腺病毒介导PPAR-γ1基因脑室内转染对大鼠缺血再灌注脑的保护作用及机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究缺血再灌注大鼠脑组织PPAR-γ1mRNA和蛋白的表达变化,并结合文献分析其和脑缺血再灌注损伤的关系。
     方法:建立SD大鼠右侧MCAO缺血再灌注模型。实验分为对照组、假手术组和缺血再灌注组。缺血再灌注组取缺血后12h、24h和48h三个时间点进行观察。用RT-PCR方法及Western blotting方法分别检测PPAR-γ1mRNA和蛋白的表达。
     结果:脑缺血再灌注组PPAR-γ1mRNA和蛋白表达较正常对照组和假手术组明显降低。通过对缺血后12h、24h和48h三个时间点的动态变化观察发现,缺血后12h表达最低,并且随缺血后时间的推移,其表达逐渐增加,存在显著性差异。但缺血后48h的表达值仍低于正常对照组和假手术组。
     结论:实验SD大鼠缺血再灌注脑组织PPAR-γ1表达下调,提示针对PPAR-γ1作为一靶点进行干预对于缺血性脑血管病的治疗是一个新的研究方向。
     目的:1.研究通过脑室内途径腺病毒载体转染PPAR-γ1到脑的可行性,如果可行则进一步观察其对缺血再灌注脑是否具有保护作用。
     2.过表达PPAR-γ1基因和PPAR-γ激活剂吡格列酮合用,观察其对脑I/R保护作用是否有增强。
     3.研究PPAR-γ1对IL-1β、ICAM-1、Bcl-2、Bax、MMP-9和AQP-4的影响及抗脑I/R损伤的机制。
     方法:(1)构建复制缺陷性重组腺病毒:采用分子克隆手段获得携带增强型绿色荧光蛋白(EGFP)基因的重组质粒、携带PPAR-γ1基因的重组质粒,以细胞内同源重组法构建复制缺陷型重组腺病毒Adv-EGFP、Adv-PPAR-γ1,在293细胞内分别扩增,应用氯化铯密度梯度离心法纯化病毒。
     (2)选择95只SD大鼠随机分成6组。按照包新民等报道的定位方法,在立体定位仪下给大鼠脑室内注射相应试剂0.1ml。第1、2组注入不含PPAR-γ1基因的生理盐水0.1ml,第3组注入Adv-PPARγ1 0.1ml,第4注入Adv-EGFP 0.1ml,第5组吡格列酮5mg/kg灌胃Qd×3天,第6组脑室内注入Adv-PPARγ1 0.1ml+吡格列酮5mg/kg灌胃Qd×3天。
     (3)3天后建立大鼠右侧大脑中动脉缺血再灌注模型。第1组为假手术组,不阻断大鼠大脑中动脉。第2-6组阻断大脑中动脉90分钟再灌注24小时。
     (4)采集脑组织标本,采用TTC染色法测量脑梗死体积;伊文氏蓝法测定血脑屏障通透性;干-湿重法测定脑含水量;光镜、电镜下进行病理形态学观察,免疫荧光显微镜下观察腺病毒表达情况;脑组织MPO活性测定;用Western Blot方法检测缺血区脑组织IL-1β、ICAM-1、Bcl-2、Bax、AQP-4、MMP-9蛋白的表达。
     结果:脑室内途径腺病毒载体转染Adv-EGFP,免疫荧光反应阳性。脑缺血再灌注后,脑梗死体积增大、血脑屏障通透性增加、脑组织含水量增加、MPO活性明显增高,IL-1β、ICAM-1、Bax、AQP-4和MMP-9蛋白的表达增加,Bcl-2蛋白表达减少。脑室内注射Adv-PPARγ1或吡格列酮灌胃均能抑制以上脑损伤指标以及IL-1β、ICAM-1、Bax、AQP-4和MMP-9的蛋白表达上调,而使Bcl-2蛋白表达增加。它们联合应用时能增强保护作用。
     结论:1.通过脑室内注射腺病毒载体转染PPAR-γ1到脑的方法可行,且对缺血再灌注脑具有保护作用。
     2.脑室内转染PPAR-γ1基因和PPAR-γ激活剂吡格列酮合用,能增强对I/R脑的保护作用。
     3.PPAR-γ1可以减少缺血再灌注脑组织中性粒细胞的浸润,同时抑制IL-1β、ICAM-1、Bax、MMP-9、AQP-4上调,促进Bcl-2上调。提示PPAR-γ1是通过调控炎性损伤路径发挥抗缺血再灌注损伤的,并且提示抑制凋亡也可能是其机制之一。
OBJECTIVE:To explore the expression pattern of PPAR-γ1 mRNA and protein in the ischemia-reperfusion brain tissues, to analyze the relationship between PPAR-yl and cerebral ischemia based on the previous studies.
     METHODS:Adult male SD rats were subjected to middle cerebral artery occlusion 90min and followed reperfusion by monofilament method. The experimental groups included control group, sham group and ischemia-reperfusion group. The ischemia-reperfusion rats were sacrificed at 12h,24h and 48h after ischemia. The expression of PPAR-γ1, mRNA and protein were measured by RT-PCR and Western blotting respectively.
     RESULTS:The ischemia-reperfusion group displayed obvious downregulation of PPAR-γ1 mRNA and protein compared with the control group and the sham group. The level of PPAR-γ1 mRNA and protein might reach the lowest point in the 12h after ischemia onset, and increased gradually following the post-ischemic time.The expression of PPAR-γ1 mRNA and protein were still lower on 48h after ischemia onset.
     CONCLUSIONS:The ischemia-reperfusion injury downregulated PPAR-γ1 mRNA and protein expression. The PPAR-γ1 may be a valuable target and the experiment that make an intervention on it may be very important to improve the brain ischemia injury.
     OBJECTIVE:1.To explore the feasibility of PPAR-γ1 gene transfection via cerebral ventricle and the protective effect against cerebral ischemia reperfusion injury.
