CacyBP/SIP在胰腺癌恶性生物学行为中的作用与机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胰腺癌是最为致命的恶性肿瘤之一,通常在诊断时已处于晚期。唯一的治愈方式是手术切除,但有手术适应症的患者不到一半。患者5年生存率低于1%,且大部分诊断后1年内死亡。因而,寻找用于早期诊断的特异性标志物及用于治疗的特异性分子靶点在胰腺癌的诊治中就显得尤为重要。
     CacyBP/SIP蛋白(钙周期素结合蛋白、Siah-1相互作用蛋白)最初是用S100A6蛋白从艾氏腹水瘤细胞中捕获并分离纯化的蛋白,随后被证实能够与Siah-1相互作用。后续的研究证实CacyBP/SIP还能够与其它多个蛋白相互结合,如S100蛋白家族(S100A1、S100A12、S100B及S100P),Skp1、Tubulin和ERK1/2[1],从而参与多个细胞生理过程包括蛋白的泛素化降解、细胞分化、细胞骨架重组、肿瘤发生以及通过与这些靶蛋白的相互作用调控转录活动等。我们前期研究发现:与亲本胃癌细胞系SGC7901相比,CacyBP/SIP在胃癌多药耐药细胞系SGC7901/ADR的表达明显上调,提示:CacyBP/SIP的表达上调与胃癌细胞的多药耐药相关。应用我们实验室率先制备的CacyBP/SIP单克隆抗体,我们发现CacyBP/SIP在大部分的肿瘤组织中表达,在胰腺癌,鼻咽癌和骨肉瘤中高表达。这些结果提示CacyBP/SIP可能参与胰腺癌的恶性生物学行为并在胰腺癌的发生发展中发挥一定的作用,但其在胰腺癌中具体功能及可能的分子机制尚不清楚。
     【目的】
     1、研究CacyBP/SIP在胰腺癌中的表达与临床病理学特征的关系;2、探讨CacyBP/SIP在胰腺癌中的功能及可能的分子机制。
     【方法】
     1、免疫组化分析CacyBP/SIP在胰腺癌组织及正常胰腺组织中的表达,统计学分析其表达与胰腺癌患者临床病理资料之间的关系;2、分别应用RT-PCR和Western-Blot技术分析CacyBP/SIP在新鲜胰腺癌组织及胰腺癌细胞系中的mRNA和蛋白表达水平;3、构建CacyBP/SIP的小干扰RNA并测序证实;4、将构建的载体质粒转染胰腺癌细胞系PC-2,筛选稳定表达克隆并用RT-PCR和Western-Blot证实;5、分别用MTT实验、克隆形成实验分析CacyBP/SIP对胰腺癌细胞生长能力及克隆形成能力的影响;6、应用裸鼠体内成瘤实验观察CacyBP/SIP对胰腺癌细胞体内成瘤能力的影响;7、流式细胞仪检测转染各种载体的胰腺癌细胞系的细胞周期分布情况;8、应用RT-PCR和Western-Blot筛选细胞周期相关效应分子。
     【结果】
     1、CacyBP/SIP在胰腺癌组织的表达明显高于正常胰腺组织免疫组化分析CacyBP/SIP在68例胰腺癌组织和37例正常胰腺组织的表达分布时发现,CacyBP/SIP主要分布于胰腺癌组织的胞浆,较少分布于胞核。68例胰腺癌组织中有28例(41.2%)CacyBP/SIP染色阳性(III、IV级),而在正常胰腺组织中无CacyBP/SIP染色阳性。CacyBP/SIP在胰腺癌组织中的表达要明显高于癌旁组织,具有统计学差异性,(P<0.01)。结果还显示,CacyBP/SIP在胰腺癌组织中的表达水平与肿瘤的分化程度密切相关;TNM分期为III或IV期的胰腺癌组织其CacyBP/SIP的表达水平要显著高于I或II期的胰腺癌组织,具有统计学意义(P<0.01)。另外,CacyBP/SIP在转移与无转移的胰腺癌组织中的表达水平同样具有显著差异(P<0.01)。应用RT-PCR和Western-Blot技术进一步证实,无论是在mRNA水平还是在蛋白水平,手术新鲜切除的胰腺癌组织中的CacyBP/SIP表达要明显高于相对应的癌旁组织。
     2、体内体外实验证实CacyBP/SIP促进胰腺癌细胞增殖
     我们构建了两对CacyBP/SIP小干扰RNA (siRNA1、siRNA2),转染低分化胰腺癌PC-2细胞系,两对小干扰RNA均能显著下调PC-2中CacyBP/SIP的表达。Western-Blot和RT-PCR结果显示,siRNA1和siRNA2对PC-2细胞中CacyBP/SIP抑制率分别为90%和75%。转染小干扰RNA的胰腺癌细胞系的细胞生长能力要明显慢于对照组(转染空载体的细胞系),(p<0.05)。我们的结果还显示,下调CacyBP/SIP的表达能够显著降低胰腺癌细胞的克隆形成能力(平板克隆和软琼脂克隆),(P <0.05)。我们接着检测CacyBP/SIP表达水平的变化对裸鼠体内成瘤能力的影响,结果显示,与转染空载体的PC-2/control细胞(对照组)相比,稳定转染两种小干扰RNA细胞形成的肿瘤体积明显小于对照组,具有统计学差异,(P < .05)。Western-Blot检测瘤体中CacyBP/SIP的表达水平,结果提示:CacyBP/SIP在稳定转染siRNA1和siRNA2的PC-2细胞注射形成的瘤体中表达水平明显低于对照组。
     3、抑制CacyBP/SIP的表达能够阻滞胰腺癌细胞周期进展
     为了进一步探讨CacyBP/SIP促进胰腺癌细胞增殖的分子机制,我们应用流式细胞术检测下调CacyBP/SIP的表达对细胞周期进展的影响。结果发现:同步化培养24小时后,稳定转染siRNA1和siRNA2的PC-2细胞分别有67.2%和61.4%的细胞处于细胞周期的G1期,而稳定转染pSilencer空载体的PC-2细胞则只有46.3%的细胞处于G1期,具有统计学差异,(P < .05)。为了进一步研究CacyBP/SIP诱导胰腺癌细胞细胞周期进展的机制,我们接着采用Western-Blot方法分析了细胞周期相关效应分子的表达变化情况。结果显示:下调CacyBP/SIP的表达,cyclin A、cyclin E、cdk2和p-Rb蛋白水平表达下调,p27和Rb的表达水平上升,而cyclinB、cyclin D1以及P53等蛋白表达水平未出现明显变化。我们还检测了ERK1/2、Skp1、S100A6以及beta-catenin等被其他研究者证实可以与CacyBP/SIP蛋白相互作用的蛋白的表达变化,结果发现,它们的表达水平在CacyBP/SIP表达变化的PC-2胰腺癌细胞中未发生变化。
     【结论】
     1、CacyBP/SIP在胰腺癌组织中的表达要显著高于正常胰腺组织,CacyBP/SIP在胰腺癌组织中的表达水平与组织的分化程度、TNM分期以及是否出现转移呈正相关;2、用小干扰RNA下调CacyBP/SIP的表达可以明显抑制胰腺癌细胞的增殖及成瘤能力;3、抑制CacyBP/SIP的表达可以阻滞细胞由G1期向S期进展,其机制可能是部分通过下调Cyclin A、Cyclin E、CDK2和pRb,上调p27和Rb来实现。
Pancreatic cancer is one of the most lethal human cancers. It is usually discovered and diagnosed at its advanced stage. The only chance of cure is represented by surgical resection, but it is feasible in less than one half of the patients. And the overall survival rate of all patients is less than 1% at 5year, with most patients died within 1 year after diagnosed as pancreatic cancer. It is critical need to discover a specific early detection marker and molecular targets to fight against pancreatic cancers.
