FAT10在H5N1病毒及甲型H1N1流感病毒复制及诱导人呼吸道上皮细胞凋亡中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于缺乏有效的预防和治疗手段,H5N1病毒仍是威胁全球健康的一个严重的长期隐患。在人感染HSN1病毒的多数病例中,HSN1病毒能引起严重的临床症状,导致病情快速恶化和病人极高的病死率。许多研究都试图揭示其毒力增强的遗传基础和致病机理,较强的病毒复制能力和病毒感染引起的细胞因子风暴被认为在其致病机理中占重要位置。利用高通量组学研究手段,解析H5N1病毒和宿主细胞之间的相互作用,找到在H5N1病毒生活周期中起重要作用的宿主因子,将有助于开发更为广谱且不易产生耐药性的治疗药物。
     本文研究的主要对象类泛素蛋白FAT10(又称泛素D, Ubiquitin D, UBD)即是从H5N1病毒感染小鼠肺组织的基因表达谱分析中筛选出来的一个重要宿主因子。我们发现H5N1病毒的感染在小鼠肺组织和多种人呼吸道上皮细胞中均能够引起FAT10表达水平显著升高。进一步的研究表明,FAT10在H5N1病毒复制过程中起重要作用。敲减FAT10蛋白能够抑制H5N1病毒M1基因和NP蛋白的表达。通过对FAT10ylation系统重要组分UBA6和USE1的敲减实验表明,FAT10ylation系统在H5N1病毒复制中也发挥重要作用。
     通过对H5N1病毒蛋白及dsRNA类似物poly (IC)的筛选,我们发现poly (IC)能够通过RIG-1-p65通路诱导FAT10表达显著上调。在对FAT10下游作用蛋白的研究中发现,H5N1病毒感染时p62能够作为FAT10底物与其结合。敲减p62后H5N1病毒M1和NP表达水平显著升高,说明p62对H5N1病毒的复制起限制性作用。HSN1病毒感染后能引起STAT1磷酸化水平升高,而敲减p62能使这一过程中的STAT1磷酸化水平降低,提示p62参与并调控H5N1病毒引起的JAK-STATl信号通路。
     总之,本文揭示了FAT10在H5N1病毒复制过程的重要作用。这一发现不仅拓宽了我们对这一类泛素蛋白分子生物学功能的理解,更重要的是为针对H5N1病毒的治疗药物研发提供了新的思路和潜在的靶点。
     H5N1病毒引起的免疫细胞和呼吸道上皮细胞死亡,是其重要的致病机制之一。在这一部分论文中主要对FAT10在H5N1病毒引起的细胞死亡中的作用展开了初步的探索。通过MTS实验检测细胞活力,我们发现敲减FAT10能显著改善A549、BEAS-2B、CNE-2Z细胞中H5N1病毒感染引起的细胞死亡。进一步的研究显示敲减FAT10能抑制H5N1病毒引起的caspase-3剪切活化,减少H5N1病毒引起凋亡的细胞比例,还能够抑制促凋亡因子TNFa和FASLG的mRNA表达水平。此外,通过检测LC3B的蛋白水平我们发现,敲减FAT10不能抑制H5N1病毒诱导的细胞自噬。
     因此,我们的结论是FAT10在H5N1病毒引起的呼吸道上皮细胞死亡中起重要作用。敲减FAT10能够抑制H5N1病毒诱导的细胞凋亡,但不能抑制病毒诱导的细胞自噬。
     2009甲型H1N1流感病毒具有强大的传播能力和较强的致病能力,包含来自猪H1N1流感病毒、人H3N2流感病毒和禽流感病毒的不同片段,其感染及死亡病例主要集中在青壮年,能够导致急性呼吸窘迫综合征(ARDS)等严重疾病。通过将我们实验室筛选到的一株甲流毒株A/Wenshan H1N1病毒感染人鼻咽癌细胞(CNE-2Z)作为模型,我们对FAT10在A/Wenshan H1N1病毒引起的细胞凋亡和病毒复制这两方面进行了初步研究。研究发现,敲减FAT10能够抑制A/Wenshan H1N1病毒感染引起的CNE-2Z细胞凋亡。在CNE-2Z细胞中敲减FAT10能够抑制病毒引起的caspase-3剪切活化,减少病毒感染后发生凋亡的细胞比例,还能够抑制促凋亡因子TNFa的表达水平。在CNE-2Z细胞中敲减FAT10能够抑制A/Wenshan H1N1病毒M1基因的mRNA水平。结合前两部分的研究,提示我们FAT10可能是流感病毒的一个普遍的宿主因子。
The avian influenza H5N1virus causes severe disease and high mortality, which makes it a major worldwide public health concern. The virus is capable of using the host cellular machinery for aspects of its life cycle. In this report, we discovered that FAT10, a ubiquitin-like protein, was induced by the live H5N1virus infection in mice and in the human respiratory epithelial cell lines A549, BEAS-2B and CNE-2Z. Further studies demonstrated that FAT10was crucial for the replication of the H5N1virus and that FAT10ylation was involved. The knockdown of FAT10expression significantly reduced H5N1viral replication, while the overexpression of FAT10proteins markedly increased viral replication. Poly(IC), the analogue of viral RNA, could significantly increase FAT10expression through the RIG-1-p65pathway, suggesting that FAT10elevation might be crucial for viral evasion of the immune system. The p62protein, which was confirmed to be a substrate of FAT10, might be involved in this process. The knockdown of p62expression in A549cells significantly reduced the phosphorylation of STAT1during live H5N1virus infection, which suggests that p62might be involved in the innate immunity response against H5N1virus infection. Taken together, our data suggest that FAT10elevation and FAT10ylation might be crucial in viral evasion of the immune system.
     One of the pathogenesis of avian influenza H5N1virus is the virus-induced cell death of immune cells and respiratory tract epithelial cells. In this part of the thesis, we carried out preliminary exploration about the role of host factor FAT10in the cell death caused by H5N1virus. By measuring the cell viability through MTS, we found that the knockdown of FAT10could significantly improve the virus-induced death of respiratory tract epithelial cell, such as A549cell, BEAS-2B and CNE-2Z cell. Further study indicated that knockdown of FAT10could repress the virus-induced proteolytic cleavage of caspase-3, reduce the proportion of apoptotic cells and inhibit the mRNA level of pro-apoptotic factor TNFa and FASLG. Besides, by monitoring the protein level of LC3B, which is one of the main markers of autophagy, we found that the knockdown of FAT10could not inhibit the autophagy caused by H5N1virus infection.
