INCONEL 783合金的组织与应力驰豫性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
INCONEL 783合金作为一种航空用低膨胀高温合金,目前已被用于制作超超临界火力发电机组的螺栓,并有可能用于未来更高参数如650oC以上的机组。然而,目前国内外对该合金在汽轮机工况应用的研究极为缺少,不能为该合金安全合理的使用提供必需的数据。本文对进口与国产两种合金进行了研究,一是用JMatPro材料性能模拟软件结合实验分析对该合金热处理制度的合理性进行了评估,二是对高温应力驰豫特性及相关的组织演变行为进行了分析。结果发现:
     标准热处理工艺的固溶温度对于IN783合金的名义成分是合理的,但对实际Nb、Al含量较高且含C的合金偏低。
     热力学计算显示783合金对η相析出敏感。为避免η相的析出,使用温度建议不超过650oC等级。此外,合金元素Cr、Fe对稳定γ′有利,降低Co、Nb的含量也可以抑制η相的形成。
     β时效对汽轮机螺栓应用仍然是必要的,其作用不仅是提高晶界抗氧化性,而且还可起到减缓γ′的析出、抑制η形成的效果。
     进口合金与国产合金相比有更多的γ′析出和更大的错配度。γ′在β时效时就会析出,并产生正的γ/γ′晶格错配。晶格错配随时效进行而增大,但在γ′二次时效时出现额外的负错配。
     783合金在575oC~700oC下的应力驰豫曲线表现为快速下降和趋于平稳的两个阶段。短时间驰豫数据表明该合金可以用在600oC及其以下,625oC有较大风险,仍需要更长时间的试验进行评估。
     时效工艺的改变会影响驰豫性能,目前所进行的反转时效及附加高温长时时效均导致合金抗驰豫性能弱化。固溶温度的改变及是否固溶对600oC的驰豫行为影响不大,但对更高温度如650oC有明显影响,固溶温度高的抗驰豫性能好;
     在1000h内国产合金有更好的表现,其在600oC的抗驰豫性能优于进口材料;650oC的性能略低于1160oC固溶进口材料,而高于采用标准工艺固溶的材料。
     国产和进口合金在驰豫初始阶段均表现出极高的应力指数,随着时间的延长和温度上升而明显下降;在所测温度范围内激活体积在50~80 b3之间,随温度上升先增大后减小,大体上随时间延长而减小;时效制度不同会对激活体积造成明显影响,但是否二次固溶及固溶温度的选择对激活体积的影响甚小。
     在热处理、长时时效以及应力驰豫条件下β相内都有Heusler相析出,且其析出程度随温度和时间增加,但其对驰豫性能不产生影响。
     783合金的应力驰豫是热激活辅助过程,和γ′粒子的粗化以及位错的回复有关,受交滑移和攀移共同控制,初期交滑移占主导地位,随时间延长,攀移占优。
Low coefficient of thermal expansion (Low CTE) superalloy INCONEL 783 as aerial materials have been made for bolts applied in ultra supercritical steam turbine power set, and even probably in higher service temperature just like above 650oC. However, the effect of these turbine power set on Inconel 783 has few reported about the security. In this thesis, two alloys from homemade and import were selected for evaluating the heating treatment processes through the combination of JMatPro software and experiment data, and also analyzing the high-temperature stress relaxation behavior and microstructure evolution. The results were following:
     Solution temperature of standard heat treatment was reasonable for nominal composition of alloy 783, but lower for real alloys with high content Nb, Al and C addition.
     According to thermodynamic calculation, alloy 783 was sensitive to precipitation ofηphase. Lower 650oC was suggested in order to prevent theηprecipitation. In addition, Cr, Fe additions benefit for stabilizingγ′phase, and theηphase is suppressed by the reduction of Co, Nb.
     The aging ofβphases is not only favorable to the increase of oxidation resistance but also useful to slow upγ’phase precipitation and control theηphase formation.
     Compared to the homemade alloy, the number ofγ′precipitation in imported alloy matrix increase and lattice misfit becomes larger.γ′precipitation started in the step ofβaging, and generated positiveγ/γ′lattice misfit. The lattice misfit increases with ageing, but negative lattice misfit was found inγ’second aging.
     Stress relaxation curves of alloy 783 at 575oC~700oC exhibits two stages including the quick drop and near steady-state. Short time relaxation indicates this alloy can be used at 600oC and below, while longer term exposure is needed to assess the reliability at 625oC.
     Aging process can influence relaxation performance. The reverse and long term exposure aging lead to the weaker relaxation resistance. The solution temperature and solution or not have not caused the change in the relaxation characteristics at 600oC, but significantly increase at higher temperature.