     2.To observe if the effection against cerebral ischemia reperfusion injury is enhanced when transfecting of PPAR-γ1 gene via cerebral ventricle association with the Pioglitazone which is PPAR-y's agonist.
     3.To explore the the expression pattern of IL-1β、ICAM-1、Bcl-2、Bax、MMP-9 and AQP-4 protein in the ischemia-reperfusion brain tissues and to investigate the potential mechanisms.
     METHODS:1.Construction of the replication-deficient recombinant adenovirus:Recombinant plasmids PDC-EGFP (containing enhanced green fluorescence protein EGFP gene), PDC-PPAR-γ1 (containing PPAR-γ1 gene). Recombinant adenovirus Adv-EGFP, Adv-PPAR-γ1 were produced by homologous recombinant in 293 cells, amplified also in 293 cells on a large scale, and purified by ultracentrifugation in CsCl step gradient solutions. The concentration of recombinant adenovirus Adv-EGFP purified by ultracentrifugation in CsCl step gradient solutions is 2.0×109Pfu/ml; that of Adv-PPAR-γ1 is 1.0×1011Pfu/ml.
     2.95 S-D rats were randomly divided into 6 groups.Each group was treated with corresponding agent via cerebral ventricle.In group I andⅡwere injected by normal saline.In groupⅢ,rat was injected with 0.1ml Adv-PPAR-γ1 and the groupⅣwas Adv-EGFP. The groupⅤwas intragastric administered with Pioglitazone. The groupⅥwas administered with PPAR-γ1 via cerebral ventricle and intragastric administered with Pioglitazone at the same time.
     3. After 3 days middle cerebral artery occlusion model was established.The groupⅠwas sham-operation group.In groupⅡ-Ⅵmiddle cerebral artery was obstructed for 90min and followed reperfusion for 24h.
     4.24 hours after operation sample was collected and cerebral infarction volume was measured by TTC staining, blood brain barrier permeability by Evan's blue dye Perfusion,brain moisture capacity by W-D weight method. To observe the pathomorphology by light microscope and electron microscope. Measuring the activity of MPO. To observe the expression of IL-1β、ICAM-1、Bcl-2、Bax、AQP-4 and MMP-9 protein by Western Blotting.
     RESULTS:After transfecting Adv-EGFP plasmid,the fluorescence for EGFP was positive in brain tissue suggesting the successful transfection of virus gene.In response to I/R injury, cerebral infarction was occurred、Blood brain barrier permeability、brain moisture capacity、the activity of MPO were dramatically incresed and the expression of IL-1β、ICAM-1、Bax、AQP-4、MMP-9 protein were upregulated while Bcl-2 was downregulated.After injected Adv-PPAR-γ1 via cerebral ventricle or intragastric administered with Pioglitazone could inhibited the above parameters of injured brain as well as upregulated the Bcl-2.The improvement by adv-PPAR-γ1 gene and Pioglitazone was enhanced by administration together.
     CONCLUSIONS:1.Transfection of PPAR-γ1 gene via cerebral ventricle was feasible and demostrated the protectiv effect against cerebral ischemia reperfusion injury.
     2. Combined transefction of PPAR-γ1 gene and intragastric administration with Pioglitazone could enhance the protectiv effect against cerebral ischemia reperfusion injury.
     3. The infiltrations of neutrophilic leukocytes could be reduced by PPAR-γ1 and the expreeion of IL-1β、ICAM-1、AQP-4、MMP-9 protein were downregulated, Bcl-2 was upregulated. These results suggests that the protective effect of PPAR-γ1 on ischemia-reperfusion injury is through regulating the inflammatory reaction and apoptosis.
引文
[1]Wayman, N.S, Hattori,Y, et al. Ligands of the peroxisome proliferatoractivated receptors (PPAR-gamma and PPAR-alpha) reduce myocardial infarct size. FASEB J,2002,16:1027-1040.
    [2]Chung BH. Protective effect of peroxisome proliferator activated receptor gamma agonists on diabetic and non-diabetic renal diseases. Nephrology,2005. 40-43.
    [3]Cuzzocrea S. Rosiglitazone and 15-deoxy-delta12,14-prostaglandin J2, ligands of the peroxisome proliferator-activated receptor-gamma (PPAR-gamma), reduce ischaemia/reperfusion injury of the gut. Br J Pharmacol,2003,140:366-376.
    [4]Atsushi N,Koichiro W,Hiroshi M,et al. Endogenous PPARgamma mediates anti-inflammatory activity in murine ischemia-reperfusion injury. Gastroenterology,2001.460-469.
    [5]Yue TL,Chen J,Ban W,et al. In vivo myocardial protection from ischemia/reperfusion injury by the peroxisome proliferator-activated receptor-gamma agonist rosiglitazone. Circulation,2002,104:2588-2594.
    [6]Shiomi T,Tsutsui H,Hayashidani S,et al. Pioglitazone,a peroxisome proliferator-activated receptor-gamma agonist,attenuates left ventricular remodeling and failure after experimental myocardial infarction. Circulation, 2002,106:3126-3132.
    [7]Khandoudi N,Delerive P,Berrebi I,et al. Rosiglitazone,a peroxisome proliferator-activated receptor-gamma,inhibits the Jun NH(2)-terminal kinase/activating protein 1 pathway and protects the heart from ischemia/reperfusion injury. Diabetes,2002,51:1507-1514.
    [8]曹泽玲,叶平,龙超良,等.吡格列酮对大鼠心脏缺血再灌注损伤的保护作用.中国临床药理学与治疗学,2005.1112-1117.
    [9]Xu Z,Xu RX,Liu BS,et al. Time window characteristics of cultured rat hippocampal rat hippocampal neurons subjected to ischemia and reperfusion. Chin J Traumatol,2005.179-182.
    [10]Marx N,Duez H,Fruchart JC,et al. peroxisomeproliferration activatived receptors and atherogenesis:regulators of gene expression invascular cells. Circ Res,2004. 1168-1178.