     In conclusion, we found that the host factor FAT10plays an important role in the virus-induced respiritory tract epithelial cell death. The cellular apoptotic process but not the cellular autophagy process could be inhibited by the knockdown of FAT10.
     2009pandemic H1N1virus possesses high transmissibilit and pathogenic potentiality, and its genome includes different segments from classic swine H1N1, Human H3N2and avian influenza. It could cause the acute respiratory distress syndrome (ARDS) and other severe diseases. A/Wenshan H1N1virus was studied as a strain of2009pandemic H1N1virus in our lab, causing severe apoptosis in CNE-2Z cells. Then we explored the role of FAT10in the apoptosis of CNE-2Z cells induced by A/Wenshan H1N1virus and also in the viral replication. In our research, we found that the knockdown of FAT10could inhibit the activation of caspase-3, reduce the apoptotic cell proportion, and repress the mRNA level of pro-apoptotic factor TNFa. The knockdown of FAT10could also repress the mRNA level of viral M1. Considering the first two parts of this thesis, we proposed that FAT10could be a general host factor during influenza virus infection.
引文
[1]. Subbarao K, Klimov A, Katz J, Regnery H, Lim W, Hall H, Perdue M, Swayne D, Bender C, Huang J:Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness, Science 1998,279:393-396
    [2]. Imai M, Watanabe T, Hatta M, Das SC, Ozawa M, Shinya K, Zhong G, Hanson A, Katsura H, Watanabe S:Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets, Nature 2012,486:420-428
    [3]. Herfst S, Schrauwen EJ, Linster M, Chutinimitkul S, de Wit E, Munster VJ, Sorrell EM, Bestebroer TM, Burke DF, Smith DJ:Airborne transmission of influenza A/H5N1 virus between ferrets, Science 2012,336:1534-1541
    [4]. Yuen K, Chan P, Peiris M, Tsang D, Que T, Shortridge K, Cheung P, To W, Ho E, Sung R: Clinical features and rapid viral diagnosis of human disease associated with avian influenza A H5N1 virus, The Lancet 1998,351:467-471
    [5]. de Jong MD, Simmons CP, Thanh TT, Hien VM, Smith GJ, Chau TNB, Hoang DM, Chau NVV, Khanh TH, Dong VC:Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia, Nature medicine 2006,12:1203-1207
    [6]. Li K, Guan Y, Wang J, Smith G, Xu K, Duan L, Rahardjo A, Puthavathana P, Buranathai C, Nguyen T:Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia, Nature 2004,430:209-213
    [7]. Stertz S, Shaw ML:Uncovering the global host cell requirements for influenza virus replication via RNAi screening, Microbes and infection 2011,13:516-525
    [8]. Raasi S, Schmidtke G, Groettrup M:The ubiquitin-like protein FAT10 forms covalent conjugates and induces apoptosis, Journal of Biological Chemistry 2001, 276:35334-35343
    [9]. Ciechanover A, Schwartz AL:The ubiquitin-proteasome pathway:the complexity and myriad functions of proteins death, Proceedings of the National Academy of Sciences 1998,95:2727-2730
    [10]. Hoeller D, Dikic I:Targeting the ubiquitin system in cancer therapy, Nature 2009, 458:438-444
    [11]. Lehman NL:The ubiquitin proteasome system in neuropathology, Acta neuropathologica 2009,118:329-347
    [12]. Corn PG:Role of the ubiquitin proteasome system in renal cell carcinoma, BMC biochemistry 2007,8:S4
    [13]. Herrmann J, Ciechanover A, Lerman LO, Lerman A:The ubiquitin-proteasome system in cardiovascular diseases—a hypothesis extended, Cardiovascular research 2004, 61:11-21
    [14]. Petroski MD:The ubiquitin system, disease, and drug discovery, BMC biochemistry 2008,9:S7
    [15]. Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM:The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53, Cell 1990,63:1129
    [16]. Zhu Y, Li H, Hu L, Wang J, Zhou Y, Pang Z, Liu L, Shao F:Structure of a Shigella effector reveals a new class of ubiquitin ligases, Nature structural & molecular biology 2008,15:1302-1308
    [17]. Edelmann MJ, Kessler BM:Ubiquitin and ubiquitin-like specific proteases targeted by infectious pathogens:Emerging patterns and molecular principles, Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 2008,1782:809-816
    [18]. Chang T-H, Kubota T, Matsuoka M, Jones S, Bradfute SB, Bray M, Ozato K:Ebola Zaire virus blocks type I interferon production by exploiting the host SUMO modification machinery, PLoS pathogens 2009,5:e1000493
    [19]. Morita E, Sundquist Wl:Retrovirus budding, Annu Rev Cell Dev Biol 2004, 20:395-425
    [20]. Kyei GB, Dinkins C, Davis AS, Roberts E, Singh SB, Dong C, Wu L, Kominami E, Ueno T, Yamamoto A:Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages, The Journal of cell biology 2009,186:255-268
    [21]. Lenschow DJ, Lai C, Frias-Staheli N, Giannakopoulos NV, Lutz A, Wolff T, Osiak A, Levine B, Schmidt RE, Garcia-Sastre A:IFN-stimulated gene 15 functions as a critical antiviral molecule against influenza, herpes, and Sindbis viruses, Proceedings of the National Academy of Sciences 2007,104:1371-1376
    [22]. Zhao C, Hsiang T-Y, Kuo R-L, Krug RM:ISG15 conjugation system targets the viral NS1 protein in influenza A virus-infected cells, Proceedings of the National Academy of Sciences 2010,107:2253-2258
    [23]. Harty RN, Pitha PM, Okumura A:Antiviral activity of innate immune protein ISG15, Journal of innate immunity 2009,1:397-404
    [24]. Chiu Y-H, Sun Q, Chen ZJ:E1-L2 activates both ubiquitin and FAT10, Molecular cell 2007,27:1014-1023
    [25]. Aichem A, Pelzer C, Lukasiak S, Kalveram B, Sheppard PW, Rani N, Schmidtke G, Grottrup M:USE1 is a bispecific conjugating enzyme for ubiquitin and FAT10, which FAT10ylates itself in cis, Nature Communications 2010,1:13