     The CacyBP/SIP protein (S100A6 binding protein and Siah-1 interacting protein) was initially identified, purified, and characterized in Ehrlich ascites tumor cells as a S100A6 (calcyclin) target and later on as a Siah-1 interacting protein. CacyBP/SIP can also bind several target proteins such as some calcium binding proteins of the S100 family (S100A1, S100A12, S100B and S100P), Skp1, tubulin and ERK1/2[1]. Reports showed that CacyBP/SIP took part in several celluar processes such as ubiquitination, proliferation, differentiation, tumorigenesis, cytoskeletal rearrangement or regulation of transcription through interaction with these target proteins. In our previous studies, CacyBP/SIP was identified as an up-regulated gene in a multidrug-resistant gastric cancer cell line, SGC7901/ADR, compared to its parental cells SGC7901, and Up-regulation of CacyBP/SIP is associated with multiple drug-resistant in gastric cancer cells. By using monoclonal antibodies against CacyBP/SIP firstly produced in our laboratory, we found that CacyBP/SIP was detected almost in all kinds of tumor tissues and was highly expressed in pancreatic cancer, nasopharyngeal carcinoma, and osteogenic sarcoma. These data suggested that CacyBP/SIP might be involved in malignant behaviours of pancreatic cancer and have a role in the carcinogenesis of pancreatic cancer. But the exact role that CacyBP/SIP played in the carcinogenesis of pancreatic cancer is still unknown.
     【Objectives】
     1、To investigate the expression and clinical significance of CacyBP/SIP in pancreatic cancer. 2、To explore the possible role of CacyBP/SIP in pancreatic cancer and the molecular mechanism underlying it.
     【Methods】
     1、The expression of CacyBP/SIP in human pancreatic cancer tissues and the normal pancreatic tissues was examined by immunohistochemistry and the relationship between the expression of CacyBP/SIP and the clinical characteristics was statistically analyzed by using SPSS version 10.0 software.
     2、The protein and mRNA level of CacyBP/SIP in fresh pancreatic cancer tissues and pancreatic cancer cell lines were examined by Western-blot and RT-PCR, respectively. 3、The small interference RNA of CacyBP/SIP were constructed and further indentified by sequence test. 4、The eukaryotic expression vector of CacyBP/SIP and the corresponding empty vector were transfected into the pancreatic cancer cell PC-2. And the stable clones were further identified using RT-PCR and Western-blot. 5、The effect of CacyBP/SIP on the cell growth ability was detected by MTT assay. And the ability of clony formation of pancreatic cancer cells was studied by clony formation assay. 6、The effect of CacyBP/SIP on the pancreatic cancer cell’s tumorigenesis ability was examined using in vivo tumorigenesis assay in nude mice. 7、The cell cycle distribution of cells transfected with different transfectants were detected using Flow cytometry analysis. 8、The possible downstream effectors were explored using Western-blot and RT-PCR.
     【Results】
     1、The expression level of CacyBP/SIP in pancreatic cancer tissues is significant higher than in normal pancreatic tissues. Expression and subcellular location of CacyBP/SIP protein were studied by immunohistochemistry of 68 pancreatic cancers and 37 normal pancreatic specimens. It was revealed that CacyBP/SIP was mainly located in the cytoplasm of the pancreatic cancerous cells, and only occasionally in the nuclei. CacyBP/SIP staining was found positive (grade III and IV) in 28 (41.2%) cases of pancreatic cancer specimens, but no positive(grade III and IV) expression of CacyBP/SIP was observed in normal specimens. The frequency of higher grade expression (grade III and IV) of CacyBP/SIP in pancreatic cancer tissues was significantly (P<0.01) higher than that in nonneoplastic pancreatic tissues. The results also revealed a positive association of CacyBP/SIP staining intensities with the degree of tumor differentiation. With respect to the TNM stage, the frequency of CacyBP/SIP high grade expression was much higher in patients of III+IV than those of I+II (P<0.01) stage. There was a statistically significant difference (P<0.01) in the frequency of CacyBP/SIP high grade expression between tumors with metastasis and those without. The mRNA and protein level of CacyBP/SIP detected by RT-PCR and Western-blot also confirmed that the expression of CacyBP/SIP in the pancreatic cancer tissues was significantly up-regulated compared with that in the matched adjacent normal tissues.
     2、CacyBP/SIP promotes proliferation of pancreatic cancer in vitro and in vivo.
     We expressed siRNA from two different CacyBP/SIP sequences (siRNA1 or siRNA2) in the poorly differentiated pancreatic cancer cell line PC-2. Both of the siRNAs greatly reduced the expression of CacyBP/SIP in PC-2 cell. Western blot and RT-PCR showed that both of protein and mRNA level were substantially decreased, and its mRNA level were reduced by about 90% and 75% in siRNA1 and siRNA2 expressing cells, respectively. CacyBP/SIP knockdown decreased proliferation of CacyBP/SIP siRNA1 and CacyBP/SIP siRNA2 cells in a medium containing 10% fetal calf serum, compared with the parental cell line and control pSilencer vector cells (p<0.05). Our data also showed that depletion of CacyBP/SIP dramatically decreased the ability of colony formation in these cells in plate and in soft agar (P <0.05). We next examined the in vivo effect of CacyBP/SIP in tumorigenicty in nude mice. The tumor sizes of mice injected with PC-2 cells expressing siRNA1 and siRNA2 were smaller and slower than those injected with PC-2 cells expressing control pSilencer vector (P < .05). Immunoblotting analysis of tumor sections derived from mice receiving different treatments also confirmed that CacyBP/SIP was down-regulated in siRNA1 and siRNA2 expressing groups compared to control group.
     3、Inhibition of CacyBP/SIP expression induces the Cell Cycle Arrest of Pancreatic Cancer Cells
     To further probe the mechanism by which CacyBP/SIP promotes pancreatic cancer cell growth, we studied the effects of down-regulation of CacyBP/SIP expression on the cell cycle by Flowcytometry. The results indicated that at 24 hours after the release of synchronized cultures, 67.2% of PC-2 cells expressing siRNA1 and 61.4% of PC-2 cells expressing siRNA2 were in G1-phase, respectively, whereas 46.3% of PC-2 cells expressing pSilencer were in G1-phase (P < .05). To further investigate the mechanism by which CacyBP/SIP induced cell cycle progress in pancreatic cancer cells, we next analyze cell cycle effectors expressions by Western blot analysis. Our data showed that down-regulation of CacyBP/SIP protein was associated with a reducing in cyclin A, cyclin E, cdk2 and p-Rb proteins, but with an increase in p27 and Rb proteins, but it has no effect on the level of cyclinB, cyclin D1 and P53 proteins. ERK1/2, Skp1, S100A6 and beta-catenin can interact with CacyBP/SIP, which was confirmed by other researchers, were also examined. The expression levels of these proteins have not been changed in the PC-2 cells after CacyBP/SIP knockdown.
