3A21铝合金和20#钢管-管磁脉冲焊接工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁脉冲焊接(Magnetic Pulse Welding/MPW)是一种基于电磁成形的固相连接技术。将MPW应用于铝合金-钢等异种材料的管-管焊接有利于实现零件轻量化结构设计。本文在对工艺参数解析的基础上,采用数值模拟和试验研究相结合的方法,对获得铝合金-钢管件磁脉冲焊接接头的条件和主要参数的影响规律进行了系统研究。
     首先给出了磁脉冲焊接工艺参数的解析计算流程,得出磁脉冲焊接系统参数对接头连接效果的影响规律,结果表明:降低系统电感,提高等放电能量条件下的电压,可以提高磁场力载荷值和加载速率,并降低能量损耗,因此有利于磁脉冲焊接工艺的实现。
     采用类比的方法,引入爆炸焊接工艺中流动限、形成波形界面临界速度作为衡量磁脉冲焊接形成条件和焊接效果的判断标准,分析得到碰撞速度和碰撞角度是形成磁脉冲焊接的关键因素。
     建立了管-管磁脉冲焊接系统的有限元分析模型,采用半耦合法处理脉冲磁场力作用下的管件变形、冲击碰撞过程主要涉及到的磁场与变形耦合问题。以碰撞速度为标准,参照碰撞过程中连接管件运动和变形加速度的变化,评价了各工艺参数对接头焊接效果的影响。数值模拟分析结果表明:减少线圈匝数,提高等放电能量条件下的电压,选择合理的工件间隙均可以提高碰撞速度,有利形成磁脉冲焊接接头。
     用试验方法探索了中低固有频率电磁成形设备实现磁脉冲焊接的途径,即选用低电感的成形连接系统,采用电压值“窗口”的上限,通过优化接头搭接区径向间隙及其与线圈的相对位置,创造获得焊接接头的有利条件。通过单向拉伸和连接区的剥离试验,检验了连接接头的力学性能,在放电电压5.5 kV、电容量720μF、直径20 mm的5匝线圈的条件下得到了连接强度高于铝合金母材的连接接头。用扫描电镜对3A21铝合金和20#钢管-管磁脉冲焊接接头的微观形貌和成分进行了分析。结果表明:焊接接头上存在宽度不等的趋于平直过渡区,铝钢界面附近的钢的晶粒发生了明显的塑性变形,在过渡区内铁铝元素发生了互扩散,并且铁元素向铝基体内扩散的距离大。
Magnetic pulse welding (MPW) is a solid-state joint technology based on electromagnetic forming. Feasible design of lightweight components can be achieved by using MPW technology for dissimilar metals tube such as aluminum and steel. In this work, based on theoretical analysis of the parameters, the necessary conditions for obtaining the MPW joints between aluminum and steel and main parameters affecting them were investigated through numerical simulation and experiments.
     By theoretical analysis, firstly, a calculation procedure for MPW was proposed. And the effects of main parameters of the forming system on the MPW joints were obtained. The results show that reducing system inductance and increasing the discharge voltage under the equivalent discharge energy can be utilized to improve magnetic force and loading rate, reduce energy loss, so as to facilitate the realization of MPW process.
     By analogical method, the explosive welding process parameters: flow limit, the critical formation velocity of the fluctuant interface were introduced to evaluate the formation conditions and joining quality of MPW joints. It is obtained that the impact velocity and angle are the key factors to the formation of MPW.
     Finite element model was established for MPW of aluminum and steel tubes. Semi-coupled method was chosen to solve the coupling field problem between magnetic field and deformation. The impact velocity and acceleration were chosen to measure the effects of all parameters on the MPW during the collision. Simulation results show that reducing the turn number of coil, increasing the discharge voltage under same energy, choosing a reasonable workpiece gap can enhance the collision velocity and facilitate the realization of MPW.
     The ways to achieve magnetic pulse welding joints by a equipment with the low nature were explored experimentally. Using the low-inductance forming system, adopting the upper discharge voltage, optimizing the radial gap between the workpieces and joining pairs and the coil can be utilized to create favorable conditions for welding. By the uniaxial tensile and the peel test, the mechanical properties of the MPW joints were verified. Under discharge voltage 5.5kV and capacitance 720μF, a coil of five turns with inner diameter 20 mm was used to perform the MPW process, by which a joint whose strength is larger than the aluminum base metal is obtained.
     The morphology and composition of dissimilar materials joints of 3A2l aluminum and 20 steel was analyzed by SEM. The results show that there is a approximate flat transition zone between aluminum and steel, whose width is not uniform. The diffusion of Fe and Al was investigated in the transition zone. Diffusion depth from Fe to AL is larger than that from AL to Fe.