    [26]. Schmidtke G, Kalveram B, Weber E, Bochtler P, Lukasiak S, Hipp MS, Groettrup M:The UBA domains of NUB1L are required for binding but not for accelerated degradation of the ubiquitin-like modifier FAT10, Journal of Biological Chemistry 2006, 281:20045-20054
    [27]. Katzenellenbogen M, Mizrahi L, Pappo O, Klopstock N,Olam D, Jacob-Hirsch J, Amariglio N, Rechavi G, Domany E, Galun E:Molecular mechanisms of liver carcinogenesis in the mdr2-knockout mice, Molecular Cancer Research 2007, 5:1159-1170
    [28]. Kawaguchi Y, Kovacs JJ, McLaurin A, Vance JM, Ito A, Yao T-P:The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress, Cell 2003,115:727-738
    [29]. Snyder A, Alsauskas Z, Gong P, Rosenstiel PE, Klotman ME, Klotman PE, Ross MJ: FAT10:a novel mediator of Vpr-induced apoptosis in human immunodeficiency virus-associated nephropathy, Journal of virology 2009,83:11983-11988
    [30]. Raasi S, Schmidtke G, de Giuli R, Groettrup M:A ubiquitin-like protein which is synergistically inducible by interferon-y and tumor necrosis factor-a, European journal of immunology 1999,29:4030-4036
    [31]. Liu Y-C, Pan J, Zhang C, Fan W, Collinge M, Bender JR, Weissman SM:A MHC-encoded ubiquitin-like protein (FAT10) binds noncovalently to the spindle assembly checkpoint protein MAD2, Proceedings of the National Academy of Sciences 1999,96:4313-4318
    [32]. Lee CG, Ren J, Cheong IS, Ban KH, Ooi LL, Tan SY, Kan A, Nuchprayoon I, Jin R, Lee K-H:Expression of the FAT10 gene is highly upregulated in hepatocellular carcinoma and other gastrointestinal and gynecological cancers, Oncogene 2003,22:2592-2603
    [33]. Aichem A, Kalveram B, Spinnenhirn V, Kluge K, Catone N, Johansen T, Groettrup M:The proteomic analysis of endogenous FAT10 substrates identifies p62/SQSTM1 as a substrate of FAT10ylation, Journal of Cell Science 2012,
    [34]. Loo Y-M, Gale M:Immune signaling by RIG-l-like receptors, Immunity 2011, 34:680-692
    [35]. Herold S, Ludwig S, Pleschka S, Wolff T:Apoptosis signaling in influenza virus propagation, innate host defense, and lung injury, Journal of leukocyte biology 2012, 92:75-82
    [36]. Ludwig S:Signaling and apoptosis in influenza virus-infected cells. Edited by Caister Academic Press, Wymondham,2006,
    [37]. Wang X, Li M, Zheng H, Muster T, Palese P, Beg AA, Garcia-Sastre A:Influenza A virus NS1 protein prevents activation of NF-κB and induction of alpha/beta interferon, Journal of virology 2000,74:11566-11573
    [38]. Gack MU, Albrecht RA, Urano T, Inn K-S, Huang I, Carnero E, Farzan M, Inoue S, Jung JU, Garcia-Sastre A:Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I, Cell host & microbe 2009, 5:439-449
    [39]. Moscat J, Diaz-Meco MT:p62 at the crossroads of autophagy, apoptosis, and cancer, Cell 2009,137:1001-1004
    [40]. Komatsu M, Waguri S, Koike M, Sou Y-s, Ueno T, Hara T, Mizushima N, Iwata J-i, Ezaki J, Murata S:Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice, Cell 2007,131:1149-1163
    [1]. Sun Y, Li C, Shu Y, Ju X, Zou Z, Wang H, Rao S, Guo F, Liu H, Nan W:Inhibition of autophagy ameliorates acute lung injury caused by avian influenza A H5N1 infection, Science Signalling 2012,5:ra16
    [2]. Fesq H, Bacher M, Nain M, Gemsa D:Programmed cell death (apoptosis) in human monocytes infected by influenza A virus, Immunobiology 1994,190:175-182
    [3]. Price GE, Smith H, Sweet C:Differential induction of cytotoxicity and apoptosis by influenza virus strains of differing virulence, Journal of General Virology 1997, 78:2821-2829
    [4]. Takizawa T, Matsukawa S, Higuchi Y, Nakamura S, Nakanishi Y, Fukuda R:Induction of programmed cell death (apoptosis) by influenza virus infection in tissue culture cells, Journal of General Virology 1993,74:2347-2355
    [5]. Mori I, Komatsu T, Takeuchi K, Nakakuki K, Sudo M, Kimura Y:In vivo induction of apoptosis by influenza virus, Journal of General Virology 1995,76:2869-2873
    [6]. Zhou J, Law HK, Cheung CY, Ng IH, Peiris JM, Lau YL:Functional tumor necrosis factor-related apoptosis-inducing ligand production by avian influenza virus-infected macrophages, Journal of Infectious Diseases 2006,193:945-953
    [7]. Lam W, Tang JW, Yeung A, Chiu L, Sung JJ, Chan PK:Avian influenza virus A/HK/483/97 (H5N1) NS1 protein induces apoptosis in human airway epithelial cells, Journal of virology 2008,82:2741-2751
    [8]. Daidoji T, Koma T, Du A, Yang C-S, Ueda M, Ikuta K, Nakaya T:H5N1 avian influenza virus induces apoptotic cell death in mammalian airway epithelial cells, Journal of virology 2008,82:11294-11307
    [9]. Wang Q, Zhang S, Jiang H, Wang J, Weng L, Mao Y, Sekiguchi S, Yasui F, Kohara M, Buchy P:PA from an H5N1 highly pathogenic avian influenza virus activates viral transcription and replication and induces apoptosis and interferon expression at an early stage of infection, Virology Journal 2012,9:106
    [10]. Varga ZT, Palese P:The influenza A virus protein PB1-F2:Killing two birds with one stone?, Virulence 2011,2:542-546
    [11]. Obenauer JC, Denson J, Mehta PK, Su X, Mukatira S, Finkelstein DB, Xu X, Wang J, Ma J, Fan Y:Large-scale sequence analysis of avian influenza isolates, Science 2006, 311:1576-1580
    [12]. Zamarin D, Garcia-Sastre A, Xiao X, Wang R, Palese P:Influenza virus PB1-F2 protein induces cell death through mitochondrial ANT3 and VDAC1, PLoS pathogens 2005,1:e4
    [13]. Wurzer WJ, Planz O, Ehrhardt C, Giner M, Silberzahn T, Pleschka S, Ludwig S: Caspase 3 activation is essential for efficient influenza virus propagation, The EMBO journal 2003,22:2717-2728
    [14]. Wurzer WJ, Ehrhardt C, Pleschka S, Berberich-Siebelt F, Wolff T, Walczak H, Planz O, Ludwig S:NF-B dependent induction of TRAIL and Fas/FasL is crucial for efficient influenza virus propagation, Journal of Biological Chemistry 2004,
