大豆蛋白纤维机织面料缝纫平整度的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆蛋白纤维是迄今为止由我国科技人员自主研发的,并在国际上率先取得工业化试验成功的纤维,大豆蛋白纤维织物因其手感细滑柔软、悬垂性佳、吸湿透气,与肌肤有很好的亲和力,所以广泛运用于制作高档床上用品、睡衣、西服等,但是在缝制过程中经常出现不平整现象,这是严重影响外观质量的问题之一。本课题就是针对这一情况,选取真丝/大豆、棉/大豆、毛/大豆蛋白纤维三类20种机织面料利用FAST和KES系统对其物理力学性能进行测试,接着对面料进行了缝纫实验,获得缝纫试样主观缝皱、客观缝缩的缝纫平整度评价指标,再接着对面料物理力学性能和缝纫平整度的关系作研究,找出影响缝纫平整度的内在因素,最后是改变缝纫工艺参数对缝纫平整度的研究,找出影响缝纫平整度的外在因素。在此基础上,引入各种统计学理论、回归分析、正交试验等方法研究上述对象之间的关系。
     本文首先对大豆蛋白机织面料和缝纫平整度的国内外研究现状进行了比较全面的综述,分析了国内外学者在此领域所作的研究、采用的数学方法和取得的成果,阐述了研究大豆蛋白纤维机织面料缝纫平整度的意义。
     其后本文测试了真丝/大豆、棉/大豆、毛/大豆蛋白纤维机织面料的物理力学性能,通过均值方差对比发现:(1)三类面料斜向的各力学性能均值远远大于经向和纬向,经向的弯曲刚度B值和成形性F值大于纬向;(2)真丝/大豆蛋白纤维机织面料的摩擦系数平均差MMD最小,棉/大豆蛋白纤维机织面料的剪切刚度G、平均摩擦系数MTU最大,毛/大豆蛋白纤维机织面料成形性F值、延伸性E值和急弹性回复角J值最大。
     接着本文利用pearson简单相关系数和Spearman等级相关系数重点测试分析三类大豆蛋白纤维机织面料的物理力学性能与缝纫平整度评价指标即主观缝皱、客观缝缩的相关关系和回归关系。结果表明:(1)真丝/大豆蛋白纤维机织面料的客观缝缩与该面料的物理性能几乎无关系,与力学性能存在较大的相关性,特别是与延伸性E、剪切刚度G和面料表面的粗糙度SMD关系显著,主观缝皱与该面料的物理力学性能关系不明显;(2)棉/大豆蛋白纤维机织面料客观缝缩与面料物理力学性能有较大的相关性,而且各项性能指标对客观缝缩的影响不一样,主观缝皱与面料的物理性能的关系较为密切,特别是与克重、厚度、表面摩擦系数平均差MMD关系显著;(3)毛/大豆蛋白纤维机织面料的客观缝缩与力学性能有比较密切的关系,与物理性能的关系比较小。其中影响比较显著的指标有弯曲刚度B、表面粗糙度SMD、平均摩擦系数MIU,主观缝皱与面料的物理性能有较大的相关性,特别是与面料的厚度T2存在极强的正相关。
     最后本文利用正交试验方法寻求影响三类大豆蛋白纤维机织面料缝纫平整度的缝纫条件,并找出适合三类面料缝纫的最优工艺参数,实验结果表明:影响真丝/大豆蛋白纤维机织面料缝纫平整度的缝纫条件从大到小依次为:缝线张力、线迹密度、压脚压力、送布牙高度,优选的缝纫条件特征为:缝线张力宜低为20cN-30cN,线迹密度14针/3cm,压脚压力和送布牙高度为一档即最低档;影响棉/大豆蛋白纤维机织面料缝纫平整度的缝纫条件从大到小依次为:缝线张力、缝线种类、机针号、线迹密度,优选的缝纫条件特征为:缝线有一定的张力为30cN-50cN,常用的40S/2涤纶短纤缝线,12号机针,线迹密度无明显规律;影响毛/大豆蛋白纤维机织面料缝纫平整度的缝纫条件从大到小依次为:缝线张力、缝线种类、机针号、线迹密度,优选的缝纫条件特征为:缝线有一定的张力为30cN-50cN,采用40/2涤纶长丝缝线能有效提高平整度,机针选择10号、12号均可,线迹密度无明显的规律。
     综上所述,本文比较全面的分析了影响真丝/大豆、棉/大豆、毛/大豆蛋白纤维机织面料缝纫平整度的内在物理力学性能和外在缝纫条件的因素,通过内在影响缝纫平整度的主要物理力学性能找出外在显著改善缝纫平整度的缝纫条件,这样有助于服装加工企业在三类面料的加工过程中快速准确的选择缝制工艺,控制服装缝制质量。
Soybean protein fiber is by far by the independent research and development of scientific and technical personnel, and industrial test of the international community made the first successful fiber, it is widely used in production of high-end bedding、pajamas、suits、etc. Because of its soft and smooth feel, good drape, moisture permeability, and good skin affinity, but it is often uneven phenomenon in the sewing process, which is seriously affecting the quality of the appearance. The thesis is based in this situation, the writer selects three types of woven fabric, which is silk/soybean, cotton/soybean, wool/soybean protein fiber and uses the FAST and KES physical and mechanical properties of the system to test the physical and mechanical properties of fabrics on the subjective, the objective flatness of sewing and changing the sewing process parameters on the flatness of sewing. On this basis, the introduction of a variety of statistical theory, regression analysis, studied by means of orthogonal test the relationship between these objects.
