A/A/O工艺处理城市污水除磷脱氮性能试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着经济的发展,无论是发达地区还是欠发达地区,水污染及富营养化的问题都已经成为环境治理的难题,城市污水处理厂能否实现对污水中N、P的良好去除成为出水达标排放的关键。目前,我国大中型城市污水处理厂大多采用A/A/O及其变形工艺为主要的生物处理手段。然而,A/A/O工艺的固有缺陷影响了其处理效果和进一步的推广。A/A/O工艺中反硝化除磷的实现可以弥补该工艺自身的不足,达到同时除磷脱氮,能够节省碳源和能源,为该工艺在实际工程中的升级改造提供依据。因此研究A/A/O工艺处理城市污水除磷脱氮性能具有重要意义。
     本试验以郑州市某污水处理厂的实际进水为处理对象,运用A/A/O连续流装置考察了影响其除磷脱氮性能的主要因素,并对两点进水A/A/O工艺的进水比加以探讨,得出如下结论:
     (1)在A/A/O系统中能够实现相对稳定的生物除磷脱氮,在处理城市污水的过程中,可以通过控制适当的参数富集聚磷微生物,实现良好的氮磷去除效果。在启动期,缺氧区吸磷量从最初的0mg/L逐渐上升到16mg/L,系统中可能存在反硝化聚磷菌。
     (2)系统内ORP经历先负后正的过程,厌氧区的ORP值为负,通常在-100--250之间变化,且ORP在厌氧区的值越小,越有利于厌氧放磷。缺氧区的ORP大于厌氧区的,但是仍然为负值。好氧区的ORP为正值。对A/A/O系统内ORP和pH沿程变化规律的探讨可以为污水处理厂实现自动控制提供参考。
     (3)混合液回流比为200%,污泥回流比为100%,污泥龄为15d,厌氧区与缺氧区的容积比为1:1时,A/A/O工艺能够取得最佳的除磷脱氮效果,出水TP、TN浓度分别为0.28mg/L和12.9mg/L。此外,无论何种工况对COD的去除影响不大,其去除率始终保持在90%左右,出水浓度在20mg/L左右。
     (4)通过对最佳运行工况条件下的试验结果进行物料衡算得到COD在厌氧区、缺氧区、好氧区的变化量所占比例分别为83.2%、15.0%、1.8%;TN在三个反应区中的变化量所占比例依次分别为89.0%、8.2%、2.8%;TP在缺氧区、好氧区的变化量所占比例分别为62.6%、37.4%。后续静态试验中得到缺氧吸磷微生物占好氧吸磷微生物的比例约为0.52,表明系统中缺氧吸磷微生物得到了优势增殖。
     (5)两点进水比的变化对COD去除的影响较小,COD的去除率随着进水比的增加而略微波动。而TN、NH4+-N、TP的去除率随着进水比的增加而呈现明显升高的趋势。在进水比为3:7时,TN、NH4+-N、TP的去除率波动较大,系统对它们的去除不稳定,抗冲击能力弱。当进水比为7:3时,三者的平均去除率分别为70.3%、98%、92.5%,出水中污染物浓度均能满足污水排放一级A的标准。
     (6)与单点进水相比,两点进水比为7:3时,TN和NH4+-N的平均去除率较高,且去除相对稳定。而TP和COD的去除率为单点进水时略高。无论是单点进水还是进水比为7:3时的两点进水,出水污染物浓度均能满足排放标准。建议在实际污水处理过程中,当TN的去除率较低,其出水中的浓度较高,而TP的去除不构成限制因素时(即处理效果达标),可以采用两点进水的方式运行以提高其去除率。
     (7)在实际城市污水处理厂运行过程中,应重点考察各因素对反硝化聚磷菌的影响,创造有利于提高反硝化聚磷菌富集和生长活性的条件,使反硝化除磷菌充分发挥优势,起到节省碳源及能源的作用。
In recent years, issues of water pollution and eutrophication have become serious environmental problems waiting to solve in both developed regions and less developed areas along with the improvement of economic. For municipal wastewater treatment plant, the key to make the effluent satisfy the discharge standards is to realize the high efficiency removal of nitrogen and phosphorus. In China, most medium and large municipal sewage treatment plants usually take use of A/A/O process and its deformation as the primary means of wastewater biological treatment. However, the inherent defects of A/A/O process have hampered its treatment results and further promotion. The application of denitrifying phosphorus removal can make up for deficiencies of A/A/O process, achieving nitrogen and phosphorus removal by denitrification at the same time and saving carbon and energy source, which provides the basis for the upgrade of A/A/O process. So, It takes great significance to research A/A/O process for municipal sewage nitrogen and phosphorus removal by denitrification performance.