     The homemade alloy shows better performance than the imported alloy for 1000h relaxation at 600oC. And at 650oC, it is slight inferior than the imported alloy undergoing 1160oC solid-solution, but better than that with standard heat-treatment
     Two alloys at first stage relaxation reveal the extremely high stress indicies, reducing significantly with the increase of time and temperature. Activation volume ranges from 50 to 80 b3, which increase and then reduce with temperature, reduce straightly with time.
     The aging process has a large influence on activation volume, but no obvious change was found from second solid-solution and temperature.
     The Heusler precipitate fromβphases under heat treatment, long-term aging and stress relaxation. These phases are strongly depending on temperature and time but not show effect with relaxation performance.
     The stress relaxation of alloy 783 is assisted by thermal-activation, which related toγ′particle coarsening and dislocation recovery, and controlled by dislocation cross-slipping and climbing. At the initial stage, cross-slipping may occupy the predominant position; climbing will take control gradually as creep continues.
引文
1.阳虹,彭泽瑛.加快高超超临界汽轮机的发展步伐,热力透平,2010,39(1):1-5.
    2.王立新,孙丙新.超临界汽轮机主要部件金属材料的选用与国产化分析,内蒙古电力技术,2008, 26(1):4-7.
    3.沈邱农,陈文辉.超超临界汽轮机的技术特点,动力工程, 2002.4:1659~1660
    4.刘堂礼.超临界和超超临界技术及其发展.广东电力,2007,20(1):19-22.
    5.史进渊,杨宇,孙庆,崔琦,张兆鹤.超超临界汽轮机技术研究的新进展,动力工程,2003.4:2252-2257
    6. Smith D F, Smith J S. A history of controlled low thermal expansion superalloys. Russell K C, Smith D F. Physical metallurgy of controlled expansion Invar-type alloys. 1990, 253-272.
    7. Scott H, Expansion properties of low-expansion Fe-Co-Ni alloys. Trans. Am.Inst. of Mining and Metallurgical Engineers, 1930, 89, 506-537.
    8. Hunsicker H Y, Stumpf H C. History of precipitation hardening. ed. By Smith C S. The sorby centennial symposium on the history of metallurgy[M]. New York: Gordon and Breach Science Publishers, 1965, 271-311
    9. Pilling N B, Talbot A M. Age hardenable, Nickel-Iron-Chromium-Titanium alloy possessing controlled thermoelastic properties. U.S. Patent: 2266482, 1941,12.16
    10. Eiselstein H L, Bell J K. Alloy characterized by controlled thermoelasticity at elevated temperatures. U.S. Patent:3157495, 1964-11-17.
    11. Huntington Alloys. Incoloy alloy 903[R]. 5M7-78 s-51.
    12. Smith D F, Wenschhof D E, A survey of progress in controlled-expansion. Age-Hardenable Nickel-Iron-Cobalt alloys[R]. The TMS-AIME fall meeting. Detroit. Michigan. Oct. 18-21, 1971.
    13. Wanner E A, Deantonio D A, Smith D F, et al. The current status of controlled thermal expansion superalloys. Journal of Metals, 1991, 43(3): 38-43.
    14. Smith D F, Tillack D J.燃汽涡轮用的低膨胀超级合金.国际燃汽涡轮研讨会,北京,1985.
    15. Bricknell R H, Woodford D A. Grain-boundary embrittlement of the iron-base superalloy In903A. Met Trans, 1981,12A: 1673-1679.
    16. Inco Alloys International, Inclloy alloy 907. Publication no. IAI-22, 1987.
    17. Smith J S, Smith D F. Controlled expansion alloy. U.S.Patent: 4487743, 1984-10-1.
    18. Inco Alloys International, INCOLOY alloy 909. Publication No. IAI-18,1987.
    19. Heck K A, Smith D F, Smith J S, et al. The physical Metallurgy of a silicon-containing low expansion superalloy. Superalloys 1988(Conference Proceedings0, TMS-AIME, 1988, 151-160.
    20. Heck K A, Smith D F, Holderby M A, et al. Three-Phase controlled expansion superalloys with oxidation resistance. Superalloys 1992(Conference Proceedings), TMS-AIME, 1992, 217-226.
    21. Tundermann J H. Development of INCONEL alloy 783. A low thermal expansion, crack growth resistance superalloys. Inco alloys international. Inc. Huntington 25705-1771.
    22. Smith J S, Heck K A. Development of a low thermal expansion, crack growth resistant superalloy. Superalloys 1996(conference Proceddings), TMS-AIME, 1996, 91-100.
    23.邓波,韩光炜,冯涤,低膨胀高温合金的发展及在航空航天业的应用,航空材料学报,2003, 23:244-249
    24.赵中平.汽轮机高温螺栓材料的选择.动力工程,1984(3)
    25.上海发电设备成套设计研究所. R26合金代用研究报告,1989.