     【Conclusion】
     1、The expression of CacyBP/SIP protein in pancreatic cancer tissues was significant higher than in normal pancreatic tissues. There are positive association between the expression level of CacyBP/SIP and the degree of tissue differentiation、TNM stage and metastasis. 2、Down-regulation of CacyBP/SIP by small interference RNA severely suppresses the proliferation and tumorigenesis in pancreatic cancer. 3、G1/S transition arrest induced by inhibition of CacyBP/SIP is at least partly mediated by down-regulation of Cyclin A、Cyclin E、CDK2 and pRb as well as up-regulation of p27 and Rb.
引文
1. Kilanczyk E, Filipek S, Jastrzebska B, Filipek A: CacyBP/SIP binds ERK1/2 and affects transcriptional activity of Elk-1. Biochem Biophys Res Commun 2009, 380:54-59.
    2. Hidalgo M: Pancreatic cancer. N Engl J Med 2010, 362:1605-1617.
    3. Filipek A, Kuznicki J: Molecular cloning and expression of a mouse brain cDNA encoding a novel protein target of calcyclin. J Neurochem 1998, 70:1793-1798.
    4. Matsuzawa SI, Reed JC: Siah-1, SIP, and Ebi collaborate in a novel pathway for beta-catenin degradation linked to p53 responses. Mol Cell 2001, 7:915-926.
    5. Wang N, Ma Q, Wang Y, Ma G, Zhai H: CacyBP/SIP expression is involved in the clinical progression of breast cancer. World J Surg 2010, 34:2545-2552.
    6. Nie F, Yu XL, Wang XG, Tang YF, Wang LL, Ma L: Down-regulation of CacyBP is associated with poor prognosis and the effects on COX-2 expression in breast cancer. Int J Oncol 2010, 37:1261-1269.
    7. Chen X, Mo P, Li X, Zheng P, Zhao L, Xue Z, Ren G, Han G, Wang X, Fan D: CacyBP/SIP protein promotes proliferation and G1/S transition of human pancreatic cancer cells. Mol Carcinog 2011.
    8. Ning X, Sun S, Hong L, Liang J, Liu L, Han S, Liu Z, Shi Y, Li Y, Gong W, et al: Calcyclin-binding protein inhibits proliferation, tumorigenicity, and invasion of gastric cancer. Mol Cancer Res 2007, 5:1254-1262.
    9. Chen X, Han G, Zhai H, Zhang F, Wang J, Li X, Huang S, Wang X, Fan D: Expression and clinical significance of CacyBP/SIP in pancreatic cancer. Pancreatology 2008, 8:470-477.
    10. Zhai H, Shi Y, Jin H, Li Y, Lu Y, Chen X, Wang J, Ding L, Wang X, Fan D: Expression of calcyclin-binding protein/Siah-1 interacting protein in normal and malignant human tissues: an immunohistochemical survey. J Histochem Cytochem 2008, 56:765-772.
    11. Sun S, Ning X, Liu J, Liu L, Chen Y, Han S, Zhang Y, Liang J, Wu K, Fan D: Overexpressed CacyBP/SIP leads to the suppression of growth in renal cell carcinoma. Biochem Biophys Res Commun 2007, 356:864-871.
    12. Schneider G, Nieznanski K, Kilanczyk E, Bieganowski P, Kuznicki J, Filipek A: CacyBP/SIP interacts with tubulin in neuroblastoma NB2a cells and induces formation of globular tubulin assemblies. Biochim Biophys Acta 2007, 1773:1628-1636.
    13. Schneider G, Filipek A: S100A6 binding protein and Siah-1 interacting protein (CacyBP/SIP): spotlight on properties and cellular function. Amino Acids 2010.
    14. Zhao Y, You H, Liu F, An H, Shi Y, Yu Q, Fan D: Differentially expressed gene profilesbetween multidrug resistant gastric adenocarcinoma cells and their parental cells. Cancer Lett 2002, 185:211-218.
    15. Shi Y, Hu W, Yin F, Sun L, Liu C, Lan M, Fan D: Regulation of drug sensitivity of gastric cancer cells by human calcyclin-binding protein (CacyBP). Gastric Cancer 2004, 7:160-166.
    16. Jemal A, Siegel R, Xu J, Ward E: Cancer statistics, 2010. CA Cancer J Clin 2010, 60:277-300.
    17. Li D, Xie K, Wolff R, Abbruzzese JL: Pancreatic cancer. Lancet 2004, 363:1049-1057.
    18. Hassan MM, Bondy ML, Wolff RA, Abbruzzese JL, Vauthey JN, Pisters PW, Evans DB, Khan R, Chou TH, Lenzi R, et al: Risk factors for pancreatic cancer: case-control study. Am J Gastroenterol 2007, 102:2696-2707.
    19. Batty GD, Kivimaki M, Morrison D, Huxley R, Smith GD, Clarke R, Marmot MG, Shipley MJ: Risk factors for pancreatic cancer mortality: extended follow-up of the original Whitehall Study. Cancer Epidemiol Biomarkers Prev 2009, 18:673-675.
    20. Landi S: Genetic predisposition and environmental risk factors to pancreatic cancer: A review of the literature. Mutat Res 2009, 681:299-307.
    21. Lowenfels AB, Maisonneuve P: Epidemiology and risk factors for pancreatic cancer. Best Pract Res Clin Gastroenterol 2006, 20:197-209.
    22. Wolpin BM, Chan AT, Hartge P, Chanock SJ, Kraft P, Hunter DJ, Giovannucci EL, Fuchs CS: ABO blood group and the risk of pancreatic cancer. J Natl Cancer Inst 2009, 101:424-431.
    23. Shi C, Hruban RH, Klein AP: Familial pancreatic cancer. Arch Pathol Lab Med 2009, 133:365-374.
    24. Tersmette AC, Petersen GM, Offerhaus GJ, Falatko FC, Brune KA, Goggins M, Rozenblum E, Wilentz RE, Yeo CJ, Cameron JL, et al: Increased risk of incident pancreatic cancer among first-degree relatives of patients with familial pancreatic cancer. Clin Cancer Res 2001, 7:738-744.
    25. Vogelstein B, Kinzler KW: Cancer genes and the pathways they control. Nat Med 2004, 10:789-799.
    26. Feldmann G, Beaty R, Hruban RH, Maitra A: Molecular genetics of pancreatic intraepithelial neoplasia. J Hepatobiliary Pancreat Surg 2007, 14:224-232.
    27. Hingorani SR, Wang L, Multani AS, Combs C, Deramaudt TB, Hruban RH, Rustgi AK, Chang S, Tuveson DA: Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 2005, 7:469-483.
    28. Guerra C, Schuhmacher AJ, Canamero M, Grippo PJ, Verdaguer L, Perez-Gallego L, Dubus P, Sandgren EP, Barbacid M: Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell 2007, 11:291-302.