引文
1.于海平,徐殿国,李春峰.异种金属磁脉冲连接技术的研究与应用.锻压技术, 2009, (2): 1-6
    2.陈涛.铝及铝合金管的焊接工艺研究.化工设计通讯. 2007, 33(3): 46-47
    3. Benedyk, J. C. TMS 2001: Aluminum Joining Technology for Transportation and Structural Applications. Light Metal Age. 2001, 59: 48-51
    4. Kore SD, Date PP, Kulkarni SV. Effect of Process Parameters on Electromagnetic Impact Welding of Aluminum Sheets. International Journal of Impact Engi- neering. 2007, 34(8): 1327-1341
    5.王永志,李春峰,赵志衡,等.管-杆磁脉冲连接工艺研究.锻压机械, 1999, (1): 12-14
    6. A. Kochan. Magnetic Pulse Welding Shows Potential for Automotive Applica-tions. Assembly Automation. 2000, 20(2): 129-131
    7. Stefan Mehnert. FEM Simulation of Magnetic Forming Processes- Opportunities for Light Weight Suspensions. SAE 2000 World Congress, Detroit, Michigan, 2000
    8. Kim Ill-Soo, Park Chang-Eun, Kim Hak-Hyoung, Son Joon-Sik, Xue Yu, Kang Bong-Yong. A Study on Development of FEM Model for the Optimal Process Parameter in An Electromagnetic Impulse Welding. Journal of the Chinese Society of Mechanical Engineers, Transactions of the Chinese Institute of Engineers, Series C/Chung-kuo Chi Hsueh Kung Ch'eng Hsuebo Pao, 2006, 27(2): 217-221
    9.李春峰.高能率成形技术.国防工业出版社, 2001: 1-65
    10.韩飞,莫健华,黄树槐.电磁成形技术在汽车制造中的应用.塑性工程学报, 2006(5): 100-106
    11.孙明如.电磁脉冲焊原理及应用.焊接技术, 1999, (6): 13-15
    12. M. Kimchi, D. Workman, J. E. Gould. Advanced Welding Techniques for Aluminum Alloys. Welding in the World, 2002 (46): 157-168
    13. Zhang P, Kimchi M, Shao H, et al. Analysis of the Electromagnetic Impulse Joining Process with A Field Concentrator. 8th International Conference on Numerical Methods in Industrial Forming Processes, Columbus, OH, 2004
    14. Shribman, O. Gafri , Y. Livshitz. Magnetic Pulse Welding & Joining- A New Tool for the Automotive Industry. Automotive & Transportation Technology Congress & Exhibition, Barcelona, Spain, 2001
    15. Shribman V, Stern A, Livshitz Y, et al. Magnetic Pulse Welding Produces High-Strength Aluminum Welds. Welding Journal, 2002, 4: 33-37
    16. Marya M, Priem D, Marya S. Microstructure at Aluminum Copper Magnetic Pulse Weld. Materials Science Forum, 2003, 426-432: 4001-4006
    17. Kohn G, Stern A, Munitz A. Advanced Welding Technologies for Magnesium Alloys [EB/OL]. http: //www.sae.org/technical /papers/ 2001-01-3442, 2001
    18.訾炳涛,崔建忠,巴启先.电磁复合新技术.金属成形工艺, 1997, (3): 12-14
    19. A. Ben-Artzy, A.Stern, N. Frage. Interface Phenomena in Aluminum-Magnesium Magnetic Pulse Welding. Science and Technology of Welding and Joining. 2008, 13(4): 402-408
    20. Ben-Tzion Spitz, Victor Shribman. Magnetic Pulse Welding for Tubular Applications: Discovering New Technology for Welding Conductive Materials [EB/OL]. http:/www·thefabri- cator·com/ tubepipefabrication/ tubepipefabrica-tion_arti- cle·ID=54, 2001
    21. Omokatsu Aizawa, Mehrdad Kashani, Keigo Okagawa. Application of Magnetic Pulse Welding for Aluminum Alloys and SPCC Steel Sheets. Welding in the World, 2005, 49(9): 212-222
    22. Pradip K Saha. Electromagnetic Forming of Various Aircraft Components. SAE Technical Paper Series (2005-01-3307). SAE International Aerotech Congress and Exhibition. TX, USA, 2005: 1-11
    23. Shribman V, Gafri O, Livshitz Y. Magnetic Pulse Welding and Joining- A New Tool for the Automotive Industry. SAE Technical Paper Series (2001-01-3408). SAE Int and Messe Dusseldorf Attce Proc Manufacturing. 2001, 3: 131-146
    24. Yuri Livshiz, Oren Gafri. Technology and Equipment for Industrial Use of Pulse Magnetic Fields. Digest of Tech Papers- IEEE Int. Pulsed Power Conf., 1999