    [11]Manen A,Guardiola,Rafter J,et al. Expression of the peroxisome proliferrator-activated receptor(PPAR)in the mouse colonic muucosa. Biochem Biophys Res Commun,1996,222:844-851.
    [12]Greene ME,Blumberg B,McBride OW,et al. Isolation of the human peroxisome proliferator activated receptor gamma cDNA:expression in hematopoietic cells and chromosomal mapping. Gene Expr,1995,4:281-299.
    [13]Nagy L,Tontonoz P,Alvarez JG et al. Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell,1998,93:229-240.
    [14]Mueller E,Sarraf P,Tontonoz P,et al. Terminal differentiation of human breast cancer through PPAR gamma. Mol Cell,1998,1:465-470.
    [15]Kielian T,Drew PD. Effects of peroxisome proliferator-activated receptor-gamma agonists on central nervou. s system inflammation. J Neurosci Res, 2003,71:315-325.
    [16]Yosllida T,Kurella M,Bemo F,et al. Monitoring changes in gene expression inrenal ischemia-reperfusion in the rat. Kidney Int,2002.1646-1654.
    [17]Zhao,Y, Patzer, A. et al. Activation of cerebral peroxisome proliferator-activated receptors gamma promotes neuroprotection by attenuationof neuronal cyclooxygenase-2 overexpression after focal cerebral ischemia in rats. FASEB J,2006.1162-1175.
    [18]Collino, M, Aragno, M,et al. Oxidative stress and inflammatory response evoked by transient cerebral ischemia/reperfusion:effects of the PPAR-alpha agonist WY14643. Free Radical Biol Metab,2006,41:579-589.
    [19]19 Tureyen, K, Kapadia, R. et al. Peroxisome proliferator-activated receptor-gamma agonists induce neuroprotection following transient focal ischemia in normotensive, normoglycemic aswell as hypertensive and type-2 diabetic rodents. J Neurochem,2007.41-56.
    [20]Cuzzocrea S,Pisano B,Dugo L,et al. Rosiglitazone and 15-deoxy-Deltal2,14-prostaglandin J2,ligands of the peroxisome proliferator-activated receptor-gamma (PPAR-gamma), reduce ischaemia-reperfusion injury of the gut. Br J Pharmacol,2003,140:366-376.
    [21]Wayman NS,Hattori Y,Mc Donald,et al. Ligands of the peroxisome proliferator-activated receptors(PPAR-gamma and PPAR-alpha)reduce myocardial infarct size. FASEB J,2002,16:1027-1040.
    [22]Atsushi N,Koichiro W,Hiroshi M,et al. Endogenous PPARgamma mediatesanti:inflammatory activity in murine ischemia-reperfusion injury. Gastroenterology,2001,120:460-469.
    [23]Yue TL,Chen J,Ban W, et al. In vivo myocardial protection from ischemia/reperfusion injury by the peroxisome proliferator-activated receptor-gamma agonist rosiglitazone. Circulation,2002,104:2588-2594.
    [24]24 Shiomi T,Tsutsui H,Hayashidani S,et al. Pioglitazone,a peroxisome proliferator-activated receptor-gamma agonist,attenuates left ventricular remodeling and failure after experimental myocardial infarction. Circulation, 2002,106.
    [25]Khandoudi N,Delerive P,Berrebi I,et al. Rosiglitazone,a peroxisome proliferator-activated receptor-gamma,inhibits the Jun NH(2)-terminal kinase/activating protein 1 pathway and protects the heart from ischemia/reperfusion injury. Diabetes,2005,51:1507-1514.
    [26]Lin,T.N, Cheung,W.M. et al.15d-prostaglandin J2 protects brain from ischemia-reperfusion injury. Arterioscler ThrombVasc Biol,2006,26:481-487.
    [27]Sulejczak D, Czarkowska-Bauch, J, Macias, M. and Skup, M. Bcl-2 and Bax proteins are increased in neocortical but not in thalamic apoptosis following devascularizing lesion of the cerebral cortex in the rat:an immunohistochemical study. Brain Res,2004,1006:133-149.
    [28]Sakamoto, J, Kimura, H, et al. Activation of human peroxisome proliferator-activated receptor (PPAR) subtypes by pioglitazone. Biochem Biophys Res Commun,2000,278:704-711.
    [29]Heneka MT,Feinstein DL,Galea E,et al. Peroxisome prolifemtor-activated receptor gamma agonists protect cerebellar granule cells from cytokine-induced apoptotic cell death by inhibition of inducible nitric oxide synthase. J Neuroimmunol,1999,100:156-168.
    [30]Willmot M,Gibson C,Gray L,et al. Nitric oxide synthase inhibitors in experimental isehemic stroke and their effects on infarct size and cerebral blood flow:a systematic review. Free Radic Biol Med,2005,39:412-425.
    [31]Rothwell NJ. Functions and mechanisms of interleukin-1 in the brain. Trends Phamacol Sci,1991,12:430-436.
    [32]Liu T,Donnell PC,Yong PR,et al. Interleukin-1βmRNA Expression in Ischemic rat Cortex. Stroke,1993,24:1746-1751.
    [33]Saito K,Suyama K,Nishids K,et al. Early Increases in TNF-a,IL-6 and IL-1(3 levels following transient cerebral ischemia in gerbil brain. Neurosic Lett, 1996,206:149-152.
    [34]Touzani O,Boutin H,LeFeuvre RA,et al. Interleukin-1 influences ischemic brain damage in the mouse independently of the interleukin-1 type I receptor. J Neurosci,2002,22:38-43.
    [35]Auan SM,Parker LC,Collins B. Cortical cell death induced by IL-1 is mediated via action in the hypothalamus of the rat. Proc Acad Sci USA,2000.5580-5585.