     In this thesis, we took the actual intake of a sewage treatment plant in Zhengzhou City as our study object, used A/A/O devices to achieve a continiuous flow of nitrogen and phosphorus removal by denitrification, investigated the main factors influencing the A/A/O process denitrifying phosphorus and nitrogen removal performace and explored the influent ratio of two-point water how to affect the removal effect of A/A/O process. Finally we can drew the following conclusion:
     (1) The system can obtain a relative stabe denitrificaiton biological nitrogen and phosphorus removal in treating municipal wastewater, realize the enrichment of the denitrifying phosphate by controling the appropriate parameters and achieve a good nitrogen and phosphorus removal effect. In the start-up period, the amount of phosphorus uptake in anoxic zone increased from 0 mg/L to 16 mg/L accounting for a larger proportion of the total P uptake, which meaned the realization of denitrificaiton of phosphorus in system.
     (2) The oxidation reduction potential (ORP) went though the after the first negative-positive process within the system and ORP value always varied from-100 to-300. The ORP value is usually negative in anaerobic zone and the smaller this value, the more conductive to anaerobic phosphorus release, while the ORP value is positive in aerobic zone. The exporation of ORP and pH changes'laws along with the whole system can provide both a reference for achieving automatic control of sewage treatment plants and a basis for realization of denitrification phosphorus and nitrogen removal.
     (3) The A/A/O process can obtain the best phosphorus and nitrogen removal effect with mixture reflux ratio of 200%, sludge reflux ratio of 100%, sludge age of 15d and the volume ratio between anaerobic zone and anoxic zone of 1:1, when the effluent TP, TN concentrations were respectively 0.28mg/L and 12.9mg/L. In addition, the removal rate of COD remained at about 90% and the effluent concentration kept at 20mg/L or so regardless of operating conditions.
     (3) COD removal percentage was respectively 83.2%,15.0% and 1.8% in anaerobic zone, anoxic zone and aerobic zone under the best operating conditions through accounting materials. TN removal percentage was 89.0%,8.2% and 2.8% in three reaction zones. The removal percentage of TP was 62.6% and 37.4% respectively in anoxic zone and aerobic zone. In the static experiment following, anoxic phosphorus uptake accounted for aerobic microbes microbial phosphorus ratio of about 0.52, indicating that anoxic phosphorus uptake system has been dominant microbial proliferation
     (4) Two-point influent ratio had less impact on COD removal and the COD removal efficiency had slight fuctuations with the increase of the influent ratio. While removal efficiencies of TN, NH4+-N and TP showed significantly higher trend as the water ratio increased. When the influent ratio was 3:7, removal efficiencies of TN, NH4+-N and TP were volatile indicating the system's instability and weak shock. The average removal rates of the three were respectively 70.3%,98% and 92.5% when the influent ratio was 7:3 and the concentration of pollutants can satisfy A standard of the national sewage disposal criterion.
     (5) Compared with the single-point influent pattern, the two-point water ratio of 7:3 had a more stable and higher average removal rate of TN and NH4+-N. However, the removal rates of TP and COD were slightly higher when the influent patter took use of the single-point measure. If the removal rate of TN was a little lower with a higher concentration of effluent and the removal of TP did not constitute a limiting factor we suggested that the two-point influent pattern was best choice.
     (6) In practice, municipal wastewater treatment plant in running process should focus on investigating of various factors how to affect on denitrifying phosphorus bacteria, and creating favorable conditions to boost the accumulation of denitrifying phosphate bacteria so that denitrifying phosphorus removing bacteria gave full play to its advantages and played the role of savings both carbon and energy.
引文
[1]《中华人民共和国水污染防治法》.1984,16(1):39~42.
    [2]徐洪斌,多点交替进水五箱一体化活性污泥法除磷脱氮工艺研究.东南大学博士学位论文[D].南京:东南大学环境科学与工程学院,2005.5:1-3
    [3]《中国环境质量公告》[R].国家环保局,2000,34(6):1881~1885.
    [4]王晓莲,彭永臻等.A20法污水生物脱氮除磷技术与应用[M].北京:科学出版社,2009.99-106.
    [5]郑兴灿,李亚新.污水除磷脱氮技术[M].北京:中国建筑工业出版社,1998
    [6]Sedlak, R.I. Phosphorus and Nitrogen Removal from Municipal Wastewater,2d ed., The Soap and Detergent Association, Lewis Publisher, New York
    [7]李圭白,张杰,蒋展鹏.水质工程学[M].北京:中国建筑工业出版社,2005
    [8]U.S.EPA (1993) Manual Nitrogen Control,EPA/625/R-93/010,Office of Research and Development,U.S.Environmental Protection Agency,Washington,DC
    [9]Comeau Y.Hall K J.Hancock R E W. Biochemical model for enhanced biological phosphorus removal,1986
    [10]Vlekke G J F M.Comeau Y.Oldham W K. Biological phosphorus removal from wastewater with oxygen and nitrate in sequencing batch reactor,1988
    [11]Kuba T.Smolders G J F.van Loosdrecht M C M. Biological phosphorus removal from wastewater by anaerobic-aerobic sequencing batch reactor,1993(5-6)
    [12]Kuba T, Van Loosdrecht M C M. Phosphorus and nitrogen removal with minimal COD requirement by integration of denitrifying dephosphorization and nitrification in a two-sludge system[J].Water Res,1996,30(7):1702-1710
    [13]Osbron D W,Nicholls H A. Optimization of the activate sludge process for the biological removal of phosphorus[J].Prog Water Technol,1998,10(1/2):261-277
    [14]王晓莲,A2/O工艺运行优化及其过程控制的基础研究.北京工业大学博士学位论文[D].北京:环境与能源工程学院,2007.4:1~3
    [15]Ekama G A, Wentzel M C. A predictive model for the reactor inorganic suspended solids concentration in activated sludge systems [J].Water Research,2004,38:4093-4106.