    [15]. Olsen CW, Kehren JC, Dybdahl-Sissoko NR, Hinshaw VS:bcl-2 alters influenza virus yield, spread, and hemagglutinin glycosylation, Journal of virology 1996, 70:663-666
    [16]. Faleiro L, Lazebnik Y:Caspases disrupt the nuclear-cytoplasmic barrier, Science Signalling 2000,151:951
    [17]. Ludwig S:Signaling and apoptosis in influenza virus-infected cells. Edited by Caister Academic Press, Wymondham,2006,
    [18]. Deretic V, Levine B:Autophagy, immunity, and microbial adaptations, Cell host & microbe 2009,5:527-549
    [19]. Gannage M, Dormann D, Albrecht R, Dengjel J, Torossi T, Ramer PC, Lee M, Strowig T, Arrey F, Conenello G:Matrix protein 2 of influenza A virus blocks autophagosome fusion with lysosomes, Cell host & microbe 2009,6:367-380
    [20]. Wyllie A:Cell death:a new classification separating apoptosis from necrosis, Cell death in biology and pathology 1981,
    [21]. Restifo NP:Building better vaccines:how apoptotic cell death can induce inflammation and activate innate and adaptive immunity, Current opinion in immunology 2000,12:597-603
    [22]. Takizawa T, Ohashi K, Nakanishi Y:Possible involvement of double-stranded RNA-activated protein kinase in cell death by influenza virus infection, Journal of virology 1996,70:8128-8132
    [23]. Balachandran S, Kim CN, Yeh W-C, Mak TW, Bhalla K, Barber GN:Activation of the dsRNA-dependent protein kinase, PKR, induces apoptosis through FADD-mediated death signaling, The EMBO journal 1998,17:6888-6902
    [24]. Gern JE, French DA, Grindle KA, Brockman-Schneider RA, Konno S, Busse WW: Double-stranded RNA induces the synthesis of specific chemokines by bronchial epithelial cells, American journal of respiratory cell and molecular biology 2003,28:731
    [25]. Uetani K, Der SD, Zamanian-Daryoush M, de la Motte C, Lieberman BY, Williams BR, Erzurum SC:Central role of double-stranded RNA-activated protein kinase in microbial induction of nitric oxide synthase, The Journal of Immunology 2000, 165:988-996
    [26]. Gil J, Esteban M:Induction of apoptosis by the dsRNA-dependent protein kinase (PKR):mechanism of action, Apoptosis 2000,5:107-114
    [27]. Gil J, Garcia MA, Esteban M:Caspase 9 activation by the dsRNA-dependent protein kinase, PKR:molecular mechanism and relevance, FEBS letters 2002, 529:249-255
    [28]. Takizawa T, Fukuda R, Miyawaki T, Ohashi K, Nakanishi Y:Activation of the apoptotic Fas antigen-encoding gene upon influenza virus infection involving spontaneously produced beta-interferon, Virology 1995,209:288-296
    [29]. Wada N, Matsumura M, Ohba Y, Kobayashi N, Takizawa T, Nakanishi Y: Transcription stimulation of the Fas-encoding gene by nuclear factor for interleukin-6 expression upon influenza virus infection, Journal of Biological Chemistry 1995, 270:18007-18012
    [30]. Takizawa T, Tatematsu C, Ohashi K, Nakanishi Y:Recruitment of apoptotic cysteine proteases (caspases) in influenza virus-induced cell death, Microbiology and immunology 1999,43:245
    [31]. Fujimoto I, Takizawa T, Ohba Y, Nakanishi Y:Co-expression of Fas and Fas-ligand on the surface of influenza virus-infected cells, Cell death and differentiation 1998,5:426
    [32]. Maruoka S, Hashimoto S, Gon Y, Nishitoh H, Takeshita I, Asai Y, Mizumura K, Shimizu K, Ichijo H, Horie T:ASK1 regulates influenza virus infection-induced apoptotic cell death, Biochemical and biophysical research communications 2003,307:870-876
    [33]. Buffinton G, Christen S, Peterhans E, Stocker R:Oxidative stress in lungs of mice infected with influenza A virus, Free Radical Research 1992,16:99-110
    [34]. Choi A, Knobil K, Otterbein SL, Eastman DA, Jacoby DB:Oxidant stress responses in influenza virus pneumonia:gene expression and transcription factor activation, American Journal of Physiology-Lung Cellular and Molecular Physiology 1996, 271:L383-L391
    [1]. Dawood FS, Jain S, Finelli L, Shaw MW, Lindstrom S, Garten RJ, Gubareva LV, Xu X, Bridges CB, Uyeki TM:Emergence of a novel swine-origin influenza A (H1N1) virus in humans, New England Journal of Medicine 2009,361:1-10
    [2]. Smith GJ, Vijaykrishna D, Bahl J, Lycett SJ, Worobey M, Pybus OG, Ma SK, Cheung CL, Raghwani J, Bhatt S:Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic, Nature 2009,459:1122-1125
    [3]. Fisman DN, Savage R, Gubbay J, Achonu C, Akwar H, Farrell DJ, Crowcroft NS, Jackson P:Older age and a reduced likelihood of 2009 H1N1 virus infection, New England Journal of Medicine 2009,361:2000-2001
    [4]. Perez-Padilla R, de la Rosa-Zamboni D, Ponce de Leon S, Hernandez M, Quinones-Falconi F, Bautista E, Ramirez-Venegas A, Rojas-Serrano J, Ormsby CE, Corrales A:Pneumonia and respiratory failure from swine-origin influenza A (H1N1) in Mexico, New England Journal of Medicine 2009,361:680-689
    [5]. Maines TR, Jayaraman A, Belser JA, Wadford DA, Pappas C, Zeng H, Gustin KM, Pearce MB, Viswanathan K, Shriver ZH:Transmission and pathogenesis of swine-origin 2009 A (H1N1) influenza viruses in ferrets and mice, Science 2009,325:484-487
    [6]. Yang N, Hong X, Yang P, Ju X, Wang Y, Tang J, Li C, Fan Q, Zhang F, Chen Z:The 2009 pandemic A/Wenshan/01/2009 H1N1 induces apoptotic cell death in human airway epithelial cells, Journal of molecular cell biology 2011,3:221-229
    [1]. Subbarao K, Klimov A, Katz J, Regnery H, Lim W, Hall H, Perdue M, Swayne D, Bender C, Huang J:Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness, Science 1998,279:393-396
    [2]. Ligon BL:Avian influenza virus H5N1:a review of its history and information regarding its potential to cause the next pandemic. Edited by Elsevier,2005, p. pp. 326-335