    29. Bardeesy N, Aguirre AJ, Chu GC, Cheng KH, Lopez LV, Hezel AF, Feng B, Brennan C, Weissleder R, Mahmood U, et al: Both p16(Ink4a) and the p19(Arf)-p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse. Proc Natl Acad Sci U S A 2006, 103:5947-5952.
    30. Maitra A, Hruban RH: Pancreatic cancer. Annu Rev Pathol 2008, 3:157-188.
    31. Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Kamiyama H, Jimeno A, et al: Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 2008, 321:1801-1806.
    32. Chu GC, Kimmelman AC, Hezel AF, DePinho RA: Stromal biology of pancreatic cancer. J Cell Biochem 2007, 101:887-907.
    33. Mahadevan D, Von Hoff DD: Tumor-stroma interactions in pancreatic ductal adenocarcinoma. Mol Cancer Ther 2007, 6:1186-1197.
    34. Masamune A, Shimosegawa T: Signal transduction in pancreatic stellate cells. J Gastroenterol 2009, 44:249-260.
    35. Erkan M, Reiser-Erkan C, Michalski CW, Deucker S, Sauliunaite D, Streit S, Esposito I, Friess H, Kleeff J: Cancer-stellate cell interactions perpetuate the hypoxia-fibrosis cycle in pancreatic ductal adenocarcinoma. Neoplasia 2009, 11:497-508.
    36. Zhang W, Erkan M, Abiatari I, Giese NA, Felix K, Kayed H, Buchler MW, Friess H, Kleeff J: Expression of extracellular matrix metalloproteinase inducer (EMMPRIN/CD147) in pancreatic neoplasm and pancreatic stellate cells. Cancer Biol Ther 2007, 6:218-227.
    37. Mukherjee P, Basu GD, Tinder TL, Subramani DB, Bradley JM, Arefayene M, Skaar T, De Petris G: Progression of pancreatic adenocarcinoma is significantly impeded with a combination of vaccine and COX-2 inhibition. J Immunol 2009, 182:216-224.
    38. Infante JR, Matsubayashi H, Sato N, Tonascia J, Klein AP, Riall TA, Yeo C, Iacobuzio-Donahue C, Goggins M: Peritumoral fibroblast SPARC expression and patient outcome with resectable pancreatic adenocarcinoma. J Clin Oncol 2007, 25:319-325.
    39. Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, Honess D, Madhu B, Goldgraben MA, Caldwell ME, Allard D, et al: Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 2009, 324:1457-1461.
    40. Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, Bruns CJ, Heeschen C: Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 2007, 1:313-323.
    41. Jimeno A, Feldmann G, Suarez-Gauthier A, Rasheed Z, Solomon A, Zou GM, Rubio-Viqueira B, Garcia-Garcia E, Lopez-Rios F, Matsui W, et al: A direct pancreatic cancer xenograft model as a platform for cancer stem cell therapeutic development. Mol Cancer Ther 2009, 8:310-314.
    42. Filipek A, Wojda U: p30, a novel protein target of mouse calcyclin (S100A6). Biochem J 1996, 320 ( Pt 2):585-587.
    43. Jastrzebska B, Filipek A, Nowicka D, Kaczmarek L, Kuznicki J: Calcyclin (S100A6) binding protein (CacyBP) is highly expressed in brain neurons. J Histochem Cytochem 2000, 48:1195-1202.
    44. Schneider G, Filipek A: S100A6 binding protein and Siah-1 interacting protein (CacyBP/SIP): spotlight on properties and cellular function. Amino Acids 2010.
    45. Filipek A, Jastrzebska B, Nowotny M, Kwiatkowska K, Hetman M, Surmacz L, Wyroba E, Kuznicki J: Ca2+-dependent translocation of the calcyclin-binding protein in neurons and neuroblastoma NB-2a cells. J Biol Chem 2002, 277:21103-21109.
    46. Wu J, Tan X, Peng X, Yuan J, Qiang B: Translocation and phosphorylation of calcyclin binding protein during retinoic acid-induced neuronal differentiation of neuroblastoma SH-SY5Y cells. J Biochem Mol Biol 2003, 36:354-358.
    47. Schneider G, Filipek A: S100A6 binding protein and Siah-1 interacting protein (CacyBP/SIP): spotlight on properties and cellular function. Amino Acids 2010.
    48. Stradal TB, Gimona M: Ca(2+)-dependent association of S100A6 (Calcyclin) with the plasma membrane and the nuclear envelope. J Biol Chem 1999, 274:31593-31596.
    49. Kitagawa K, Skowyra D, Elledge SJ, Harper JW, Hieter P: SGT1 encodes an essential component of the yeast kinetochore assembly pathway and a novel subunit of the SCF ubiquitin ligase complex. Mol Cell 1999, 4:21-33.
    50. Bhattacharya S, Lee YT, Michowski W, Jastrzebska B, Filipek A, Kuznicki J, Chazin WJ: The modular structure of SIP facilitates its role in stabilizing multiprotein assemblies. Biochemistry 2005, 44:9462-9471.
    51. Nowotny M, Spiechowicz M, Jastrzebska B, Filipek A, Kitagawa K, Kuznicki J: Calcium-regulated interaction of Sgt1 with S100A6 (calcyclin) and other S100 proteins. J Biol Chem 2003, 278:26923-26928.
    52. Filipek A, Jastrzebska B, Nowotny M, Kuznicki J: CacyBP/SIP, a calcyclin and Siah-1-interacting protein, binds EF-hand proteins of the S100 family. J Biol Chem 2002, 277:28848-28852.
    53. Lee YT, Dimitrova YN, Schneider G, Ridenour WB, Bhattacharya S, Soss SE, Caprioli RM, Filipek A, Chazin WJ: Structure of the S100A6 complex with a fragment from the C-terminal domain of Siah-1 interacting protein: a novel mode for S100 protein target recognition. Biochemistry 2008, 47:10921-10932.
    54. Connelly C, Hieter P: Budding yeast SKP1 encodes an evolutionarily conserved kinetochore protein required for cell cycle progression. Cell 1996, 86:275-285.
    55. Bai C, Sen P, Hofmann K, Ma L, Goebl M, Harper JW, Elledge SJ: SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 1996, 86:263-274.
    56. Santelli E, Leone M, Li C, Fukushima T, Preece NE, Olson AJ, Ely KR, Reed JC, Pellecchia M, Liddington RC, Matsuzawa S: Structural analysis of Siah1-Siah-interacting protein interactions and insights into the assembly of an E3 ligase multiprotein complex. JBiol Chem 2005, 280:34278-34287.
    57. Liu J, Stevens J, Rote CA, Yost HJ, Hu Y, Neufeld KL, White RL, Matsunami N: Siah-1 mediates a novel beta-catenin degradation pathway linking p53 to the adenomatous polyposis coli protein. Mol Cell 2001, 7:927-936.
    58. Matsuzawa S, Takayama S, Froesch BA, Zapata JM, Reed JC: p53-inducible human homologue of Drosophila seven in absentia (Siah) inhibits cell growth: suppression by BAG-1. EMBO J 1998, 17:2736-2747.