     Firstly, soybean protein fiber and sewing on the flatness of the current situation at home and abroad more comprehensive review, analysis by scholars in this field study, using mathematical methods and results, described woven fabric of soybean protein seam smoothness Significance.
     Then the writer subsequently tests the three soybean protein woven fabrics,silk/soybean, cotton/soybean, wool/soybean protein fiber woven Fabrics physical and mechanical properties compared using mean variance analysis: (1) silk/soybean protein fiber bending of woven fabrics woven rigidity B, the smallest surface roughness SMD, indicating that the fabric surface is smooth, but the material more difficult Pressing stereotypes; (2) Cotton/soybean protein fiber woven Fabrics shear rigidity G, the average coefficient of friction MMD maximum, indicating that this more uniform fabric structure, and fabric material in the shop, cutting, sewing process easier; (3) wool/soybean protein fiber woven Fabrics Pleated extension of E and the maximum recovery angle, indicating that the fabric take comfort, and Wrinkle better performance.
     Then this paper, a simple correlation coefficient Pearson correlation coefficient and Spearman rank test and analysis focus on three types of woven Fabrics and subjective physical and mechanical properties of seam wrinkle, shrink the correlation between objective and joint regression. The results showed that: (1) silk/soybean protein fiber woven fabric woven seam shrinkage with the objective physical properties of the fabric almost no relationship, there is a big and relevant mechanical properties, eSpecially with the extension of E, the shear stiffness G SMD fabric surface roughness and Significant relationship between subjective seam wrinkle and physical and mechanical properties of the fabric of the relationship is not obvious; (2) Cotton/ soybean protein fiber woven fabric woven fabric objective seam shrinkage and mechanical properties have a greater correlation and the reduced performance of the objective not the same as sewing, sewing subjective physical properties and fabric wrinkle closer relationship, particularly with the weight, thickness, surface friction coefficient Significant mean differences between MMD; (3) Wool/Soybean protein fiber woven fabric woven seam shrinkage and mechanical properties of the objective a relatively close relationship, the relationship with the physical properties is relatively small. One of the indicators have a relatively Significant bending stiffness B, the surface roughness of SMD, the average friction coefficient MIU, subjective joint wrinkled and physical properties of fabrics have a greater relevance, particularly with the thickness of fabric there is a strong positive correlation between T2.