    26.上海发电设备成套设计研究所.性能数据. 1995.
    27. Mayer K H. Operating experience and life span of heat-resistant bolted joints in stream turbine of fossil-fired power stations. International conference on creep and fatigue. I Mech E, 1980.
    28.赵中平.再论汽轮机高温螺栓材料的选择.动力工程, 1999, 19(2): 71-75.
    29. Mayer K.H., The expected and actual life of stream turbine bolts and castings. International Journal of Pressure Vessels and piping, 1989, 39(1-2):3-27.
    30. Granacher J., Klenk A., Tramer M., Schellenberg G. Mueller F., Ewald J. Creep fatigue crack behavior of two power plant steels. International Journal of Pressure Vessels and piping., 2001, 78(11-12): 909-920.
    31. Bulloch J.H. Near threshold fatigue crack propagation behaviour of CrMoV turbine steel. Theoretical and Applied Fracture Mechanics, 1995, 23(1):89-101.
    32.林富生,超超临界参数机组材料国产化对策,动力工程,2004.6:313
    33.能源部西安热工研究所.热工技术手册电厂金属.北京:水利电力出版社,1991.
    34.乔立捷.汽轮机螺栓的材料特性与失效研究.华北电力大学,硕士学位论文,2008.
    1. Smith J.S. and Heck K.A. Development of a low thermal expansion, crack growth resistance superalloy. Superalloys 1996, Edited by R.D. Kissinger et al, TMS, 1996, pp. 91-100.
    2. Heck K., Smith J.S., Smith R. INCONEL alloy 783: an oxidation resistance, low expansion superalloy for gas turbine application. Journal of Engineering for Gas Turbine and Power, April 1998, Vol. 120, pp. 1-7.
    3. Ma L.Z., Chang K.M., Mannan S.K. Oxide-induced crack closure: an explanation for abnormal time-dependent fatigue crack propagation behavior in INCONEL alloy 783. Scripta Materialia, Vol.48, 2003, pp. 583-588.
    4. Yamamoto R., Kadoya Y., Kawayi H., et al. Alloy design and material properties of ni-based superalloy with low thermal expansion for steam turbine. Iron & Steel, vol.90, no.1, 2004, pp.37-42.
    5. Siemens AG. Bolts and nuts made of alloy 783 for steam turbines. Technical Purchasing Specification, TLV1060, 2005.
    6. G. R. Holcomb, Covino B. S., Bullard Jr., S. J., et al. Ultra supercritical turbines—steam oxidation. DOE/ARC2004-064.
    7. Saunders N., Fahrmann M., Small C. J. The application of calphad calculation to ni-based superalloys. Superalloys 2000, Edited by. Green K. A. et al, TMS, pp. 803-811.
    8. Saunders N., Guo Z., Li X., Miodownik A. P., and SchilléJ-Ph. Modelling the material properties and behaviour of ni-based superalloys. Superalloys 2004, Edited by. K. A. Green et al, TMS, pp. 849-858.
    9.郭建亭,高温合金材料学(上册),北京:科学出版社, 2008,p. 292.
    10. Jia C. C., Ishida K. and Nishizawa T. Partition of alloying elements betweenγ(A1),γ′(L12), andβ(B2) phases in ni-al base systems. Metallurgical and Materials Transactions A, Vol.25, No. 3, 1994, pp.473-485.
    11. Masumoto H., Sait? H., K?no T. And Sugai Y. Thermal expansion coefficient, rigidity modulus and its temperature coefficient of the alloys of iron, nickel, cobalt and chromium and relations of super-invar to stainless invar and of elinvar to co-elinvar. Nippon Kinzoku Gakkai-Si, 19 (1955), 478; 481
    12. Heck K. A., Simth J. S., Smith R., INCONEL? 783 alloy: an oxidation-resistant, low expansion superlloy for gas-turbine applications. Journal of Engineering for Gas Turbines and Power, Vol. 120, 1998, pp. 363-369.
    13.邓波,韩光炜,冯涤.低膨胀高温合金的发展及在航空航天业的应用.航空材料学报, Vol. 23, Supplement, 2003 (10), pp. 244-249.
    14. Fahrmann M. G., Wereszczak A. A., Kirkland T. P., Stress relaxation behavior and dimensional stability of INCONEL? alloy 783, Mater. Sci. Eng., A271 (1999), pp. 122-127.
    15. Kang B., Liu X.B., Cisloiu C., Chang K., High temperature moire′interferometry investigation of creep crack growth of inconel 783 environment andβ-phase effects. Mater. Sci. Eng. A347 (2003), pp. 205-213.