    [3]. Yuen K, Chan P, Peiris M, Tsang D, Que T, Shortridge K, Cheung P, To W, Ho E, Sung R: Clinical features and rapid viral diagnosis of human disease associated with avian influenza A H5N1 virus, The Lancet 1998,351:467-471
    [4]. Sheppard P, Kindsvogel W, Xu W, Henderson K, Schlutsmeyer S, Whitmore TE, Kuestner R, Garrigues U, Birks C, Roraback J:IL-28, IL-29 and their class II cytokine receptor IL-28R, Nature immunology 2002,4:63-68
    [5]. Borden EC, Sen GC, Uze G, Silverman RH, Ransohoff RM, Foster GR, Stark GR: Interferons at age 50:past, current and future impact on biomedicine, Nature reviews Drug discovery 2007,6:975-990
    [6]. Friedman RM:Clinical uses of interferons, British journal of clinical pharmacology 2007,65:158-162
    [7]. Guarda G, Braun M, Staehli F, Tardivel A, Mattmann C, Forster I, Farlik M, Decker T, Du Pasquier RA, Romero P:Type I interferon inhibits interleukin-1 production and inflammasome activation, Immunity 2011,34:213-223
    [8]. Comerford I, McColl SR:Mini-review series:focus on chemokines, Immunology and Cell Biology 2011,89:183-184
    [9]. Raman D, Sobolik-Delmaire T, Richmond A:Chemokines in health and disease, Experimental cell research 2011,317:575-589
    [10]. Kopf M, Bachmann MF, Marsland BJ:Averting inflammation by targeting the cytokine environment, Nature reviews Drug discovery 2010,9:703-718
    [11]. Sethi G, Sung B, Kunnumakkara AB, Aggarwal BB:Targeting TNF for treatment of cancer and autoimmunity, Therapeutic Targets of the TNF Superfamily 2009,37-51
    [12]. Park WY, Goodman RB, Steinberg KP, Ruzinski JT, RADELLA F, Park DR, Pugin J, Skerrett SJ, Hudson LD, Martin TR:Cytokine balance in the lungs of patients with acute respiratory distress syndrome, American journal of respiratory and critical care medicine 2001,164:1896-1903
    [13]. Snelgrove RJ, Goulding J, Didierlaurent AM, Lyonga D, Vekaria S, Edwards L, Gwyer E, Sedgwick JD, Barclay AN, Hussell T:A critical function for CD200 in lung immune homeostasis and the severity of influenza infection, Nature immunology 2008, 9:1074-1083
    [14]. Coornaert B, Carpentier I, Beyaert R:A20:central gatekeeper in inflammation and immunity, Journal of Biological Chemistry 2009,284:8217-8221
    [15]. Moore KW, de Waal Malefyt R, Coffman RL, O'Garra A:lnterleukin-10 and the interleukin-10 receptor, Annual review of immunology 2001,19:683-765
    [16]. Sun L, Louie MC, Vannella KM, Wilke CA, LeVine AM, Moore BB, Shanley TP: New concepts of IL-10-induced lung fibrosis:fibrocyte recruitment and M2 activation in a CCL2/CCR2 axis, American Journal of Physiology-Lung Cellular and Molecular Physiology 2011,300:L341-L353
    [17]. Peschke T, Bender A, Nain M, Gemsa D:Role of Macrophage Cytokines in Influenza A Virus Infections, Immunobiology 1993,189:340-355
    [18]. Hofmann P, Sprenger H, Kaufmann A, Bender A, Hasse C, Nain M, Gemsa D: Susceptibility of mononuclear phagocytes to influenza A virus infection and possible role in the antiviral response, Journal of leukocyte biology 1997,61:408-414
    [19]. Lehmann C, Sprenger H, Nain M, Bacher M, Gemsa D:Infection of macrophages by influenza A virus:characteristics of tumour necrosis factor-a (TNFa) gene expression, Research in virology 1996,147:123-130
    [20]. Ramos I, Bernal-Rubio D, Durham N, Belicha-Villanueva A, Lowen AC, Steel J, Fernandez-Sesma A:Effects of receptor binding specificity of avian influenza virus on the human innate immune response, Journal of virology 2011,85:4421-4431
    [21]. Wang J, Nikrad MP, Travanty EA, Zhou B, Phang T, Gao B, Alford T, Ito Y, Nahreini P, Hartshorn K:Innate immune response of human alveolar macrophages during influenza A infection, PloS one 2012,7:e29879
    [22]. Lee SM, Cheung C-Y, Nicholls JM, Hui KP, Leung CY, Uiprasertkul M, Tipoe GL, Lau Y-L, Poon LL, Ip NY:Hyperinduction of cyclooxygenase-2-mediated proinflammatory cascade:a mechanism for the pathogenesis of avian influenza H5N1 infection, Journal of Infectious Diseases 2008,198:525-535
    [23]. Cheung CY, Chan EY, Krasnoselsky A, Purdy D, Navare AT, Bryan JT, Leung CK, Hui KP, Peiris JSM, Katze MG:H5N1 Virus Causes Significant Perturbations in Host Proteome Very Early in Influenza Virus-Infected Primary Human Monocyte-Derived Macrophages, Journal of Infectious Diseases 2012,206:640-645
    [24]. Haye K, Burmakina S, Moran T, Garcia-Sastre A, Fernandez-Sesma A:The NS1 protein of a human influenza virus inhibits type I interferon production and the induction of antiviral responses in primary human dendritic and respiratory epithelial cells, Journal of virology 2009,83:6849-6862
    [25]. Thitithanyanont A, Engering A, Ekchariyawat P, Wiboon-ut S, Limsalakpetch A, Yongvanitchit K, Kum-Arb U, Kanchongkittiphon W, Utaisincharoen P, Sirisinha S:High susceptibility of human dendritic cells to avian influenza H5N1 virus infection and protection by IFN-a and TLR ligands, The Journal of Immunology 2007,179:5220-5227
    [26]. Chabot F, Mitchell J, Gutteridge J, Evans T:Reactive oxygen species in acute lung injury, European Respiratory Journal 1998,11:745-757
    [27]. Weis W, Brown J, Cusack S, Paulson J, Skehel J, Wiley D:Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid, Nature 1988, 333:426-431
    [28]. Wiley DC, Skehel JJ:The structure and function of the hemagglutinin membrane glycoprotein of influenza virus, Annual review of biochemistry 1987,56:365-394
    [29]. Shinya K, Ebina M, Yamada S, Ono M, Kasai N, Kawaoka Y:Avian flu:influenza virus receptors in the human airway, Nature 2006,440:435-436
    [30]. Van Riel D, Munster VJ, De Wit E, Rimmelzwaan GF, Fouchier RA, Osterhaus AD, Kuiken T:H5N1 virus attachment to lower respiratory tract, Science 2006,312:399-399