    [36]Diamond MS,Staunton DE,Marlin SD,et al. Binding of the integrin Mac-1 (CDllb/CD18) to the third immunoglobulin-like domain of 1CAM-1(CD54) and its regulation by glucosylation. Cell,1991,65:961-971.
    [37]37 Ge H,Wen Y,Yang G,et al. Increased expression of intercellular adhesion molecule-1 in mouse focal cerebral ischemia model. Chin Med J(Engl), 2000,113:75-79.
    [38]Vemuganti R,Dempsey RJ,Bowen KK. Inhibition of intercellular adhesion molecule-1 protein expression by antisense oligonucleotides is neuroprotective after transient middle cerebral artery occlusion in rat. Stroke,2004,35:179-184.
    [39]Berti R,Williams AJ,Moffett JR,et al. Quantitative real-time RT-PCR analysis of inflammatory gene expression associated with ischemia reperfusion brain injury. J Cereb Blood Flow Metab,2002,22:1068-1079.
    [40]Sanchez-Moreno C,Dashe JF,Scott T,et al. Decreased levels of plasma vitamin C and increased concentrations of inflammatory and oxidativestress markers after stroke. Stroke,2004.163-168.
    [41]Tanne D,Haim M,Boyko V,et al. Soluble intercellular adhesion molecule-1 and risk of future ischemic stroke:a nested case control study from the Bezafibrate Infarction Prevention(BIP)study cohort. Stroke,2002,33:2182-2186.
    [42]Selakovic V,Colic M,Jovanovic M,et al. Cerebrospinal fluid and plasma concentration of soluble intercellular adhesion molecule 1,vascular cell adhesion molecule 1 and endothelial leukocyte adhesion molecule in patients with acute ischemic brain disease. Vojnosanit Pregl,2003,60:139-146.
    [43]Clark WM,Madden K,P Rothlen R,et al. Regulation of central nervous system ischemic injury monoclonal antibody to intercellular adhesion molecules. Neurosurgery,1991,75:623-625.
    [44]Bowes MP,Zivin JA,Rothleic R. Monoclonal antibody to the ICAM-1 adhesion site reduces neurological damage in a rabbit cerebral embolism stroke model. Exp Neurol,1993,119:215-219.
    [45]Zhang RL,Chopp M,Jiang N,et al. Anti-intercellular adhesion molecule-antibody reduces ischemic celldamage in the after transient but not permanent middle cerebral artery occlusion wistar rats. stroke,1995,26:1438-1444.
    [46]Muhling J,Fuchs M,Campos M,et al. Effects of omithine on neutrophil(PMN) free amino acid and alpha-keto acid profiles and immune functions in vitro. Amino Acids,2004.313-319.
    [47]Caimi G,Hoffmann E,Montana M,et al. Plasma markers of platelet and polymorphonuclear leukocyte activation in young adults with acute myocardial infarction. Clin Hemorheol Microcirc,2005,32:67-74.
    [48]Scott MJ,Cheadle WG,Hoth JJ,et al. Leukotriene B4 receptor(BLT-1) modulates neutrophil influx into the peritoneum but not the lung and liver during surgically induced bacterial peritonitis in mice. Clin Diagn Lab Immunol,2004,11:936-941.
    [49]Chen LW,Wang JS,Chen HL,et al. Peroxynitrite is an important mediator in thermalinjury-induced lung damage. Crit Care Med,2003,31:2170-2177.
    [50]Goren I,Kampfer H,Muller E,et al. Oncostatin M expression is functionally connected to neutrophils in the early inflammatory phase of skin repair:implications for normal and diabetes-impaired wounds. J Invest Dermatol, 2006,126:628-637.
    [51]Prandini MN,Neves Filho A,Lapa AJ,Stavale JN. Mild hypothermia reduces polymorphonuclear leukocytes infiltration in induced brain inflammation. Arq Neuropsiquiatr,2005,8:779-784.
    [52]Ritter LS,Stempel KM,Coull BM,McDonagh PF. Leukocyte-platelet aggregates in rat peripheral blood after ischemic stroke and reperfusion. Biol ResNurs, 2005,6:281-288.
    [53]Yaoita H,ogawa K,Maehaark,et al. Apotosis in relevant cliniacl situations: contribution of apotosis in myocandial infarction. Cardiovasc Res,2000.630-664.
    [54]Krajewski S,Tanaka S,Takayama S,et al. Investigation of the subcellular distribution of bcl-2 oncoprotein. Cancer Res,1993,53:4701-4714.
    [55]Nordqvist AC,Smurawa H,Mathiesen T. Expression of matrix metalloproteinases 2 and 9 in meningiomas associated with different degrees of brain invasiveness and edema. J Neurosurg,2001,95(5):839-844,2001,95:839-844.
    [56]Rosenberg GA,Estrada EY. Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain. Stroke,1998. 2189-2195.
    [57]Heo JH,Lucero J,Abumiya T,et al. Matrix metalloproteinases increase very early during experimental focal cerebral ischemia. J Cereb Blood Flow Metab, 1999,19:624-633.
    [58]Gasche Fujimura M,Morita--Fujimura,et al. Early appearance of activated matrix metalioproteinase-9 after focal cerebral-chemh mice:a possible role blood-brain barrier dysfunction. J Cereb Blood Flow Metab,1999,19:1020-1028.
    [59]Arge P,Preston GM. Isolation of the cDNA for erythrocyteint egralm embrane protein of 28 kilodaltons:member of an ancient channel family. Proc Natl A cad Sci USA,1991,88:11110-4.
    [60]Shi XQ,Yang JSh,Zhang ZhL,et al. Distribution of aquqporin 4 in normal rat brain. Chin J Neuromed,2004,3:257-259.
    [61]61 MacAulay N,Hamann S,Zeuthen T. Water transport in the brain:role of cotransporters. Neuroscience,2004,129:1031-1044.