    59. Lustig B, Behrens J: The Wnt signaling pathway and its role in tumor development. J Cancer Res Clin Oncol 2003, 129:199-221.
    60. Pircher TJ, Geiger JN, Zhang D, Miller CP, Gaines P, Wojchowski DM: Integrative signaling by minimal erythropoietin receptor forms and c-Kit. J Biol Chem 2001, 276:8995-9002.
    61. Xia ZB, Dai MS, Magoulas C, Broxmeyer HE, Lu L: Differentially expressed genes during in vitro differentiation of murine embryonic stem cells transduced with a human erythropoietin receptor cDNA. J Hematother Stem Cell Res 2000, 9:651-658.
    62. Yang YJ, Liu WM, Zhou JX, Cao YJ, Li J, Peng S, Wang L, Yuan JG, Duan EK: Expression and hormonal regulation of calcyclin-binding protein (CacyBP) in the mouse uterus during early pregnancy. Life Sci 2006, 78:753-760.
    63. Reese J, Das SK, Paria BC, Lim H, Song H, Matsumoto H, Knudtson KL, DuBois RN, Dey SK: Global gene expression analysis to identify molecular markers of uterine receptivity and embryo implantation. J Biol Chem 2001, 276:44137-44145.
    64. Herington JL, Bi J, Martin JD, Bany BM: Beta-catenin (CTNNB1) in the mouse uterus during decidualization and the potential role of two pathways in regulating its degradation. J Histochem Cytochem 2007, 55:963-974.
    65. Chim SS, Cheung SS, Tsui SK: Differential gene expression of rat neonatal heart analyzed by suppression subtractive hybridization and expressed sequence tag sequencing. J Cell Biochem 2000, 80:24-36.
    66. Wu J, Tan X, Peng X, Yuan J, Qiang B: Translocation and phosphorylation of calcyclin binding protein during retinoic acid-induced neuronal differentiation of neuroblastoma SH-SY5Y cells. J Biochem Mol Biol 2003, 36:354-358.
    67. Au KW, Kou CY, Woo AY, Chim SS, Fung KP, Cheng CH, Waye MM, Tsui SK: Calcyclin binding protein promotes DNA synthesis and differentiation in rat neonatal cardiomyocytes. J Cell Biochem 2006, 98:555-566.
    68. Vickers ER, Kasza A, Kurnaz IA, Seifert A, Zeef LA, O'Donnell A, Hayes A, Sharrocks AD: Ternary complex factor-serum response factor complex-regulated gene activity is required for cellular proliferation and inhibition of apoptotic cell death. Mol Cell Biol 2004, 24:10340-10351.
    69. Demir O, Kurnaz IA: Wildtype Elk-1, but not a SUMOylation mutant, represses egr-1 expression in SH-SY5Y neuroblastomas. Neurosci Lett 2008, 437:20-24.
    70. Sharrocks AD: The ETS-domain transcription factor family. Nat Rev Mol Cell Biol 2001, 2:827-837.
    71. Vanhoutte P, Nissen JL, Brugg B, Gaspera BD, Besson MJ, Hipskind RA, Caboche J: Opposing roles of Elk-1 and its brain-specific isoform, short Elk-1, in nerve growth factor-induced PC12 differentiation. J Biol Chem 2001, 276:5189-5196.
    72. Filipek A, Schneider G, Mietelska A, Figiel I, Niewiadomska G: Age-dependent changes in neuronal distribution of CacyBP/SIP: comparison to tubulin and the tau protein. J Neural Transm 2008, 115:1257-1264.
    73. Alonso AD, Grundke-Iqbal I, Barra HS, Iqbal K: Abnormal phosphorylation of tau and the mechanism of Alzheimer neurofibrillary degeneration: sequestration of microtubule-associated proteins 1 and 2 and the disassembly of microtubules by the abnormal tau. Proc Natl Acad Sci U S A 1997, 94:298-303.
    74. Matigian N, Windus L, Smith H, Filippich C, Pantelis C, McGrath J, Mowry B, Hayward N: Expression profiling in monozygotic twins discordant for bipolar disorder reveals dysregulation of the WNT signalling pathway. Mol Psychiatry 2007, 12:815-825.
    75. Sangkhathat S, Kusafuka T, Miao J, Yoneda A, Nara K, Yamamoto S, Kaneda Y, Fukuzawa M: In vitro RNA interference against beta-catenin inhibits the proliferation of pediatric hepatic tumors. Int J Oncol 2006, 28:715-722.
    76. Lowy AM, Clements WM, Bishop J, Kong L, Bonney T, Sisco K, Aronow B, Fenoglio-Preiser C, Groden J: beta-Catenin/Wnt signaling regulates expression of the membrane type 3 matrix metalloproteinase in gastric cancer. Cancer Res 2006, 66:4734-4741.
    77. Mezhybovska M, Wikstrom K, Ohd JF, Sjolander A: The inflammatory mediator leukotriene D4 induces beta-catenin signaling and its association with antiapoptotic Bcl-2 in intestinal epithelial cells. J Biol Chem 2006, 281:6776-6784.
    78. Koegl M, Hoppe T, Schlenker S, Ulrich HD, Mayer TU, Jentsch S: A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell 1999, 96:635-644.
    79. Ben-Saadon R, Fajerman I, Ziv T, Hellman U, Schwartz AL, Ciechanover A: The tumor suppressor protein p16(INK4a) and the human papillomavirus oncoprotein-58 E7 are naturally occurring lysine-less proteins that are degraded by the ubiquitin system. Direct evidence for ubiquitination at the N-terminal residue. J Biol Chem 2004, 279:41414-41421.
    80. Cadwell K, Coscoy L: Ubiquitination on nonlysine residues by a viral E3 ubiquitin ligase. Science 2005, 309:127-130.
    81. D'Andrea A, Pellman D: Deubiquitinating enzymes: a new class of biological regulators. Crit Rev Biochem Mol Biol 1998, 33:337-352.
    82. Chung CH, Baek SH: Deubiquitinating enzymes: their diversity and emerging roles. Biochem Biophys Res Commun 1999, 266:633-640.
    83. Ha BH, Kim EE: Structures of proteases for ubiqutin and ubiquitin-like modifiers.BMB Rep 2008, 41:435-443.
    84. Hicke L, Dunn R: Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annu Rev Cell Dev Biol 2003, 19:141-172.
    85. Muratani M, Tansey WP: How the ubiquitin-proteasome system controls transcription. Nat Rev Mol Cell Biol 2003, 4:192-201.
    86. Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S: RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 2002, 419:135-141.
    87. Stelter P, Ulrich HD: Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 2003, 425:188-191.
    88. Gregory RC, Taniguchi T, D'Andrea AD: Regulation of the Fanconi anemia pathway by monoubiquitination. Semin Cancer Biol 2003, 13:77-82.
    89. Haglund K, Di Fiore PP, Dikic I: Distinct monoubiquitin signals in receptor endocytosis. Trends Biochem Sci 2003, 28:598-603.
    90. Pickart CM, Fushman D: Polyubiquitin chains: polymeric protein signals. Curr Opin Chem Biol 2004, 8:610-616.
    91. Varadan R, Walker O, Pickart C, Fushman D: Structural properties of polyubiquitin chains in solution. J Mol Biol 2002, 324:637-647.