    [31]. Nicholls J, Chan M, Chan W, Wong H, Cheung C, Kwong D, Wong M, Chui W, Poon L, Tsao S:Tropism of avian influenza A (H5N1) in the upper and lower respiratory tract, Nature medicine 2007,13:147-149
    [32]. Herfst S, Schrauwen EJ, Linster M, Chutinimitkul S, de Wit E, Munster VJ, Sorrell EM, Bestebroer TM, Burke DF, Smith DJ:Airborne transmission of influenza A/H5N1 virus between ferrets, Science 2012,336:1534-1541
    [33]. Imai M, Watanabe T, Hatta M, Das SC, Ozawa M, Shinya K, Zhong G, Hanson A, Katsura H, Watanabe S:Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets, Nature 2012,486:420-428
    [34]. Xu W, Chen M, Ge N, Xu J:Hemagglutinin from the H5N1 Virus Activates Janus Kinase 3 to Dysregulate Innate Immunity, PloS one 2012,7:e31721
    [35]. Suguitan AL, Matsuoka Y, Lau Y-F, Santos CP, Vogel L, Cheng LI, Orandle M, Subbarao K:The Multibasic Cleavage Site of the Hemagglutinin of Highly Pathogenic A/Vietnam/1203/2004 (H5N1) Avian Influenza Virus Acts as a Virulence Factor in a Host-Specific Manner in Mammals, Journal of virology 2012,86:2706-2714
    [36]. Horimoto T, Nakayama K, Smeekens SP, Kawaoka Y:Proprotein-processing endoproteases PC6 and furin both activate hemagglutinin of virulent avian influenza viruses, Journal of virology 1994,68:6074-6078
    [37]. Schrauwen EJ, Herfst S, Leijten LM, van Run P, Bestebroer TM, Linster M, Bodewes R, Kreijtz JH, Rimmelzwaan GF, Osterhaus AD:The multibasic cleavage site in H5N1 virus is critical for systemic spread along the olfactory and hematogenous routes in ferrets, Journal of virology 2012,86:3975-3984
    [38]. Arnon T1, Lev M, Katz G, Chernobrov Y, Porgador A, Mandelboim O:Recognition of viral hemagglutinins by NKp44 but not by NKp30, European journal of immunology 2001,31:2680-2689
    [39]. Mandelboim O, Lieberman N, Lev M, Paul L, Arnon T1, Bushkin Y, Davis DM, Strominger JL, Yewdell JW, Porgador A:Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells, Nature 2001,409:1055-1060
    [40]. Ho JW, Hershkovitz O, Peiris M, Zilka A, Bar-llan A, Nal B, Chu K, Kudelko M, Kam YW, Achdout H:H5-type influenza virus hemagglutinin is functionally recognized by the natural killer-activating receptor NKp44, Journal of virology 2008,82:2028-2032
    [41]. Achdout H, Meningher T, Hirsh S, Glasner A, Bar-On Y, Gur C, Porgador A, Mendelson M, Mandelboim M, Mandelboim O:Killing of avian and Swine influenza virus by natural killer cells, Journal of virology 2010,84:3993-4001
    [42]. Wang X, Li M, Zheng H, Muster T, Palese P, Beg AA, Garcia-Sastre A:Influenza A virus NS1 protein prevents activation of NF-κB and induction of alpha/beta interferon, Journal of virology 2000,74:11566-11573
    [43]. Bergmann M, Garcia-Sastre A, Carnero E, Pehamberger H, Wolff K, Palese P, Muster T:Influenza virus NS1 protein counteracts PKR-mediated inhibition of replication, Journal of virology 2000,74:6203-6206
    [44]. TAN S-L, KATZE MG:Biochemical and genetic evidence for complex formation between the influenza A virus NS1 protein and the interferon-induced PKR protein kinase, Journal of interferon & cytokine research 1998,18:757-766
    [45]. Gack MU, Albrecht RA, Urano T, Inn K-S, Huang I, Carnero E, Farzan M, Inoue S, Jung JU, Garcia-Sastre A:Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I, Cell host & microbe 2009, 5:439-449
    [46]. Mibayashi M, Martinez-Sobrido L, Loo Y-M, Cardenas WB, Gale M, Garcia-Sastre A:Inhibition of retinoic acid-inducible gene I-mediated induction of beta interferon by the NS1 protein of influenza A virus, Journal of virology 2007,81:514-524
    [47]. Nemeroff ME, Barabino S, Li Y, Keller W, Krug RM:Influenza virus NS1 protein interacts with the cellular 30 kDa subunit of CPSF and inhibits 3'end formation of cellular pre-mRNAs, Molecular cell 1998,1:991
    [48]. Noah DL, Twu KY, Krug RM:Cellular antiviral responses against influenza A virus are countered at the posttranscriptional level by the viral NS1A protein via its binding to a cellular protein required for the 3'end processing of cellular pre-mRNAS, Virology 2003, 307:386
    [49]. Gao S, Song L, Li J, Zhang Z, Peng H, Jiang W, Wang Q, Kang T, Chen S, Huang W: Influenza A virus-encoded NS1 virulence factor protein inhibits innate immune response by targeting IKK, Cellular Microbiology 2012,
    [50]. Hale BG, Jackson D, Chen Y-H, Lamb RA, Randall RE:Influenza A virus NS1 protein binds p85β and activates phosphatidylinositol-3-kinase signaling, Proceedings of the National Academy of Sciences 2006,103:14194-14199
    [51]. Kochs G, Garcia-Sastre A, Martinez-Sobrido L:Multiple anti-interferon actions of the influenza A virus NS1 protein, Journal of virology 2007,81:7011-7021
    [52]. Das K, Ma L-C, Xiao R, Radvansky B, Aramini J, Zhao L, Marklund J, Kuo R-L, Twu KY, Arnold E:Structural basis for suppression of a host antiviral response by influenza A virus, Proceedings of the National Academy of Sciences 2008,105:13093-13098
    [53]. Twu KY, Noah DL, Rao P, Kuo R-L, Krug RM:The CPSF30 binding site on the NSIA protein of influenza A virus is a potential antiviral target, Journal of virology 2006, 80:3957-3965
    [54]. Twu KY, Kuo R-L, Marklund J, Krug RM:The H5N1 influenza virus NS genes selected after 1998 enhance virus replication in mammalian cells, Journal of virology 2007,81:8112-8121
    [55]. Obenauer JC, Denson J, Mehta PK, Su X, Mukatira S, Finkelstein DB, Xu X, Wang J, Ma J, Fan Y:Large-scale sequence analysis of avian influenza isolates, Science 2006, 311:1576-1580