    16. Lyons J. S., Reynolds A. P. and Clawson J. D., Effect of aluminide particle distribution on the high temperature crack growth characteristics of a Co-Ni-Fe superalloy, Scr. Mater., Vol. 37, No. 7, 1997, pp. 1059-1064.
    17. Ma L. Z., Chang K., Mannan S. K., Patel S. J., Effects of NiAl-b precipitates on fatigue crackpropagation of INCONEL alloy 783 under time-dependent condition with various load ratios, Scr. Mater., Vol. 48, No. 5, 2003, pp. 551-557
    18. Ma L. Z., Chang, K., Mannan S. K. Oxide-induced crack closure: An explanation for abnormal time-dependent fatigue crack propagation behavior in INCONEL alloy 783, Scr. Mater, Vol. 48, No.
    5, 2003, pp. 583-588.
    19. Ma L. Z., Chang, K., Identification of SAGBO-induced damage zone ahead of crack tip to characterize sustained loading crack growth in alloy 783, Scr. Mater., Vol. 48, No. 9, 2003, pp. 1271-1276.
    20. Han G. W., Zhang Y. Y., Segregation of niobium and aluminum in GH783 alloy ingots. Mater. Sci. Eng. A412 (2005), pp. 198-203.
    21. Han G. W., Zhang Y. Y., Variations in microstructure and properties of GH783 alloy after long-term thermal exposure. Mater. Sci. Eng. A441 (2006), pp. 253-258.
    22. Woodford D. A., Advances in the use of stress relaxation data for design and life assessment in combustion turbines, JSME International Journal A, Vol. 45, no. 1, 2002, pp. 98-103.
    23. Borzdyka A. M., Relaxation resistance of heat-resistant alloy containg cobalt, Metal Science and Heat Treatment, Vol. 19, No. 11, 1978, pp. 937-940
    24. Ronald L. K., Donald R. H., High-Chromium Ferritic and Martensitic Steels for Nuclear Applications, ASTM International: PA, USA. 2001, p. 11.
    25.中华人民共和国国家标准GB/T 2039-1997《金属拉伸蠕变及持久试验方法》,1997
    26. Hedworth J., Stowell M. J., The measurement of strain-rate sensitivity in superplastic alloys, J. Mater. Sci., Vol. 6, No. 8, 1971, pp. 1061-1069.
    27. Conrad H., A thermal component of the flow stress in crystalline solids, Mater. Sci. Eng., Vol. 6, No.4, 1964, pp. 265-273.
    28. Sargent G. A., Conrad H., Stress relaxation and thermally activated deformation in a titanium-4 wt. per cent aluminum alloy, Scr. Metal., Vol. 4, No. 2, 1970, pp. 129-133.
    29. Evans A. G., Rawling R. D., The thermally activated deformation of crystalline materials, Phys. Stat. Sol., Vol. 34, No.9, 1969, pp. 9-31.
    30. Guiu F., Pratt P. L., Stress relaxtion and the plastic deformation of solids, Phys. Stat. Sol., Vol. 6, No. 1, 1964, pp. 111-120.
    31. Oikawa H., Langdon T. G., The creep characteristics of pure metals and metallic solid solution alloys, in‘Creep Behavior of Crystalline Solids’, ed. By Wilshire B., Evans R. W., (Swansea, U. K: Pinridge Press Limited, 1985), pp. 33-82.
    32. Geckinli A. E., Barrett C. R., Superplastic deformation of the Pb-Sn eutectic, J. Mater. Sci., Vol. 11 No. 3, 1976, pp. 510-521.
    33. Poirier J. P., Creep of Crystals: High-temperature deformation processes in metals, ceramics and minerals. Cambridge University Press: New York, USA. 1985, pp. 97-114.
    34. Leyens C. and Peters M., Titanium and Titanium alloys. Fundamentals and Applications. WILEY-VCH Gmb & Co. KGaA: Weinheim, German. 2003, p. 110.
    35. Malaplate J., Caillard d. and Couret A., Interpretation of the stress dependence of creep by a mixed climb mechanism in TiAl, Philosophical Magazine, Vol. 84, No. 34, 2004, pp. 3671-3687.
    36. Manonukul A., Dunne F. P. E, Knowles d., Physically-based model for creep in nickel-base superalloy C263 both above and below the gamma solvus, Acta Materialia, Vol. 50, No. 11, 2002, pp. 2917-2931.
    37. Han G. W., Zhang Y. Y., Variation s in microstructure and properties of GH783 alloy after long-term thermal exposure, Mater. Sci. Eng., A441 (2006), pp. 253-258.
    38. Li H. T., Guo J. T., and Ye H. Q., Composition dependence of the precipitation behavior in NiAl-Cr(Mo)-(Ti,Hf) near eutectic alloys, Mater. Sci. Eng. A452-453 (2007), pp. 763-772

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700