    92. Varadan R, Assfalg M, Haririnia A, Raasi S, Pickart C, Fushman D: Solution conformation of Lys63-linked di-ubiquitin chain provides clues to functional diversity of polyubiquitin signaling. J Biol Chem 2004, 279:7055-7063.
    93. Hershko A, Ciechanover A: The ubiquitin system. Annu Rev Biochem 1998, 67:425-479.
    94. Wu CJ, Conze DB, Li T, Srinivasula SM, Ashwell JD: Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-kappaB activation [corrected]. Nat Cell Biol 2006, 8:398-406.
    95. Hofmann RM, Pickart CM: In vitro assembly and recognition of Lys-63 polyubiquitin chains. J Biol Chem 2001, 276:27936-27943.
    96. Peng J, Schwartz D, Elias JE, Thoreen CC, Cheng D, Marsischky G, Roelofs J, Finley D, Gygi SP: A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 2003, 21:921-926.
    97. Kim I, Rao H: What's Ub chain linkage got to do with it? Sci STKE 2006, 2006:e18.
    98. Jentsch S, Pyrowolakis G: Ubiquitin and its kin: how close are the family ties? Trends Cell Biol 2000, 10:335-342.
    99. Girdwood D, Bumpass D, Vaughan OA, Thain A, Anderson LA, Snowden AW, Garcia-Wilson E, Perkins ND, Hay RT: P300 transcriptional repression is mediated by SUMO modification. Mol Cell 2003, 11:1043-1054.
    100. Seeler JS, Dejean A: Nuclear and unclear functions of SUMO. Nat Rev Mol Cell Biol 2003, 4:690-699.
    101. Muller S, Ledl A, Schmidt D: SUMO: a regulator of gene expression and genomeintegrity. Oncogene 2004, 23:1998-2008.
    102. Meluh PB, Koshland D: Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C. Mol Biol Cell 1995, 6:793-807.
    103. Bohren KM, Nadkarni V, Song JH, Gabbay KH, Owerbach D: A M55V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes mellitus. J Biol Chem 2004, 279:27233-27238.
    104. Hochstrasser M: There's the rub: a novel ubiquitin-like modification linked to cell cycle regulation. Genes Dev 1998, 12:901-907.
    105. Xirodimas DP, Saville MK, Bourdon JC, Hay RT, Lane DP: Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity. Cell 2004, 118:83-97.
    106. Korant BD, Blomstrom DC, Jonak GJ, Knight EJ: Interferon-induced proteins. Purification and characterization of a 15,000-dalton protein from human and bovine cells induced by interferon. J Biol Chem 1984, 259:14835-14839.
    107. Malakhova OA, Yan M, Malakhov MP, Yuan Y, Ritchie KJ, Kim KI, Peterson LF, Shuai K, Zhang DE: Protein ISGylation modulates the JAK-STAT signaling pathway. Genes Dev 2003, 17:455-460.
    108. Zhao C, Denison C, Huibregtse JM, Gygi S, Krug RM: Human ISG15 conjugation targets both IFN-induced and constitutively expressed proteins functioning in diverse cellular pathways. Proc Natl Acad Sci U S A 2005, 102:10200-10205.
    109. Tanida I, Ueno T, Kominami E: LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol 2004, 36:2503-2518.
    110. Raasi S, Schmidtke G, Groettrup M: The ubiquitin-like protein FAT10 forms covalent conjugates and induces apoptosis. J Biol Chem 2001, 276:35334-35343.
    111. Sasakawa H, Sakata E, Yamaguchi Y, Komatsu M, Tatsumi K, Kominami E, Tanaka K, Kato K: Solution structure and dynamics of Ufm1, a ubiquitin-fold modifier 1. Biochem Biophys Res Commun 2006, 343:21-26.
    112. Orlowski M, Wilk S: Ubiquitin-independent proteolytic functions of the proteasome. Arch Biochem Biophys 2003, 415:1-5.
    113. Li X, Amazit L, Long W, Lonard DM, Monaco JJ, O'Malley BW: Ubiquitin- and ATP-independent proteolytic turnover of p21 by the REGgamma-proteasome pathway. Mol Cell 2007, 26:831-842.
    114. Tofaris GK, Layfield R, Spillantini MG: alpha-synuclein metabolism and aggregation is linked to ubiquitin-independent degradation by the proteasome. FEBS Lett 2001, 509:22-26.
    115. Lin L, DeMartino GN, Greene WC: Cotranslational biogenesis of NF-kappaB p50 by the 26S proteasome. Cell 1998, 92:819-828.
    116. Sorokin AV, Selyutina AA, Skabkin MA, Guryanov SG, Nazimov IV, Richard C, Th'Ng J,Yau J, Sorensen PH, Ovchinnikov LP, Evdokimova V: Proteasome-mediated cleavage of the Y-box-binding protein 1 is linked to DNA-damage stress response. EMBO J 2005, 24:3602-3612.
    117. Bercovich Z, Rosenberg-Hasson Y, Ciechanover A, Kahana C: Degradation of ornithine decarboxylase in reticulocyte lysate is ATP-dependent but ubiquitin-independent. J Biol Chem 1989, 264:15949-15952.
    118. Jin Y, Lee H, Zeng SX, Dai MS, Lu H: MDM2 promotes p21waf1/cip1 proteasomal turnover independently of ubiquitylation. EMBO J 2003, 22:6365-6377.
    119. David DC, Layfield R, Serpell L, Narain Y, Goedert M, Spillantini MG: Proteasomal degradation of tau protein. J Neurochem 2002, 83:176-185.
    120. Amici M, Sagratini D, Pettinari A, Pucciarelli S, Angeletti M, Eleuteri AM: 20S proteasome mediated degradation of DHFR: implications in neurodegenerative disorders. Arch Biochem Biophys 2004, 422:168-174.
    121. Asher G, Tsvetkov P, Kahana C, Shaul Y: A mechanism of ubiquitin-independent proteasomal degradation of the tumor suppressors p53 and p73. Genes Dev 2005, 19:316-321.
    122. Kong X, Lin Z, Liang D, Fath D, Sang N, Caro J: Histone deacetylase inhibitors induce VHL and ubiquitin-independent proteasomal degradation of hypoxia-inducible factor
    1alpha. Mol Cell Biol 2006, 26:2019-2028.
    123. Ying H, Xiao ZX: Targeting retinoblastoma protein for degradation by proteasomes. Cell Cycle 2006, 5:506-508.
    124. Moorthy AK, Savinova OV, Ho JQ, Wang VY, Vu D, Ghosh G: The 20S proteasome processes NF-kappaB1 p105 into p50 in a translation-independent manner. EMBO J 2006, 25:1945-1956.
    125. Yuksek K, Chen WL, Chien D, Ou JH: Ubiquitin-independent degradation of hepatitis C virus F protein. J Virol 2009, 83:612-621.
    126. Jariel-Encontre I, Pariat M, Martin F, Carillo S, Salvat C, Piechaczyk M: Ubiquitinylation is not an absolute requirement for degradation of c-Jun protein by the 26 S proteasome. J Biol Chem 1995, 270:11623-11627.
