基于Sarrus机构的模块化机器人拟人手臂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,种类繁多的模块化机械臂已在制造、自动化、服务、军事等众多领域替代人类执行各种任务。传统的模块化机械臂主要由关节模块和连杆模块组成,关节模块包括单自由度的旋转关节、自旋转关节和移动关节三种形式,每种关节内都装有独立的驱动和传动单元;连杆模块是个零自由度结构,内部没有独立的驱动和传动单元,只起连接作用。为适应日益复杂和多样的机械臂动作需求,提高手臂的运动灵活性,采用能够同时承担关节模块和连杆模块的新型机器人模块是模块化机械臂发展的方向之一。
     本文针对模块化机械臂的发展需求,设计提出了一种基于Sarrus机构的模块化机器人拟人手臂。利用Sarrus机构在机器人手臂中能够同时传递运动、动力和连接两相邻模块的特点,能够有效拓展机械臂的工作空间,增强其运动灵活性。本文分析了Sarrus机构的运动特性,建立了机器人手臂的参数化模型,并采用理论分析方法和虚拟仿真技术对该机器人手臂的运动特性进行了分析,最后完成了机器人手臂试验样机的研制,并对其进行了初步的功能试验,验证了Sarrus机构在机器人手臂中应用的合理性,以及基于Sarrus机构的模块化机器人拟人手臂机械结构、控制系统设计的正确性。
     本文的主要研究内容包括以下几个方面:
     (1)对Sarrus机构进行基本的理论研究,包括自由度分析,运动学分析,静、动力学分析等。分析验证了Sarrus机构是一种自由度为1的空间机构,可以同时输出旋转运动、直线运动以及这两种运动的组合运动——弯曲运动等结论,为其在机器人手臂中的应用提供理论基础和实验依据。
     (2)设计了基于Sarrus机构的模块化机器人拟人手臂原理样机,包括其组成模块的设计和不同构型机器人的设计。设计的机器人模块包括Sarrus模块和两种连杆模块;设计的模块化机器人包括Sarrus模块联合体和Sarrus模块混合体两大类。
     (3)对基于Sarrus机构的模块化机器人拟人手臂的运动特性进行了分析,建立了其运动数学模型和ADAMS虚拟样机模型,得到了其有效工作空间和控制策略,证实了该机器人手臂设计思想的合理性。
     (4)建立了基于Sarrus机构的模块化机器人拟人手臂的原理样机,有效地验证了机器人手臂运动学理论和仿真分析的正确性,Sarrus机构在机器人手臂中应用和该手臂设计方案的可行性与有效性,以及基于Sarrus机构的模块化机器人拟人手臂机械结构和控制系统设计的正确性。
Modular robotic arms of multitudinous types have been employed in many fields, such as manufacturing, automation, service, military and so on. Traditional modular robotic arms are mostly composed of joint modules and link modules. There are three types of one-DOF joint modules: pivot joint module, rotational joint module and prism joint module. Link modules are fixed, which have no independent driving equipments. Modules that are able to act as both joints and links are employed in modular robotic arms to improve their versatility and flexibility.
     A novel modular robotic arm based on the Sarrus linkage is proposed in the thesis, in accordance with the needs of the development of modular robotic arm. As the Sarrus linkage is able to transfer motions and connect two adjacent modules, its application in robotic arms can widen their workspace and strengthen their flexibility. In this paper, the kinematics characters of the Sarrus linkage is first studied; then, the mathematic model of the robotic arm is built, and its kinematics features are also analysized, with both theoretical and simulation methods; at last, the experimental model of the arm is made up. The results demonstrated the rationality of employing the Sarrus linkage in robotic arm, and testified the validity of the design of the mechanical structure and control system of the modular robotic arm.
     The main contents of the thesis are as follows:
     (1)Basic theoretical study of the Sarrus linkage was made, including its DOF, kinematics, dynamics and so on. The analysis comes to the conclusions that the Sarrus linkage is a 1 DOF spatial mechanism, and it is able to export rotational motion, translational motion and winding motion—the combination of the former two motions. This section is the preparation for the application of the Sarrus linkage in robotic arms.