    [62]Tomas-Camardiel M,Venero JL,Herrera AJ,et al. Blood-brain barrier disruption highly induces aquaporin-4 mRNA and protein in perivascilar and parenchymal astrocytes:protective effect by estradiol treatment in ovariectomized animals. J Neurosci Res,2005,80:235-246.
    [63]Amiry-Moghaddam M,Ottersen OP. The molecular basis of water transport in the brain. Nat Rev Neurosci,2003,4:991-1001.
    [64]Kobayashi H,Minami S,Itoh S,et al. Aquaporim subtypes in rat cerebral microvessels.Neurosci Lett,2001,297(6):163-166,2001,297:163-166.
    [65]Nagelhus EA,Veruki ML,Torp R,et al. Aquaporin-4 water channel protein in the rat retina and optic nerve:polarized expression in Muller cells and fibrous astrocytes. Neuroscience,1998,18:2506-2519.
    [66]Rash JE,Yasumora J,Hudson CS. Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. Proc Natl A cad Sci USA,1998,95:11981-6.
    [67]Wells T. Vesicular osmometers, vosopression secretion and aquaporin-4:a new mechanism for osmoreception?. Mol Cell Endocrinol,1998,136:103-107.
    [68]Nielesen S,Nagelhus EA,Moghaddam,et al. Specialized membrane domiains for water transport in glial cells:hig h-resolution immunogold cytochemistry of aquaporin-4 in rat brain. Neuroscience,1997,17:171-180.
    [69]Arima H, Yamamoto N, Sobue K, et al. Hyperosmolar mannitol simulates expression of aquaporin 4 and 9 through a p38 mitogenactivatived protein kinase-dependent pathway in rat astrocytes. BiolChem,2003,278:44525-44534.
    [70]Tanigguchi M, Yamashita T, Kumura E, et al. Induction of aquaporin-4 water channel mRNA after focal cerebral ischemia in rat. Brain Res Mol, 2000,78:131-137.
    [71]Kazuko Aoki, Toshiki Uchihara. Enchanced expression of aquaporin-4 in human brain with infarction. Acta Neuropathologica,2003,106:121-124.
    [72]Li YH, Sun SQ. Expression of aquaporin-4 protein in brain from rats with hemorrhagic edema. ZhongguoWei Zhong Bing Ji Jiu YiXue,2003,15:538-541.
    [73]Badaut J, Brunet JF, Grollimund L, et al. Aquaporin1 and Aquaporin4 expression in human brain after subarachnoid hemorrhage and in peritumoral tissue. Acta Neurochir Suppl,2003,86:495-498.
    [74]Saadoun S, Papadopoulous MC, Davies DC, et al. Aquaporin-4 expression is increased in oedematous human brain tumours. Neuro Neurosurg Psychiatry, 2002,72:262-265.
    [75]Sun MC, Honey CR, Berk C, et al. Regulation of aquaporin-4 in a traumatic brain injury model in rats. Neurosurg,2003,98:565-569.
    [76]Papadopoulous MC, Verkman AS. Aquaporin-4 gene disruption in mice reduced brain swelling and mortality in penumococcal meningitis. Acta Neuropathol(Berl),2005,109:418-426.
    [77]Wu JS,Chen XC,Chen H,Shi YQ. A study on blood-brain barrier ultrastructural changes induced by cerebral hypoperfusion of different stages. Neurol Res,2006. 50-58.
    [78]Yenari MA,Xu L,Tang XN,Qiao Y,Giffard RG. Microglia potentiate damage to blood-brain barrier constituents:improvement by minocycline in vivo and in vitro. Stroke,2006,37:1087-1093.
    [79]Jian Liu K,Rosenberg GA. Matrix metalloproteinases and free radicals in cerebral ischemia. Free Radic Biol Med,2005,39:71-80.
    [80]Gidday JM, Gasche YG,Copin JC. Leukocyte-derived matrix metalloproteinase--9 mediates blood·-brain barrier breakdown and is proinflammatory after transient focal cerebral ischemia. Am J Physiol Heart Circ Physiol,2005,289:558-568.
    [81]Rosenberg GA,Estrada EY,et al. Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain. Stroke, 1998,29:2189-2195
    [1]Xu Z,Xu RX,Liu BS,et a. Time window characteristics of cultured rat hippocampal rat hippocampal neurons subjected to ischemia and reperfusion. Chin J Traumatol,2005.179-182.
    [2]Hjelde A Hjelstuen M Haraldseth O. Hyperbaric oxygen and neutrophil accumulation/tissue damage during permanent focal cerebral ischemia in rats. European Journal of applied Physiology,2002.401-405.
    [3]Liying Qiu Ying Li Hongbin Fan Bin Du Zhiyong Yang Jianqing Cheng. Changes in neuronal apoptosis and apoptosis modulatory factors in cerebral ischemia/reperfusion. NEURAL REGENERATION RESEARCH,2007,2:344-349.
    [4]刘广义,付志新,郝娟芝.大鼠脑缺血再灌流后Bcl-2、Caspase-3 mRNA水平表达与大脑皮质及纹状体区炎性细胞浸润的影响.神经疾病与精神卫生,2004,4:252-255.
    [5]Liu PK, Grossman RG, Hsu CY, et al. Ischemic injury and faulty gene transcripts in the brain. Trends Neurosci,2001.581-588.
    [6]Kontos HA. Oxygen radicals in cerebral ischemia:the 2001 Willis lecture. Stroke, 2001,32:2712-2716.
    [7]Zhang C,Shen W,Zhang G. N-methyl-D-aspartate receptor and L-type voltage-gated Ca2+ channel antagonists suppress the release of cytochrome c and the expression of procaspase-3 in rat hippocampus after global brain ischemia. Neurosci Lett, 2002,328:265-268.
    [8]Dohmen C,Kumura E,Rosner G,et al. Extracellular correlates of glutamate toxicity in short-term cerebral ischemia and reperfusion:a direct in vivo comparison between white and gray matter. Brain Res,2005,1037:43-51.