     Then again this also using orthogonal test method for three types of fabric for optimum sewing conditions, experimental results show that: silk/soybean protein fiber fabric is characterized by the optimal sewing conditions: the thread tension shoud be low, stitch density is 14-pin/3cm , foot pressure and feed dog height should be low; cotton/soybean protein fiber fabric is characterized by the optimal sewing conditions: a certain tension suture, commonly used 40S/2 stitches, 12 needle, stitch density, no Significant law. Wool/soybean protein fiber fabric is characterized by the optimal sewing conditions: a certain tension suture, suture can improve the use of filament formation, 12 the following machine needle, stitch density, no obvious pattern. In summary, this more comprehensive analysis of the impact of silk/soybean, cotton/soybean, wool/soybean protein fiber woven fabric woven seam smoothness inherent physical and mechanical properties and conditions of the external factors of sewing, sewing through the formation of internal influence degree to identify the main external physical and mechanical properties Significantly improved the sewing seam smoothness conditions, which will help garment processing enterprises in the processing of three types of fabric quickly and accurately select the sewing process, control the quality of garment sewing.
引文
[1]杨旭红,王华杰.丝绸型大豆蛋白纤维织物的服用性能分析[J].丝绸,2002(7):35-37.
    [2]康莉.大豆蛋白纤维及其织物的性能[J].河南纺织化纤科技,2003(4):26-27.
    [3]崔瑞芳,马晓虹,赵其明.大豆蛋白纤维及其织物的性能研究[J].上海纺织科技2003,31(2):56-57.
    [4]付江.织物组织对大豆蛋白纤维织物服用性能的影响[J].四川纺织科技,2003(1):14-16.
    [5]郑惠.大豆蛋白纤维与天丝纤维织物的测试分析[J].江苏丝绸,2005(1):10-15.
    [6]杨庆斌,秦德清,孔燕,于爱红,于伟东.大豆蛋白纤维混纺纱混纺比与拉伸性能的关系[J].棉纺织技术,2007,35(2):77-80.
    [7]叶金晶.混纺比对大豆蛋白纱线机械性能及其机织产品服用和卫生性能的影响[D].东华大学,2007:8-17.
    [8]王其,陈磊,王晓.柔丝纤维和大豆纤维性能比较[J].国际纺织导报,2010(3):8-10.
    [9] Lindberg,J.waestebrerg and Svenson.R.wool fabrics as garment construction materials.Journal Of the Text Institute,51,1960,pp1415-1492.
    [10] Masasko.S.Kawabata and Kimiko Ishizuka.Recent developments in research correlating basic fabric mechanical properties and the appearance of men’s suits in“Proc.Japan-Australia Symposium on Objective Evaluation of Appear Fabrics.Parkville, Australia”, 1983, pp67.
    [11] R.C.Dhingra and R.Poetle, Fsbric mechanical and physical properties relevant to clothing manufacture. Clothing Rec.J, 1980, Vol.8,pp59.
    [12] J.Amirbayat.Seams of different ply properties, Part 1: Seam Appearance, Part 2:seam Strength.J.Text.Inst.,1992,82,No.2.pp211.
    [13] M.Y.Kwollg,Engineering principles in man’s jacket pattern construction.in“Proc.of 1”China International Wool Textile Conference,Xi’an,1994,pp214.
    [14] Dobilait?, V. Petrauskas. The effect of fabric structure and mechanical properties on seam pucker, Material Sience (Medziagotyra), Vol.8 No.4:495-499.
    [15]刘侃.基于面料力学性能的服装缝纫平整度等级客观评价系统的建立[D].东华大学,2005:9-12.
    [16]范蕤.基于模糊神经网络的面料缝纫平整度客观评价研究[D].苏州大学,2008.
    [17]杨建忠,王善元.轻薄织物斜向力学性能与缝纫起皱关系的研究[J].西北纺织工学院学报,15(3):35-38.
    [18]陈之戈,陈雁.服装面料的缝制加工性能[J].丝绸,2001(5):23-25.
    [19]李艳梅.面料性能对服装缝纫质量的影响分析[J].上海纺织科技,36(3):13-16.