    [56]. Zielecki F, Semmler I, Kalthoff D, Voss D, Mauel S, Gruber AD, Beer M, Wolff T: Virulence determinants of avian H5N1 influenza A virus in mammalian and avian hosts: role of the C-terminal ESEV motif in the viral NS1 protein, Journal of virology 2010, 84:10708-10718
    [57]. Jackson D, Hossain MJ, Hickman D, Perez DR, Lamb RA:A new influenza virus virulence determinant:the NS1 protein four C-terminal residues modulate pathogenicity, Proceedings of the National Academy of Sciences 2008,105:4381-4386
    [58]. Zamarin D, Ortigoza MB, Palese P:Influenza A virus PB1-F2 protein contributes to viral pathogenesis in mice, Journal of virology 2006,80:7976-7983
    [59]. Conenello GM, Zamarin D, Perrone LA, Tumpey T, Palese P:A single mutation in the PB1-F2 of H5N1 (HK/97) and 1918 influenza A viruses contributes to increased virulence, PLoS pathogens 2007,3:e141
    [60]. Zell R, Krumbholz A, Eitner A, Krieg R, Halbhuber K-J, Wutzler P:Prevalence of PB1-F2 of influenza A viruses, Journal of General Virology 2007,88:536-546
    [61]. Zamarin D, Garcfa-Sastre A, Xiao X, Wang R, Palese P:Influenza virus PB1-F2 protein induces cell death through mitochondrial ANT3 and VDAC1, PLoS pathogens 2005,1:e4
    [62]. Varga ZT, Ramos I, Hai R, Schmolke M, Garcfa-Sastre A, Fernandez-Sesma A, Palese P:The influenza virus protein PB1-F2 inhibits the induction of type I interferon at the level of the MAVS adaptor protein, PLoS pathogens 2011,7:e1002067
    [63]. Varga ZT, Palese P:The influenza A virus protein PB1-F2:Killing two birds with one stone?, Virulence 2011,2:542-546
    [64]. Hatta M, Gao P, Halfmann P, Kawaoka Y:Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses, Science 2001,293:1840-1842
    [65]. Mok KP, Wong CH, Cheung CY, Chan MC, Lee SM, Nicholls JM, Guan Y, Peiris JS: Viral genetic determinants of H5N1 influenza viruses that contribute to cytokine dysregulation, Journal of Infectious Diseases 2009,200:1104-1112
    [66]. Iwai A, Shiozaki T, Kawai T, Akira S, Kawaoka Y, Takada A, Kida H, Miyazaki T: Influenza A virus polymerase inhibits type I interferon induction by binding to interferon β promoter stimulator 1, Journal of Biological Chemistry 2010,285:32064-32074
    [67]. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent J-L, Ramsay G:2001 sccm/esicm/accp/ats/sis international sepsis definitions conference, Intensive care medicine 2003,29:530-538
    [68]. Abraham E, Glauser MP, Butler T, Garbino J, Gelmont D, Laterre PF, Kudsk K, Bruining HA, Otto C, Tobin E:p55 tumor necrosis factor receptor fusion protein in the treatment of patients with severe sepsis and septic shock, JAMA:the journal of the American Medical Association 1997,277:1531-1538
    [69]. Cohen J:The immunopathogenesis of sepsis, Nature 2002,420:885-891
    [70]. Docke W-D, Randow F, Syrbe U, Krausch D, Asadullah K, Reinke P, Volk H-D, Kox W:Monocyte deactivation in septic patients:restoration by IFN-y treatment, Nature medicine 1997,3:678-681
    [71]. Fowler A, Fisher B, Centor R, Carchman R:Development of the adult respiratory distress syndrome:progressive alteration of neutrophil chemotactic and secretory processes, The American journal of pathology 1984,116:427
    [72]. MUNFORD RS, Pugin J:Normal responses to injury prevent systemic inflammation and can be immunosuppressive, American journal of respiratory and critical care medicine 2001,163:316-321
    [73]. Monneret G, Lepape A, Voirin N, Bohe J, Venet F, Debard A-L, Thizy H, Bienvenu J, Gueyffier F, Vanhems P:Persisting low monocyte human leukocyte antigen-DR expression predicts mortality in septic shock, Intensive care medicine 2006, 32:1175-1183
    [74]. Wurfel MM, Park WY, Radella F, Ruzinski J, Sandstrom A, Strout J, Bumgarner RE, Martin TR:Identification of high and low responders to lipopolysaccharide in normal subjects:an unbiased approach to identify modulators of innate immunity, The Journal of Immunology 2005,175:2570-2578
    [75]. Wurfel MM, Gordon AC, Holden TD, Radella F, Strout J, Kajikawa O, Ruzinski JT, Rona G, Black RA, Stratton S:Toll-like receptor 1 polymorphisms affect innate immune responses and outcomes in sepsis, American journal of respiratory and critical care medicine 2008,178:710-720
    [76]. Mockenhaupt FP, Cramer JP, Hamann L, Stegemann MS, Eckert J, Oh N-R, Otchwemah RN, Dietz E, Ehrhardt S, Schroder NW:Toll-like receptor (TLR) polymorphisms in African children:common TLR-4 variants predispose to severe malaria, Proceedings of the National Academy of Sciences of the United States of America 2006, 103:177-182
    [77]. Khor CC, Vannberg FO, Chapman SJ, Guo H, Wong SH, Walley AJ, Vukcevic D, Rautanen A, Mills TC, Chang K-C:CISH and susceptibility to infectious diseases, New England Journal of Medicine 2010,362:2092-2101
    [78]. Ge D, Fellay J, Thompson AJ, Simon JS, Shianna KV, Urban TJ, Heinzen EL, Qiu P, Bertelsen AH, Muir AJ:Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance, Nature 2009,461:399-401
    [79]. Thomas DL, Thio CL, Martin MP, Qi Y, Ge D, O'hUigin C, Kidd J, Kidd K, Khakoo SI, Alexander G:Genetic variation in IL28B and spontaneous clearance of hepatitis C virus, Nature 2009,461:798-801
    [80]. de Jong MD, Simmons CP, Thanh TT, Hien VM, Smith GJ, Chau TNB, Hoang DM, Chau NVV, Khanh TH, Dong VC:Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia, Nature medicine 2006,12:1203-1207
    [81]. Chan M, Cheung C, Chui W, Tsao S, Nicholls J, Chan Y, Chan R, Long H, Poon L, Guan Y:Proinflammatory cytokine responses induced by influenza A (H5N1) viruses in primary human alveolar and bronchial epithelial cells, Respiratory research 2005,6:135