    [9]Zhang J,Benveniste H,Klitzman B,et al. Nitric oxide synthase inhibition and extracellular glutamate concentration after cerebral ischemia reperfusion. Stroke, 1995,26:298-304.
    [10]Stevens SL.Bao J,Hollis J,et al. The use of flow cytometry to evaluate temporal changes in inflammatory cells following focal cerebral ischemia in mice. Brain Res,2002.110-119.
    [11]Ruehl ML,Orozco JA,Stoker MB,et al. Protective effects of inhibiting both blood and vascular selectins after stroke and reperfusion. Neurol Res,2002,24:226-232.
    [12]Ding HL,Zhu HF,Dong JW,et al. Inducible nitric oxide synthase contributes to intermittent hypoxia against ischemia reperfusion injury. Acta Pharmacol Sin, 2005,26:315-322.
    [13]Dihi K,Ohtaki H,Inn R,et al. Peroxynitrite and caspase-3 expression after ischemia reperfusion in mouse cardiac arrest model. Acta Neurochir Suppl,2003,86:87-91.
    [14]Ding Y, Li J, Rafols JA, et al. Prereperfusion saline infusion into ischemic territory reduces inflammatory injury after transient middle cerebral artery occlusion in rats. Stroke,2002.2492-2498.
    [15]Ding Y, Li J, Luan Xi, et al. Local saline infusion into ischemic territory induces regional brain cooling and neuroprotection in rats with transient middle cerebral artery occlusion. Neurosurgery,2004,54:956-964.
    [16]Sagher O, Huang DL, Keep RF. Spinal cord stimulation reducing infarct volume in a model of focal cerebral ischemia in rats. Neurosurg,2003,99:131-137.
    [17]Zhong J, Huang DL, Sagher O. Parameters influencing augmentation of cerebral blood flow by cervical spinal cord stimulation. Acta Neurochir, 2004,146:1227-1234.
    [18]Zhong J, Sagher O. Effects of spinal cord stimulation on cerebrovascular flow:role of sympathetic and parasympathetic inervations. Neuroscience Bulletin, 2006,22:261-266.
    [19]Rikitake Y, Kim HH, Huang Z, et al. Inhibition of Rho kinase (ROCK) leads to increased cerebral blood flow and stroke protection. Stroke,2005,36:2251-2257.
    [20]Satoh S, Utsunomiya T, Tsurui K, et al. Pharmacological profile of hydroxy fasudil as a selective rho kinase inhibitor on ischemic brain damage. Life Sciences,200 1,69:1441-1453.
    [21]Yagita Y, Kitagawa K, Sasaki T, et al. Rho-kinase activation in endothelial cells contributes to expansion of infarction after focal cerebral ischemia. Neurosci Res,20 07,85:2460-2469.
    [22]Nagel S, Genius J, Heiland S, et al. Diphenyleneiodonium and dimethylsulfoxide for treatment of reperfusion injury in cerebral ischemia of the rat. Brain Res,200 7,1132:210-217.
    [23]Yoshida H, Yanai H, Namiki Y, et al. Neuroprotective effects of edaravone:a novel free radical scavenger in cerebrovascular injury. CNS Drug Rev,2006,12:9-20.
    [24]李检生,杨友松.新型自由基清除剂依达拉奉的脑保护作用.国外神经病学神经外科学杂志,2006,32:125-128.
    [25]Collino, M, Aragno, M,et al. Oxidative stress and inflammatory response evoked by transient cerebral ischemia/reperfusion:effects of the PPAR-alpha agonist WY14643. Free Radical Biol Metab,2006,41:579-589.
    [26]Tureyen, K, Kapadia, R. et al. Peroxisome proliferator-activated receptor-gamma agonists induce neuroprotection following transient focal ischemia in normotensive, normoglycemic aswell as hypertensive and type-2 diabetic rodents. J Neurochem,2007:41-56.
    [27]Shimazu,T, Inoue, I, et al. A peroxisome proliferator-activated receptor-y agonist reduces infarct size in transient but not in permanent ischemia. Stroke, 2005,36:353-359.
    [28]Kiewert C, Hartmann J, Stoll. J, et al. NGP1-01 is a brainpermeable dual blocker of neuronal voltage and ligand-operated calcium channels. Neurochem Res 2006:395-399.
    [29]Williams AJ, Bertir, Davw JR, et al. Delayed treatment of ischemia reperfusien brain injury,extended therapeutic window with the p roteosome inhibitor MLN 519. Stroke,2004:1186-1191.
    [30]Shen J, Zhang H, Lin H, et al. Brazilein protects the brain against focal cerebral ischemia reperfusion injury correlating to inflammatory response suppression. Eur J Pharmacol,2007,558:88-95.
    [31]刘尊敬,杨期东,刘运海,等.过氧化小体增殖剂激活型受体γ激活剂对缺血再灌注脑组织的保护作用及炎性机制分析.国际神经病学神经外科学杂志,2007,34:121-124.
    [32]Gumustas K, Giizeyli FM, Atiikenren P, et al. The effects of Vitmin E on lipid Peroxidation, Nitric Oxide production and Superoxide dismutase expression in hyperglycemic rats with cerebral ischemia reperfusion injury. Turk Neurosurg, 2007,17:78-82.
    [33]Zhang ZG, Zhang QZ, Cheng YN, et al. Antagonistic effects of ultra-low-molecular-weight heparin against cerebral ischemia/reperfusion injury in rats. Pharmacol Res,2007,56:350-355.
    [34]Wang C, Zhang D, Ma H, et al. Neuroprotective effects of emodin-8-O-beta-D-glucoside in vivo and in vitro. Eur JPharmacol,2007,577:58-63.
    [35]Hoesch RE, Geocadin RG. Therapeutic hypothermia for global and focal ischemic brain injury--a cool way to improve neurologic outcomes. Neurologist, 2007,13:331-342.