    [20]唐虹.雪纺面料性能与缝缩方向性研究[J].纺织学报,29(10):18-20.
    [21]郁兰.大豆蛋白纤维机织面料性能与结构的关系[D].苏州大学,2006(6):23-26.
    [22] K.P.S.Cheng, and K.P.W.Poon.Seam Properties of woven fabries.Textile Asia, 2002, No.3, pp30-34.
    [23] A.M.Manich, J.P.Domingues and A.Barella.Relationships between fabric sewability and structural, physical, and FAST properties of woven wool and wool-blend fabric.Text.Inst, 1998.89.No.3, PP579-591.
    [24] Chang K.Park and Tae Jin Kang.Objective rating of seam Pucker using neural networks.Text.Res,1997,67,No.7,pp494- 502.
    [25]方丽英,袁观洛.缝纫条件对氨纶弹力机织面料缝纫质量的影响[J].纺织学报25(4):11-14.
    [26]徐蓉蓉,张欣.服装面料成衣加工性能的研究和应用[J].针织工业,2005(6):35-37.
    [27]倪红.毛精纺面料的缝纫平整度与缝纫条件的关系[J].纺织学报,29(3):23-25.
    [28]冯麟.缝道缩皱的原因分析及其处理方法[J].江苏纺织,2007(7):31-33.
    [29]胡洁.大豆蛋白纤维-棉混纺产品开发及服用性能研究[D].东华大学,2004:45-53.
    [30]肖学霞.基于FAST仪力学性能测试的织物手感客观评价研究[J],苏州大学2005:26-29.
    [31]郑惠.新型纤维服用性能研究[D].西南农业大学,2003:36-49.
    [32]李艳梅,张渭源.基于灰色模型的服装面料缝纫皱缩预测[J].纺织学报, 29(6):22-25.
    [33]潘永惠.基于神经计算的服装缝纫性能的模糊评价研究[J].江南大学,2006:43-52.
    [34]沈岳,陈雁.影响缝纫质量因素的灰色统计评价[J].纺织学报, 29(8):20-23.
    [35]朱松文.服装材料学[M].北京:中国纺织出版社,2001:149-166.
    [36]史玉磊,史金峰郭瑞.EXCEL函数与图表实用大全[M].北京:电子工业出版社,2007:132-140.
    [37]蔡智澄,何立民.相关性分析在图书情报分析中的应用[J].现代情报,2006:96-701.
    [38]苏金明.统计软件SPSS 12.0 for Windows应用及开发指南[M].北京:电子工业出版社,2004:134-140.
    [39]薛薇. SPSS统计分析方法及应用[M].北京:电子工业出版社,2010:136-151.
    [40]卢纹岱.SPSS统计分析[M].北京:电子工业出版社,2004:112-120.
    [41]李志强,陆晓兵.小样本统计决策理论:统计学习理论[J].江西财经大学,2005(8):44-49.
    [42]陈霞.面料缝纫加工性能影响缝纫条件的选择[J].江苏纺织,2008:24-26.
    [43]徐蓉蓉,张欣.缝纫工艺参数对薄型机织面料缝口缩皱的影响[J].西安工程科技学院学报, 2003,20(2):23-27.
    [44]陆鑫.缝纫形式与参数对丝绸面料缝口强度的影响[J].上海纺织科技,2002,28(5):13-15.
    [45]王颉.试验设计与SPSS应用[M].北京:化工出版社,2004:156-167.
    [46]邹奉元,全小凡,方丽英.丝绸面料缝口性能与缝纫条件的关系[J].纺织学报,2004,23(1):16-18.
    [47]陆鑫,吴世刚,顾韵芬,唐修霞.采用正交实验进行服装缝纫工艺的参数设计[J].上海纺织科技,37(3):43-46.
    [48]任露泉.试验设计及其优化[M].北京:科学出版社,2009:116-128.
    [49]郑少华,姜奉华.试验设计与数据处理[M].北京:中国建材工业出版社,2005:136-156.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700