    [16]Ekama G A, Wentzel M C.Denitrification kinetics in biologica N and P removal activated sludge systems treating municipal wastewaters [J].Wat. Sci.Tech,1999,39(6):69-77.
    [17]Van Veldhuizen H M, Van Loosdrecht M C M, Brandse F A. Model based evaluation of plant improvement strategies for biological nutrient removal [J].Wat. Sci. Tech,1999,39(4):45-53.
    [18]Julie L, Zilles Jordan Peccia, Myeong-Woon Kim, et al. Involve Rhodocyclus-related organisms in phosphorus removal in Full-scale wastewater treatment plants [J].International Journal of Systematic and Evolutionary Microbiology,2002,52:823-828.
    [19]卢峰,杨殿海.反硝化除磷工艺的研究开发进展[J].中国给水排水.2003,19(9):32~34
    [20]操家顺,杨雪冬,Mark Van Loosdrecht. BCFS-生物除磷新工艺[J].中国给水排水.2002,18(3):23~26
    [21]Baker P. S., Dold PI.Denitrification behavior in biological excess phosphorus removal activated sludge system [J].Wat. Res.1996,30(4):769-780
    [22]马勇,彭永臻等.新型高效反硝化除磷工艺.环境污染与防止[J],2004,Vol26(1):51-53
    [23]Wanner J, Cech J S, Kos M. New Process Design for Biological Nutrient [J].Wat. Sci. Tech. 1992,25(4-5):445-448
    [24]Kuba T, Van Loosdrecht M C M, et al. Phosphorus and nitrogen removal with minimal COD requirement by integration of nitrification in a two-sludge system. [J] Wat. Sci. Tech.1996, 42(1-2):1702-1710
    [25]国家环境保护总局《水和废水监测分析方法》委员会编.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    [26]陈青萍,李振滨等.环境监测实验[M].上海:同济大学出版社,1999.
    [27]Smolders G J F, van der Meij J, van Loosdrecht M C M, et al.Stoichiometric Model of the Aerobic Metabolism of the Biological Phosphorus Removal Process[J].Biotech Bioeng,1994,44 (7):837-848
    [28]沈耀良,王宝贞.废水生物处理新技术理论与应用[M].北京:中国环境科学出社,2006:201
    [29]张杰,臧景红,杨宏,刘俊良.A2/O工艺的固有缺欠和对策研究[J].给水排水,2003,29(3):22-26.
    [30]王建龙,彭永臻,王淑莹.污泥龄对A2/O工艺脱氮除磷效果的影响[J].环境工程,2007,25(1):16-19.
    [31]徐伟锋,顾国维,陈银广.SRT对A2/O工艺脱氮除磷的影响[J].水处理术,2007,33(9):68-71.
    [32]周雹,周丹.多点进出水倒置A2/O工艺[J].给水排水,2002,28(1):39-42.
    [33]娄金生,谢水波.提高A2/O工艺总体处理效果的措施[J].中国给水排水,1998,14(3):27-31.
    [34]王锡清,谭云飞,高陆令等.郑州市王新庄污水处理厂改造工程设计[J].给水水,2007,33(10):42-46.
    [35]谭云飞,王锡清.五龙口污水处理厂脱氮除磷工艺运行调试[J].给水排水,2008,34(3):43-44.
    [36]李军,杨秀山,彭永臻.微生物与水处理工程[M].北京:化学工业出版社,2003,7:381.
    [37]Rensink J.H.,Donker H.J. and Simons S.J.. Phosphorus removal at low sludge loadings[J]. Wat. Sci. Tech.,1985,17(1-2):177-186
    [38]Chuang S.H.,Ouyang C.F.,Yuang H.C.,et al. Evaluation of phosphorus removal in anaerobic-anoxic-aerobic system-via phoyhydroxylakonoates measurements[J], Wat. Sci. Tech., 1998,38(1):107-114.
    [39]Wachtmeister A.,Kuba T.,Van Loosdrecht M.C.M.,et al.A sludge characterization assay for aerobic and denitrifying phosphorus removing sludge[J].Wat. Res.,1997,31 (3):471-478.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700