    [36]Zhang TS, Yang L, Hu R, et al. Effect of electroacupuncture on the contents of excitatory amino acids in cerebral tissue at different time courses in rats with cerebral ischemia and reperfusion injury. Zhen Ci Yan J iu,2007,32:234-236.
    [37]邢岩,崔丽英.经颅磁刺激技术在缺血性脑血管病中的研究进展.国际神经病学神经外科学杂志,2007,34:64-68.
    [1]Marx N,Duez H,Fruchart JC,et al. peroxisomeproliferration activatived receptors and atherogenesis:regulators of gene expression invascular cells. Circ Res,2004. 1168-1178.
    [2]Greene M.E, Blumberg B, McBride O.W et al. Isolation of the human peroxisome proliferator activated receptor gamma cDNA:expression in hematopoietic cells and chromosomal mapping. Gene Expr,1995,4:281-299.
    [3]Yoshikawa T, Brkanac Z, Dupont B.R, Xing G.Q, Leach, R.J et al. Assignment of the human nuclear hormone receptor,NUC1 (PPARD), to chromosome 6p21.1-p21.2. Genomics,1996,35:637-638.
    [4]Sher T, Yi H.F, McBride O.W et al. cDNA cloning, chromosomal mapping, and functional characterization of the human peroxisomeproliferator activated receptor. Biochemistry,1993,32:5598-5604.
    [5]Feige, J.N, Gelman, L, Michalik, L, et al. From:molecular action to physiological outputs:peroxisome proliferator activated receptors are nuclear receptors at thecrossroads of key cellular functions. Progr Lipid Res,2006.120-159.
    [6]Xu, H.E, Lambert, M.H, Montana,V.G, et al. Molecular recognition of fatty acids by peroxisome proliferator-activated receptors. Mol Cell,1999,3:397-403.
    [7]Bell-Parikh, L.C, Ide,T, Lawson, J.A, McNamara, P,et al. Biosynthesis of 15-deoxy deltal2,14-PGJ2 and the ligation of PPARgamma. J Clin Invest,2003,12:945-955.
    [8]Gosset, P, Charbonnier, A.S, et al. Peroxisome proliferator-activated receptor gamma activators affect the maturation of human monocyte-derived dendritic cells. Eur J Immunol,2001.2857-2865.
    [9]Clark, R.B, Bishop-Bailey, D,et al. The nuclear receptor PPAR gamma and immunoregulation:PPAR gamma mediates inhibition of helper T cell responses. J Immunol,2000,164:1364-1371.
    [10]Braissant, O, Foufelle, F,et al. Differential expression of peroxisome proliferator-activated receptors (PPARs):tissue distribution of PPAR-alpha,-beta, and-gamma in the adult rat. Endocrinology,1996,137:354-366.
    [11]Moreno, S, Farioli-Vecchioli,et al. Immunolocalization of peroxisome proliferator-activated receptors and retinoid X receptors in the adult rat CNS. Neuroscience,2004,123:131-145.
    [12]Desvergne B, Wahli W. Peroxisome proliferator-activated receptors:nuclear control of metabolism. Endocr Rev,1999,20:649-688.
    [13]Green, R.A, Odergren,T.et al. Animal models of stroke:do they have value for discovering neuroprotective agents?. Trends Pharmacol Sci,2003.402-408.
    [14]Wayman, N.S, Hattori,Y, et al. Ligands of the peroxisome proliferatoractivated receptors (PPAR-gamma and PPAR-alpha) reduce myocardial infarct size. FASEB J, 2002,16:1027-1040.
    [15]Deplanque, D, Gele, P, et al. Peroxisome proliferator-activated receptor-alpha activation as a mechanism of preventive neuroprotection induced by chronic fenofibrate treatment. J Neurosci,2003,23:6264-6271.
    [16]Collino, M, Aragno, M,et al. Oxidative stress and inflammatory response evoked by transient cerebral ischemia/reperfusion:effects of the PPAR-alpha agonist WY14643. Free Radical Biol Metab,2006,41:579-589.
    [17]Allahtavakoli, M, Shabanzadeh, A,et al. Combination therapy of rosiglitazone, a peroxisome proliferator-activated receptor-gamma ligand, and NMDA receptor antagonist (MK-801) on experimental embolic stroke in rats. Basic Clin Pharmacol Toxicol,2007,101:309-314.
    [18]Shimazu,T, Inoue, I, et al. A peroxisome proliferator-activated receptor-γ agonist reduces infarct size in transient but not in permanent ischemia. Stroke, 2005,36:353-359.
    [19]Victor, N.A,Wanderi, E.W,et al. Altered PPARγ expression and activation after transient focal ischemia in rats. Eur J Neurosci,2006,24:1653-1663.
    [20]Ou, X, Zhao, L.A, et al. Neuronal expression of peroxisome proliferator-activated receptor-gamma (PPARgamma) andl5d-prostaglandin J2-mediated protection of brain after experimental cerebral ischemia in rat. Brain Res,2006.196-203.
    [21]Pialat, J.B, Cho,T.H,et al. MRI monitoring of focal cerebral ischemia in peroxisome proliferator-activated receptor (PPAR)-deficient mice. NMR Biomed, 2007,20:335-342.
    [22]Iwashita, A, Muramatsu,Y,et al. Neuroprotective efficacy of peroxisome proliferator-activated receptor delta (PPAR-{delta}) selective agonists, L-165041 and GW501516, in vitro and in vivo. J Pharmacol Exp Ther,2007,320:1087-1096.
    [23]Dormandy, J.A, Charbonnel, B,et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical rial In macroVascular Events):a randomised controlled trial. Lancet,2005. 1279-1289.
    [24]Lee, J. and Reding, M. Effects of thiazolidinediones on stroke recovery:a case-matched controlled study. Neurochem Res,2006,32:635-638.
    [25]Blanco, M, Moro, M.A. et al. Increased plasma levels of 15-deoxydelta prostaglandin J2 are associated with good outcome in acute atherothrombotic ischemic stroke. Stroke,2005,36:1189-1194.