     (2)The models of modular robotic arms based on the Sarrus linkage are designed, including robotic modules and robots of different configurations. The robots are composed of the Sarrus module and two kinds of link modules, and they can be divided into two types: robots composed of only the Sarrus modules and robots composed of different modules.
     (3)The kinematics characters of the modular robotic arm based on the Sarrus linkage are studied, and the mathematical and simulation model of the arm are also built. The analysis comes to the conclusion that the idea of designing robotic arms of this kind is reasonable and advisable.
     (4)The experimental model of the modular robotic arm based on the Sarrus linkage is built up, and the conclusions of the experiment demonstrated that the former theoretical and simulation study of the robotic arm was correct, they also proved the idea of employing the Sarrus linkage in robotic arms was reasonable, as well as the design of the mechanical structure and control system of the modular robotic anthropopathic arm based on the Sarrus linkage.
引文
[1] Paredis C J J, Brown H B, Khosla P K. A rapidly deployable manipulator system[J]. Robotics and Autonomous Systems, 1997,21:289 ~304
    [2] Matsumaru T. Design and control of the modular robot system: TOMMS[C]. Proceedings of the IEEE International Conference on Robotics and Automation, USA,IEEE,1995:2125~2131
    [3]李树军,张艳丽,赵明扬.可重构模块化机器人模块及构形设计[J].东北大学学报,2004,25(1):1~3
    [4]张艳丽,郭建烨.可重构模块化机器人的构形设计[J].沈阳航空工业学院学报,2002,19(3):42~44
    [5]付宜利,潘博,李康.内窥镜操作机器人结构设计及运动学仿真[ J ].机械设计,2007,24(1):2~3
    [6]马光,申桂英.工业机器人的现状及发展趋势[J].组合机床与自动化加工技术,2002,3:48~51
    [7] http://www.Sarrus\Notes on the Sarrus linkage - Clanking Replicator Blog.htm
    [8] Schmitz Donald,Khesla Pradeep. The CMU Reconfigurable Modular Manipulator System. Proceeding of the International Symposium and Exposition on Robots.1988,473~488
    [9] Wurst K H. The Conception and Construction of A Modular Robot System. Proceedings of the 16-th International Symposium on Industrial Robotics. 1986,37~44
    [10] Paredis C JJ,Benjamin Brown H,Khosla P K. A Rapidly Deployable Manipulator System.Robotics and Autonomous Systems.1997,289~304
    [11] Matsumaru T. Design and Control of the Modular Robot System: TOMMS[C].IEEE Proc of Int Conf On Robotics and Automation.1995,2125~2131
    [12] http://www.esit.com/robotics_productDevelopment.php
    [13]杜启联.PowerCube可重构模块化机器人系统的研究与开发[D].北京:北京工业大学,2004
    [14] htttp://www.robotics-research.com
    [15] Yisheng Guan, Li Jiang, Xianmin Zhang, Jacky Qiu and Xuefeng Zhou. 1-DoF Robotic Joint Modules and Their Applications in New Robotic Systems. Proceedings of the 2008 IEEE International Conference on Robotics and Biomimetics Bangkok, Thailand, February 21 - 26, 2009.1905~1910
    [16] Yisheng Guan, Li Jiang and Xianmin Zhang. Mechanical Design and BasicAnalysis of a Modular Robot with Special Climbing and Manipulation Functions. Proceedings of the 2007 IEEE International Conference on Robotics and Biomimetics, Sanya, China,December 15 -18, 2007, 502~507
