of liposomes are crosspresented to CD8+ T cells and induce potent antitumor immunity. J Immunol 2006; 177:2324-30.
    [43]Laing P, Bacon A, McCormack B, Gregoriadis G, Frisch B, Schuber F. The'co-delivery' approach to liposomal vaccines:application to the development of influenza-A and hepatitis-B vaccine candidates. J Liposome Res 2006;16:229-35.
    [44]Eldrige JH, Staas JK, Meulbroek JA, Tice TR, Gilley RM. Biodegradable microspheres as a vaccine delivery system. Mol Immunol 1991;28:287-90.
    [45]Eldrige JH, Staas JK, Meulbroek JA, Tice TR, Gilley RM. Biodegradable and biocompatible poly (dl-lactide-co-glycolide) microspheresas an adjuvant for Staphylococcal enterotoxin B toxoid which enhances the level of toxin-neutralizing antibodies. Infect Immun 1991;59:2978-83.
    [46]Singh M, Kazzaz J, Ugozzoli M, Malyala P, Chesko J, O'Hagan DT. Polylactide-co-glycolide microparticles with surface adsorbed antigens as vaccine delivery systems. Curr Drug Deliv 2006;3:115-20.
    [47]Falo Jr LD, Kovacsovics-Bankowski M, Thompson K, Rock KL. Targeting antigen into the phagocytic pathway in vivo induces protective tumour immunity. Nat Med 1995;1:649-53.
    [48]Fifis T, Gamvrellis A, Crimeen-Irwin B, Pietersz GA, Li J, Mottram PL, et al. Size-dependent immunogenicity:therapeutic and protective properties of nano-vaccines against tumors. J Immunol 2004; 173:3148-54.
    [49]Scheerlinck JP, Gloster S, Gamvrellis A, Mottram PL, Plebanski M. Systemic immune responses in sheep, induced by a novel nano-bead adjuvant. Vaccine 2006;24:1124-31.
    [50]Morein B, Bengtsson KL. Functional aspects of ISCOMS [J].Immunol Cell Biology,1998,76 (4): 295301.
    [51]Morein B, Villacxes E, Bengtsson KL, et al. ISCOM:a delivery system for parenteral and mucosal vaccination[J]. Dev Biol Stand,1998,92 (1):3336.
    [52]Antonis AF, Bruschke CJ, Rueda P, Maranga L, Casal JI, Vela C, et al. A novel recombinant virus-like particle vaccine for prevention of porcine parvovirus-induced reproductive failure. Vaccine 2006;24:5481-90.
    [53]Young SL, Wilson M, Wilson S, Beagley KW, Ward V, Baird MA. Transcutaneous vaccination with virus-like particles. Vaccine 2006;24:5406-12.
    [54]Dell K, Koesters R, Linnebacher M, Klein C, Gissmann L. Intranasal immunization with human papillomavirus type 16 capsomeres in the presence of non-toxic cholera toxin-based adjuvants elicits increased vaginal immunoglobulin levels. Vaccine 2006;24:2238-47.
    [55]Kundig TM, Senti G, Schnetzler G, Wolf C, Prinz Vavricka BM, Fulurija A, et al. Der p 1 peptide on virus-like particles is safe and highly immunogenic in healthy adults. J Allergy Clin Immunol 2006; 117:1470-6.
    [56]Aguilar JC, Lobaina Y, Muzio V, Garcia D, Penton E, Iglesias E, etal. Development of a nasal vaccine for chronic hepatitis B infection that uses the ability of hepatitis B core antigen to stimulate a strong Th1 response against hepatitis B surface antigen. Immunol Cell Biol 2004;82:539-46.
    [57]Lobaina Y, Palenzuela D, Pichardo D, Muzio V, Guillen G, Aguilar JC. Immunological characterization of two hepatitis B core antigen variants and their immunoenhancing effect on co-delivered hepatitis B surface antigen. Mol Immunol 2005;42:289-94.