    127. Grune T, Reinheckel T, Davies KJ: Degradation of oxidized proteins in mammalian cells. FASEB J 1997, 11:526-534.
    128. Fink AL: Natively unfolded proteins. Curr Opin Struct Biol 2005, 15:35-41.
    129. Davies KJ: Degradation of oxidized proteins by the 20S proteasome. Biochimie 2001, 83:301-310.
    130. Murakami Y, Matsufuji S, Kameji T, Hayashi S, Igarashi K, Tamura T, Tanaka K, Ichihara A: Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitination. Nature 1992, 360:597-599.
    131. Kim GY, Mercer SE, Ewton DZ, Yan Z, Jin K, Friedman E: The stress-activated protein kinases p38 alpha and JNK1 stabilize p21(Cip1) by phosphorylation. J Biol Chem 2002,277:29792-29802.
    132. Jascur T, Brickner H, Salles-Passador I, Barbier V, El KA, Smith B, Fotedar R, Fotedar A: Regulation of p21(WAF1/CIP1) stability by WISp39, a Hsp90 binding TPR protein. Mol Cell 2005, 17:237-249.
    133. Vogelstein B, Lane D, Levine AJ: Surfing the p53 network. Nature 2000, 408:307-310.
    134. Classon M, Harlow E: The retinoblastoma tumour suppressor in development and cancer. Nat Rev Cancer 2002, 2:910-917.
    135. Knight JS, Sharma N, Robertson ES: Epstein-Barr virus latent antigen 3C can mediate the degradation of the retinoblastoma protein through an SCF cellular ubiquitin ligase. Proc Natl Acad Sci U S A 2005, 102:18562-18566.
    136. Munakata T, Nakamura M, Liang Y, Li K, Lemon SM: Down-regulation of the retinoblastoma tumor suppressor by the hepatitis C virus NS5B RNA-dependent RNA polymerase. Proc Natl Acad Sci U S A 2005, 102:18159-18164.
    137. Sdek P, Ying H, Chang DL, Qiu W, Zheng H, Touitou R, Allday MJ, Xiao ZX: MDM2 promotes proteasome-dependent ubiquitin-independent degradation of retinoblastoma protein. Mol Cell 2005, 20:699-708.
    138. Uchida C, Miwa S, Kitagawa K, Hattori T, Isobe T, Otani S, Oda T, Sugimura H, Kamijo T, Ookawa K, et al: Enhanced Mdm2 activity inhibits pRB function via ubiquitin-dependent degradation. EMBO J 2005, 24:160-169.
    139. Acquaviva C, Pines J: The anaphase-promoting complex/cyclosome: APC/C. J Cell Sci 2006, 119:2401-2404.
    140. Yu H: Cdc20: a WD40 activator for a cell cycle degradation machine. Mol Cell 2007, 27:3-16.
    141. Li M, Zhang P: The function of APC/CCdh1 in cell cycle and beyond. Cell Div 2009, 4:2.
    142. Musacchio A, Salmon ED: The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol 2007, 8:379-393.
    143. Nilsson J, Yekezare M, Minshull J, Pines J: The APC/C maintains the spindle assembly checkpoint by targeting Cdc20 for destruction. Nat Cell Biol 2008, 10:1411-1420.
    144. Pan J, Chen RH: Spindle checkpoint regulates Cdc20p stability in Saccharomyces cerevisiae. Genes Dev 2004, 18:1439-1451.
    145. Garcia-Higuera I, Manchado E, Dubus P, Canamero M, Mendez J, Moreno S, Malumbres M: Genomic stability and tumour suppression by the APC/C cofactor Cdh1. Nat Cell Biol 2008, 10:802-811.
    146. Bassermann F, Frescas D, Guardavaccaro D, Busino L, Peschiaroli A, Pagano M: The Cdc14B-Cdh1-Plk1 axis controls the G2 DNA-damage-response checkpoint. Cell 2008, 134:256-267.
    147. Mailand N, Bekker-Jensen S, Bartek J, Lukas J: Destruction of Claspin by SCFbetaTrCP restrains Chk1 activation and facilitates recovery from genotoxic stress.Mol Cell 2006, 23:307-318.
    148. Jin L, Williamson A, Banerjee S, Philipp I, Rape M: Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Cell 2008, 133:653-665.
    149. Kirkpatrick DS, Hathaway NA, Hanna J, Elsasser S, Rush J, Finley D, King RW, Gygi SP: Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology. Nat Cell Biol 2006, 8:700-710.
    150. Welcker M, Clurman BE: FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat Rev Cancer 2008, 8:83-93.
    151. Matsuoka S, Oike Y, Onoyama I, Iwama A, Arai F, Takubo K, Mashimo Y, Oguro H, Nitta E, Ito K, et al: Fbxw7 acts as a critical fail-safe against premature loss of hematopoietic stem cells and development of T-ALL. Genes Dev 2008, 22:986-991.
    152. Onoyama I, Tsunematsu R, Matsumoto A, Kimura T, de Alboran IM, Nakayama K, Nakayama KI: Conditional inactivation of Fbxw7 impairs cell-cycle exit during T cell differentiation and results in lymphomatogenesis. J Exp Med 2007, 204:2875-2888.
    153. Seki A, Coppinger JA, Du H, Jang CY, Yates JR, Fang G: Plk1- and beta-TrCP-dependent degradation of Bora controls mitotic progression. J Cell Biol 2008, 181:65-78.
    154. Seki A, Coppinger JA, Jang CY, Yates JR, Fang G: Bora and the kinase Aurora a cooperatively activate the kinase Plk1 and control mitotic entry. Science 2008, 320:1655-1658.
    155. Dehan E, Bassermann F, Guardavaccaro D, Vasiliver-Shamis G, Cohen M, Lowes KN, Dustin M, Huang DC, Taunton J, Pagano M: betaTrCP- and Rsk1/2-mediated degradation of BimEL inhibits apoptosis. Mol Cell 2009, 33:109-116.
    156. Guardavaccaro D, Frescas D, Dorrello NV, Peschiaroli A, Multani AS, Cardozo T, Lasorella A, Iavarone A, Chang S, Hernando E, Pagano M: Control of chromosome stability by the beta-TrCP-REST-Mad2 axis. Nature 2008, 452:365-369.
    157. Busino L, Donzelli M, Chiesa M, Guardavaccaro D, Ganoth D, Dorrello NV, Hershko A, Pagano M, Draetta GF: Degradation of Cdc25A by beta-TrCP during S phase and in response to DNA damage. Nature 2003, 426:87-91.
    158. Frescas D, Pagano M: Deregulated proteolysis by the F-box proteins SKP2 and beta-TrCP: tipping the scales of cancer. Nat Rev Cancer 2008, 8:438-449.
    159. Olovnikov IA, Kravchenko JE, Chumakov PM: Homeostatic functions of the p53 tumor suppressor: regulation of energy metabolism and antioxidant defense. Semin Cancer Biol 2009, 19:32-41.
    160. Leng RP, Lin Y, Ma W, Wu H, Lemmers B, Chung S, Parant JM, Lozano G, Hakem R, Benchimol S: Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation. Cell 2003, 112:779-791.