    [17] Shicai Shi, Xiaohui Gao, Zongwu Xie, Fenglei Ni and Hong Liu, Erich Kraemer, Gerd Hirzinger, Member, IEEE。Development of Reconfigurable Space Robot Arm,2005,138~143
    [18]戚开诚,高峰,刘伟,杨家伦.新型七自由度拟人手臂位置反解及轨迹规划[J].机械科学与技术, 2009,28(10):1266~1270
    [19]刘新军,汪劲松,高峰.一种串并联结构拟人七自度冗余手臂的设计[J] .中国机械工程, 2002,12(2): 101~104
    [20]张连东.基于微分几何学的机器人操作性能的研究[D].大连:大连理工大学,2004:3~20
    [21]陈红亮,罗玉峰,杨廷力.对称三自由度并联机器人拓扑结构型综合与分类[J].农业机械学报, 2008,39 (1):138~141
    [22]陆震,杨光,王启明,南仁东.FAST望远镜主动反射面促动机构运动学研究[J].北京航空航天大学学报,2006,32(2):233~238
    [23] ZHANG YiTong, MU DeJun. New concept and new theory of mobility calculation for multi-loop mechanisms [J]. SCIENCE CHINA Technological Sciences, 2010,53(6):1598~1604
    [24] Katie L. Hoffman·Robert J.Wood. Myriapod-like ambulation of a segmented microrobot [J] .Auton Robot,2011:103~114
    [25] Gavin D. Kenneally, Luis Rodrigues.Biologically Inspired Telescoping Active Suspension Arm Vehicle: Preliminary Results [C].2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics Montréal, Canada, July 6-9, 2010,1380~1384
    [26] Sehyuk Yim and Metin Sitti.Design and Analysis of a Magnetically Actuated and Compliant Capsule Endoscopic Robot [C].2011 IEEE International Conference on Robotics and Automation. Shanghai International Conference Center. May 9-13, 2011, Shanghai, China,4810~4815
    [27] Ranjana Sahai, Srinath Avadhanula, Richard Groff, Erik Steltz, Robert Wood, and Ronald S. Fearing.Towards a 3g Crawling Robot through the Integration of Microrobot Technologies [C] . Proceedings of the 2006 IEEE International Conference on Robotics and Automation. Orlando, Florida - May 2006,296~302
    [28]黄真,赵永生。赵铁石.高等空间机构学[M] .北京:高等教育出版社,2006
    [29]韩建友.高等机构学[M].北京:机械工业出版社,2004
    [30]李树军,张艳丽,赵明扬.可重构模块化机器人模块及构形设计[J].东北大学学报(自然科学版),2004,25(1):78~81
    [31]蔡自兴.机器人学基础[M].北京:机械工业出版社,2009
    [32]邓薇.MATLAB函数速查手册[M].北京:人民邮电出版社,2008
    [33]陈杰.MATLAB宝典(第三版)[M].北京:电子工业出版社,2011
    [34]李治典,周秦英,李宏.实时求解特定消谐方程组的新算法[J].西北工业大学学报,2001,22(1):37~40
    [35]周国标,宋宝瑞,谢建利.数值分析[M].北京:高等教育出版社,2008
    [36]李涛,刘华伟,陈耀元.非线性方程组求解的新方法[J].武汉理工大学学报(交通科学与工程版),2009,33(3):569-572
    [37]吕同富,康兆敏,方秀男.数值计算方法[M].北京:清华大学出版社,2008
    [38] Michael Brady, John M. Hollerbach, Timothy L. Johnson, et al. ROBOT MOTION: PLANNING AND CONTROL [M]. Cambridge, Massachusetts and London, England: The MIT Press, 1982
    [39]李增刚.ADAMS入门详解与实例[M],北京:国防工业出版社,2006
    [40]郑凯,胡仁喜,陈鹿民.ADAMS 2005机械设计高级应用实例[M],北京:机械工业出版社,2006
    [41] http://www.jdzj.com/products/2011-9-13/9352696-1.html
    [42] http://item.taobao.com/item.htm?id=4374368334
    [43] PCM-9375 User Manual. Taiwan, ADVANTECH, 2nd Edition, Sep.2007
    [44] http://www.gkong.com/html/products/31/318349.asp
    [45] http://www.emacinc.com/sbc_pc_compatible/pcm_9375.htm
    [46] DMC4420 PC104总线4轴运动控制卡硬件使用手册,Version1.1,深圳市雷泰控制技术有限公司
    [47] http://www.gongkong.com/webpage/product/200805/2008050710182800002.htm
    [48] http://www.gongkong.com/webpage/product/200805/C-B6E6-0882836FA89D.htm
    [49] http://www.xiudang.com/fanli/p/OTQ3MzQ0OTQ4Mw==.html
    [50] http://product.pcpop.com/000067303/Features.html
    [51]王建新,杨世凤,隋美丽.LabWindows/CVI测试技术及工程应用[M].北京:化学工业出版社,2006
    [52]蔡自兴.机器人学(2版)[M].北京:清华大学出版社,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700