    [58]Aguilar A, Gonz'alez C, Cinza Z, Martinez J, V'eliz G, Aureoles-Rosell'o SR, et al. Phase I clinical trial in healthy adults of a nasal vaccine candidate containing recombinant Hepatitis B surface and core antigens. Int J Infect Dis,2007
    [59]Gupta RK. Alumimum compounds as vaccine adjuvants [J].Advanced Drug Delivery Reviews,1998, 32(3):155 172.
    [60]Barr IG, Sjolander A, Cox JC. ISCOMS and other saponin based adjuvants[J]. Advanced Drug Delivery Reviews,1998,32 (3):247-271.
    [61]Salgalleer ML, Lodge PA. Use of cellular and cytokine adjuvants in the immunotherapy of cancer. J Surg Oncol,1998,68:122-138
    [62]Cooper PD. Vaccine adjuvants based on gamma inulin. In:Powell MF, Newman MJ, editors. Vaccine design:the subunit and adjuvant approach. New York:Plenum Press; 1995. p.559-80.
    [63]Cooper PD, Steele EJ. Algammulin:a new vaccine adjuvant comprising gamma inulin particles containing alum, preparation and in vitro properties. Vaccine 1991;9:351-7.
    [64]Cooper PD, McComb C, Steele EJ. The adjuvanticity of algammulin, a new vaccine adjuvant. Vaccine 1991;9:408-15.
    [65]Silva DG, Cooper PD, Petrovsky N. Inulin-derived adjuvants efficiently promote both Thl and Th2 immune responses. Immunol Cell Biol 2004;82:611-6.
    [66]Krieg AM. CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 2002;20:709-60.
    [67]Gursel I, Gursel M, Yamada H, Ishii KJ, Takeshita F, Klinman DM. Repetitive elements in mammalian telomeres suppress bacterial DNA induced immune activation. J Immunol 2003; 171:1393-400.
    [68]KriegAM,WuT,Weeratna R, Efler SM,Love-Homan L,Yang L, et al. Sequence motifs in adenoviralDNAblock immune activation by stimulatory CpG motifs. Proc Natl Acad Sci USA 1998;95(21):12631-6.
    [69]Klinman DM. Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat Rev Immunol 2004;4(4):249-58.
    [70]Marshall JD, Fearon KL, Higgins D, Hessel EM, Kanzler H, Abbate C, et al. Superior activity of the type C class of ISS in vitro and in vivo across multiple species. DNA Cell Biol 2005;24:63-72.
    [71]Anders HJ, Vielhauer V, Eis V, et al. Activation of toll-like receptor-9 induces progression of renal disease in MRL-Fas(lpr) mice. FASEB J 2004; 18:534-6.
    [72]Anders HJ. Atoll for lupus. Lupus 2005;14:417-22.
    [73]Robinson HL. New hope for an AIDS vaccine. Nat Rev Immunol 2002;2:239-50.
    [74]Sessler WG, J ung G. Synthetic lipopeptides as novel adjuvants[J]. Res Immunol,1992,143 (5):548 553.
    [75]乔彦良,孙爱玉,李桂华,等.西替丁对鸡新城疫疫苗免疫效果的影响[J].山东家禽,2002(1):7-9.
    [76]Tong NK, Beran J, Kee SA, Miguel JL, Sanchez C, Bayas JM, et al. Immunogenicity and safety of an adjuvanted hepatitis B vaccine in pre-hemodialysis and hemodialysis patients. Kidney Int 2005;68:2298-303.
    [77]Giannini SL, Hanon E, Moris P, Van Mechelen M, Morel S, Dessy F, et al. Enhanced humoral and memory B cellular immunity using HPV16/18 L1 VLP vaccine formulated with the MPL/aluminium salt combination (AS04) compared to aluminium salt only. Vaccine 2006;24:5937-49.
    [78]Harper DM, Franco EL, Wheeler C, Ferris DG, Jenkins D, Schuind A, et al. Efficacy of a bivalent LI virus-like particle vaccine in prevention of infection with human papillomavirus types 16 and 18 in young women:a randomised controlled trial. Lancet 2004;364:1757-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700