    161. Chen D, Kon N, Li M, Zhang W, Qin J, Gu W: ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor. Cell 2005, 121:1071-1083.
    162. Esser C, Scheffner M, Hohfeld J: The chaperone-associated ubiquitin ligase CHIP is able to target p53 for proteasomal degradation. J Biol Chem 2005, 280:27443-27448.
    163. Bartel F, Taubert H, Harris LC: Alternative and aberrant splicing of MDM2 mRNA in human cancer. Cancer Cell 2002, 2:9-15.
    164. Bond GL, Menin C, Bertorelle R, Alhopuro P, Aaltonen LA, Levine AJ: MDM2 SNP309 accelerates colorectal tumour formation in women. J Med Genet 2006, 43:950-952.
    165. Han JY, Lim HS, Yoo YK, Shin ES, Park YH, Lee SY, Lee JE, Lee DH, Kim HT, Lee JS: Associations of ABCB1, ABCC2, and ABCG2 polymorphisms with irinotecan-pharmacokinetics and clinical outcome in patients with advanced non-small cell lung cancer. Cancer 2007, 110:138-147.
    166. Dawson S, Apcher S, Mee M, Higashitsuji H, Baker R, Uhle S, Dubiel W, Fujita J, Mayer RJ: Gankyrin is an ankyrin-repeat oncoprotein that interacts with CDK4 kinase and the S6 ATPase of the 26 S proteasome. J Biol Chem 2002, 277:10893-10902.
    167. Higashitsuji H, Higashitsuji H, Itoh K, Sakurai T, Nagao T, Sumitomo Y, Masuda T, Dawson S, Shimada Y, Mayer RJ, Fujita J: The oncoprotein gankyrin binds to MDM2/HDM2, enhancing ubiquitylation and degradation of p53. Cancer Cell 2005, 8:75-87.
    168. Duan W, Gao L, Druhan LJ, Zhu WG, Morrison C, Otterson GA, Villalona-Calero MA: Expression of Pirh2, a newly identified ubiquitin protein ligase, in lung cancer. J Natl Cancer Inst 2004, 96:1718-1721.
    169. Scheffner M, Munger K, Byrne JC, Howley PM: The state of the p53 and retinoblastoma genes in human cervical carcinoma cell lines. Proc Natl Acad Sci U S A 1991, 88:5523-5527.
    170. Sherr CJ, Roberts JM: CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 1999, 13:1501-1512.
    171. Sutterluty H, Chatelain E, Marti A, Wirbelauer C, Senften M, Muller U, Krek W: p45SKP2 promotes p27Kip1 degradation and induces S phase in quiescent cells. Nat Cell Biol 1999, 1:207-214.
    172. Lahav-Baratz S, Ben-Izhak O, Sabo E, Ben-Eliezer S, Lavie O, Ishai D, Ciechanover A, Dirnfeld M: Decreased level of the cell cycle regulator p27 and increased level of its ubiquitin ligase Skp2 in endometrial carcinoma but not in normal secretory or in hyperstimulated endometrium. Mol Hum Reprod 2004, 10:567-572.
    173. Slotky M, Shapira M, Ben-Izhak O, Linn S, Futerman B, Tsalic M, Hershko DD: The expression of the ubiquitin ligase subunit Cks1 in human breast cancer. Breast Cancer Res 2005, 7:R737-R744.
    174. Kitajima S, Kudo Y, Ogawa I, Bashir T, Kitagawa M, Miyauchi M, Pagano M, Takata T: Role of Cks1 overexpression in oral squamous cell carcinomas: cooperation with Skp2 in promoting p27 degradation. Am J Pathol 2004, 165:2147-2155.
    175. Huang H, Regan KM, Wang F, Wang D, Smith DI, van Deursen JM, Tindall DJ: Skp2inhibits FOXO1 in tumor suppression through ubiquitin-mediated degradation. Proc Natl Acad Sci U S A 2005, 102:1649-1654.
    176. Kim WY, Kaelin WG: Role of VHL gene mutation in human cancer. J Clin Oncol 2004, 22:4991-5004.
    177. Igarashi H, Esumi M, Ishida H, Okada K: Vascular endothelial growth factor overexpression is correlated with von Hippel-Lindau tumor suppressor gene inactivation in patients with sporadic renal cell carcinoma. Cancer 2002, 95:47-53.
    178. Tanimoto K, Makino Y, Pereira T, Poellinger L: Mechanism of regulation of the hypoxia-inducible factor-1 alpha by the von Hippel-Lindau tumor suppressor protein. EMBO J 2000, 19:4298-4309.
    179. Kamura T, Koepp DM, Conrad MN, Skowyra D, Moreland RJ, Iliopoulos O, Lane WS, Kaelin WJ, Elledge SJ, Conaway RC, et al: Rbx1, a component of the VHL tumor suppressor complex and SCF ubiquitin ligase. Science 1999, 284:657-661.
    180. Patiar S, Harris AL: Role of hypoxia-inducible factor-1alpha as a cancer therapy target. Endocr Relat Cancer 2006, 13 Suppl 1:S61-S75.
    181. Huang LE, Gu J, Schau M, Bunn HF: Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci U S A 1998, 95:7987-7992.
    182. Bruick RK, McKnight SL: A conserved family of prolyl-4-hydroxylases that modify HIF. Science 2001, 294:1337-1340.
    183. Staff S, Isola J, Tanner M: Haplo-insufficiency of BRCA1 in sporadic breast cancer. Cancer Res 2003, 63:4978-4983.
    184. Wu LC, Wang ZW, Tsan JT, Spillman MA, Phung A, Xu XL, Yang MC, Hwang LY, Bowcock AM, Baer R: Identification of a RING protein that can interact in vivo with the BRCA1 gene product. Nat Genet 1996, 14:430-440.
    185. Mallery DL, Vandenberg CJ, Hiom K: Activation of the E3 ligase function of the BRCA1/BARD1 complex by polyubiquitin chains. EMBO J 2002, 21:6755-6762.
    186. Joukov V, Chen J, Fox EA, Green JB, Livingston DM: Functional communication between endogenous BRCA1 and its partner, BARD1, during Xenopus laevis development. Proc Natl Acad Sci U S A 2001, 98:12078-12083.
    187. Eakin CM, Maccoss MJ, Finney GL, Klevit RE: Estrogen receptor alpha is a putative substrate for the BRCA1 ubiquitin ligase. Proc Natl Acad Sci U S A 2007, 104:5794-5799.
    188. Hanahan D, Weinberg RA: The hallmarks of cancer. Cell 2000, 100:57-70.
    189. Giacinti C, Giordano A: RB and cell cycle progression. Oncogene 2006, 25:5220-5227.
    190. Weinberg RA: The retinoblastoma protein and cell cycle control. Cell 1995, 81:323-330.
    191. Harbour JW, Luo RX, Dei SA, Postigo AA, Dean DC: Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell 1999, 98:859-869.
    192. Sherr CJ, Roberts JM: CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 1999, 13:1501-1512.
    193. Malumbres M, Barbacid M: Mammalian cyclin-dependent kinases. Trends Biochem Sci 2005, 30:630-641.
    194. Shiloh Y: ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 2003, 3:155-168.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700