    [26]Lee, B.C, Lee, H.J. and Chung, J.H. Peroxisome proliferator-activated receptor-gamma2 Pro12Ala polymorphism is associated with reduced risk for ischemic stroke with type 2 diabetes. Neurosci Lett,2006,410:141-145.
    [27]Dirnagl, U, Iadecola, C. and Moskowitz, M.A. Pathobiology of ischaemic stroke:an integrated view. Trends Neurosci,1999.391-397.
    [28]del Zoppo, G.J. Stroke and neurovascular protection. N Engl J Med, 2006,354:553-555.
    [29]Hwang, J, Kleinhenz, D.J. et al. Peroxisome proliferator-activated receptor{gamma} ligands regulate endothelial membrane superoxide production. Am J Physiol Cell Physiol,2005,288:899-905.
    [30]Moraes, L, Piqueras, L. and Bishop-Bailey, D. Peroxisome proliferator-activated receptors and inflammation. Pharmacol Ther,2006,110:371-385.
    [31]Toyama,T, Nakamura, H et al. PPARalpha ligands activate antioxidant enzymes and suppress hepatic fibrosis in rats. Biochem Biophys Res Commun,2004,324:697-704.
    [32]Coleman, J.D, Prabhu, K.S. et al. The oxidative stress mediator 4-hydroxynonenal is an intracellular agonist of the nuclear receptor peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta). Free Radic Biol Med,2007,42:1155-1164.
    [33]Tureyen, K, Kapadia, R. et al. Peroxisome proliferator-activated receptor-gamma agonists induce neuroprotection following transient focal ischemia in normotensive, normoglycemic aswell as hypertensive and type-2 diabetic rodents. J Neurochem,2007.41-56.
    [34]Aoun, P,Watson, D.G. and Simpkins, J.W. Neuroprotective effects of PPARgamma agonists against oxidative insults in HT-22 cells. Eur J Pharmacol,2003,472:65-71.
    [35]Sundararajan, S, Gamboa, J.L. et al. Peroxisome proliferator-activated receptor-γ ligands reduce inflammation and infarction size in transient focal ischemia. Neuroscience,2005,130:685-696.
    [36]Kudin, A.P, Debska-Vielhaber, G. and Kunz,W.S. Characterization of superoxide production sites in isolated rat brain and skeletal muscle mitochondria. Biomed Pharmacother,2005,59:163-168.
    [37]Brunmair, B, Staniek, K. et al. Thiazolidinediones, like metformin, inhibit respiratory complex I:a common mechanism contributing to their antidiabetic actions?. Diabetes,2004,52:1052-1059.
    [38]Dello Russo, C, Gavrilyuk,V. et al. Peroxisome proliferator-activated receptor gamma thiazolidinedione agonists increase glucose metabolism in astrocytes. J Biol Chem,2003,278:5828-5836.
    [39]Colca, J.R, McDonald,W.G. et al. Identification of a novel mitochondrial protein ("mitoNEET") cross-linked specifically by a thiazolidinedione photoprobe. Am J Physiol Endocrinol Metab,2004,286:252-260.
    [40]Zhao,Y, Patzer, A. et al. Activation of cerebral peroxisome proliferator-activated receptors gamma promotes neuroprotection by attenuationof neuronal cyclooxygenase-2 overexpression after focal cerebral ischemia in rats. FASEB J,2006.1162-1175.
    [41]Luo,Y, Yin,W. et al. Neuroprotection against focal ischemic brain injury by the peroxisome proliferator-activated receptor-γ agonist rosiglitazone. J Neurochem, 2006,97:435-448.
    [42]Pereira, M.P, Hurtado, O. et al. The nonthiazolidinedione PPAR Y agonist L-796,449 is neuroprotective in experimental stroke. J Neuropathol Exp Neurol, 2005,64:797-805.
    [43]Bernardo, A, Levi, G. and Minghetti, L. Role of the peroxisome proliferator-activated receptor-gamma (PPAR-gamma) and its natural ligand 15-deoxy-Delta12,14-prostaglandin J2 in the regulation of microglial functions. Eur J Neurosci,2000,12:2215-2223.
    [44]Sundararajan, S, Gamboa, J.L et al. Peroxisome proliferator-activated receptor-γ ligandsreduce inflammation and infarction size in transientfocal ischemia. Neuroscience,2005,130:685-696.
    [45]Chan, P.H. Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab,2001,21:2-14.
    [46]Pereira, M.P, Hurtado, O. et al. Rosiglitazone and 15-deoxy-Delta12,14-prostaglandin J2 cause potent neuroprotection after experimental stroke through noncompletely overlapping mechanisms. J Cereb Blood Flow Metab,2006,26:218-229.
    [47]Combs, C.K, Johnson, D.E. et al. Inflammatory mechanisms in Alzheimer's disease: inhibition of beta-amyloid-stimulated proinflammatory responses and neurotoxicity by PPARgamma agonists. J Neurosci,2000.558-567.
    [48]Sakamoto, J, Kimura, H, et al. Activation of human peroxisome proliferator-activated receptor (PPAR) subtypes by pioglitazone. Biochem Biophys Res Commun,2000,278:704-711.
    [49]Sulejczak D, Czarkowska-Bauch, J, Macias, M. and Skup, M. Bcl-2 and Bax proteins are increased in neocortical but not in thalamic apoptosis following devascularizing lesion of the cerebral cortex in the rat:an immunohistochemical study. Brain Res,2004,1006:133-149.
    [50]Chu, K, Lee, S.T, et al. Peroxisome proliferator-activated receptor-gamma-agonist, rosiglitazone, promotes angiogenesis after focal cerebral ischemia. Brain Res, 2006,1093:208-218.
    [51]Lin,T.N, Cheung, W.M. et al.15d-prostaglandin J2 protects brain from ischemia-reperfusion injury. Arterioscler ThrombVasc Biol,2006,26:481-487.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700