    25. Peihui Zhang. Joining Enabled By High Velocity Deformation. Ph. D. Disser-tation of the Ohio State University. 2003: 209-213
    26.郑东辰.台湾电磁脉冲结合、成形研发现况及应用商机. 2008年电磁脉冲焊接/成形技术及应用国际研讨会,高雄, 2008
    27. Zhang Yuan, Daehn Glenn, L'Eplattenier Pierre, Babu Suresh. Experimental Study and Numerical Simulation on Magnetic Pulse Welding for Preflanged AA6061-T6 and Cu101 Sheets. ASM Proceedings of the International Conference: Trends in Welding Research - Proceedings of the 8th International Conference. 2009: 715-720
    28. SERIZAWA Hisashi, SHIBAHARA Isao, RASHED Sherif and MURAKAWA Hidekazu. Numerical Study of Joining Process in Magnetic Pressure Seam Welding. Transactions of JWRI. 2009, 38 (1): 63-68
    29. M. Kimchi, H. Shao, W. Cheng,P. Krishnaswamy. Magnetic Pulse Welding Aluminum Tubes to Steel Bars. Welding in the World,2004, 48(3-4): 19-22
    30. Mitsuhiro Watanabe, Shinji Kumai. Interfacial Morphology of Magnetic PulseWelded Aluminum/Aluminum and Copper/Copper Lap Joints. Materials Tran-sactions. 2009, 50(2): 286-292
    31.李树华,文斌权,樊子柱,范永明,等.电磁爆炸压接焊工艺研究.核动力工程, 1991(6): 70-77
    32.熊海芝,陈亦伟,宋福民,于连仲.磁脉冲压力连接管件的研究.锻压技术, 1994, (6): 31-34
    33.张雷.复合金属的电磁压接试验研究.焊接技术,1998, (1):12-13
    34. Kore S D, Date P P, Kulkarni S V. Effect of Process Parameters on Electro-magnetic Impact Welding of Aluminum Sheets. International Journal of Impact Engineering, 2007, (34): 1327-1341
    35. S. D. Kore, P. P. Date, S. V. Kulkarni. Electromagnetic Impact Welding of Aluminum to Stainless Steel Sheets. Journal of Materials Processing Technology. 2008, 208: 486~493
    36. Shribman V. Take Advantage of the New Magnetic Pulse Welding Process. Svetsaren, A Welding Review. 2001, 56(2-3): 14-16
    37. Priem D, Marya S K. Application of Magnetic Pulse Welding for Dissimilar Aluminum-Copper Joints [EB/OL]. http: //www.aws.org/conferences/abstracts /2003/02b.pdf
    38. M. Marya, D. Priem, S. Marya. Microstructures at Aluminum-Copper Magnetic Pulse Weld Interfaces. Materials Science Forum, 2003, 426-432(5): 4001-4006
    39. A. Stern, M. Aizenshtein. Bonding Zone Formation in Magnetic Pulse Welds. Science and Technology of Welding & Joining, 2002, 7( 5): 339-342(4)
    40.雷银照.轴对称线圈磁场计算.中国计量出版社, 1991: 195-200
    41.陈浩.磁脉冲加工的物理基础及计算方法.航天制造技术. 2004, (4): 1-7
    42.赵铮,王金相,杭逸夫,葛伟.双金属复合板爆炸焊接窗口研究.科学技术与工程, 2009, (5): 1126-1129
    43.王耀华.金属板材爆炸焊接研究与实践.北京:国防工业出版社, 2007
    44.王宇新,孙明,杨文彬.双金属爆炸焊接窗口计算机仿真.爆破器材. 2002, (5): 29-32
    45.邵丙璜,张凯.爆炸焊接原理及其工程应用.大连:大连理工大学出版社, 1987
    46.李晓杰,杨文彬,奚进一,等.厚板平行爆炸焊接参数的选取.第五次全国爆轰与冲击动力学学术会议论文集, 1997: 192-198
    47.王铁福.爆炸焊接参数的计算机辅助设计.高压物理学报. 2004, 9(3): 245-250
    48. G. R. Cowan, O. R. Bergmann, and A. H. Holtzman. Mechanism of Bond ZoneWave Formation in Explosive Clad Metals. Metallurgical Transactions, 1971, 2: 3145-3155
    49. Blazynski T Z. Explosive Welding Forming and Compaction. Application Science Publishers Ltd, 1983
    50. Vaiddyanathan P V, Ramannathan A R. Computer-Aided Design of Explosive Welding System. J Materials Processing Technology, 1993, 38: 501-516
    51. Krishnan J, Kakodkar A. An Explosive Investigation into Tube to Tuber- Plate Welding Using the Impactor Method. Journal of Materials Processing Technology, 1990, 22: 191-201
    52. Stivers S W, Wittman R H. Computer Selection of the Optimum Explosive Loading and Welding Geometry. Proc 5th Int Conf. on High Energy Rate Forming. University of Denver, 1975, 4. 2.1-4. 2. 16

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700