    [82]. Osterlund P, Pirhonen J, Ikonen N, Ronkko E, Strengell M, Makela SM, Broman M, Hamming OJ, Hartmann R, Ziegler T:Pandemic H1N12009 influenza A virus induces weak cytokine responses in human macrophages and dendritic cells and is highly sensitive to the antiviral actions of interferons, Journal of virology 2010,84:1414-1422
    [83]. Seo SH, Webster RG:Tumor necrosis factor alpha exerts powerful anti-influenza virus effects in lung epithelial cells, Journal of virology 2002,76:1071-1076
    [84]. Loo Y-M, Fornek J, Crochet N, Bajwa G, Perwitasari O, Martinez-Sobrido L, Akira S, Gill MA, Garcfa-Sastre A, Katze MG:Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity, Journal of virology 2008,82:335-345
    [85]. Maines TR, Szretter KJ, Perrone L, Belser JA, Bright RA, Zeng H, Tumpey TM, Katz JM:Pathogenesis of emerging avian influenza viruses in mammals and the host innate immune response, Immunol Rev 2008,225:68-84
    [86]. Barnard DL:Animal models for the study of influenza pathogenesis and therapy, Antiviral research 2009,82:A110-A122
    [87]. Mubareka S, Lowen AC, Steel J, Coates AL, Garcia-Sastre A, Palese P: Transmission of influenza virus via aerosols and fomites in the guinea pig model, Journal of Infectious Diseases 2009,199:858-865
    [88]. Van Riel D, Munster VJ, De Wit E, Rimmelzwaan GF, Fouchier RA, Osterhaus AD, Kuiken T:Human and avian influenza viruses target different cells in the lower respiratory tract of humans and other mammals, The American journal of pathology 2007,171:1215
    [89]. Tumpey TM, Lu X, Morken T, Zaki SR, Katz JM:Depletion of lymphocytes and diminished cytokine production in mice infected with a highly virulent influenza A (H5N1) virus isolated from humans, Journal of virology 2000,74:6105-6116
    [90]. Szretter KJ, Gangappa S, Lu X, Smith C, Shieh W-J, Zaki SR, Sambhara S, Tumpey TM, Katz JM:Role of host cytokine responses in the pathogenesis of avian H5N1 influenza viruses in mice, Journal of virology 2007,81:2736-2744
    [91]. Perrone LA, Plowden JK, Garcia-Sastre A, Katz JM, Tumpey TM:H5N1 and 1918 pandemic influenza virus infection results in early and excessive infiltration of macrophages and neutrophils in the lungs of mice, PLoS pathogens 2008,4:e1000115
    [92]. Cameron CM, Cameron MJ, Bermejo-Martin JF, Ran L, Xu L, Turner PV, Ran R, Danesh A, Fang Y, Chan P-KM:Gene expression analysis of host innate immune responses during Lethal H5N1 infection in ferrets, Journal of virology 2008, 82:11308-11317
    [93]. Baskin CR, Bielefeldt-Ohmann H, Tumpey TM, Sabourin PJ, Long JP, Garcia-Sastre A, Tolnay A-E, Albrecht R, Pyles JA, Olson PH:Early and sustained innate immune response defines pathology and death in nonhuman primates infected by highly pathogenic influenza virus, Proceedings of the National Academy of Sciences 2009, 106:3455-3460
    [94]. Crowe CR, Chen K, Pociask DA, Alcorn JF, Krivich C, Enelow RI, Ross TM, Witztum JL, Kolls JK:Critical role of IL-17RA in immunopathology of influenza infection, The Journal of Immunology 2009,183:5301-5310
    [95]. Dessing MC, van der Sluijs KF, Florquin S, van der Poll T:Monocyte chemoattractant protein 1 contributes to an adequate immune response in influenza pneumonia, Clinical Immunology 2007,125:328-336
    [96]. Perrone LA, Szretter KJ, Katz JM, Mizgerd JP, Tumpey TM:Mice lacking both TNF and IL-1 receptors exhibit reduced lung inflammation and delay in onset of death following infection with a highly virulent H5N1 virus, Journal of Infectious Diseases 2010, 202:1161-1170
    [97]. Willinger T, Rongvaux A, Takizawa H, Yancopoulos GD, Valenzuela DM, Murphy AJ, Auerbach W, Eynon EE, Stevens S, Manz MG:Human IL-3/GM-CSF knock-in mice support human alveolar macrophage development and human immune responses in the lung, Proceedings of the National Academy of Sciences 2011,108:2390-2395
    [98]. Meijvis SC, Hardeman H, Remmelts HH, Heijligenberg R, Rijkers GT, van Velzen-Blad H, Voorn GP, van de Garde EM, Endeman H, Grutters JC:Dexamethasone and length of hospital stay in patients with community-acquired pneumonia:a randomised, double-blind, placebo-controlled trial, The Lancet 2011,377:2023-2030
    [99]. Rivera J, Proia RL, Olivera A:The alliance of sphingosine-1-phosphate and its receptors in immunity, Nature Reviews Immunology 2008,8:753-763
    [100]. Marsolais D, Hahm B, Walsh KB, Edelmann KH, McGavern D, Hatta Y, Kawaoka Y, Rosen H, Oldstone MB:A critical role for the sphingosine analog AAL-R in dampening the cytokine response during influenza virus infection, Proceedings of the National Academy of Sciences 2009,106:1560-1565
    [101]. Teijaro JR, Walsh KB, Cahalan S, Fremgen DM, Roberts E, Scott F, Martinborough E, Peach R, Oldstone M, Rosen H:Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection, Cell 2011,146:980-991
    [102]. Williams AE, Humphreys IR, Cornere M, Edwards L, Rae A, Hussell T:TGF-β prevents eosinophilic lung disease but impairs pathogen clearance, Microbes and infection 2005,7:365-374
    [103]. Bassaganya-Riera J, Song R, Roberts PC, Hontecillas R:PPAR-y activation as an anti-inflammatory therapy for respiratory virus infections, Viral immunology 2010, 23:343-352
    [104]. Budd A, Alleva L, Alsharifi M, Koskinen A, Smythe V, Mullbacher A, Wood J, Clark I:Increased survival after gemfibrozil treatment of severe mouse influenza, Antimicrobial agents and chemotherapy 2007,51:2965-2968
    [105]. Zheng B-J, Chan K-W, Lin Y-P, Zhao G-Y, Chan C, Zhang H-J, Chen H-L, Wong SS, Lau SK, Woo PC:Delayed antiviral plus immunomodulator treatment still reduces mortality in mice infected by high inoculum of influenza A/H5N1 virus, Proceedings of the National Academy of Sciences 2008,105:8091-8096

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700