高密度芯片封装中界面分层的数值模拟研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着芯片封装密度的不断提高,芯片与基板之间起机械连接作用的粘结膜越来越薄,在封装过程中需要承受更为严酷的应力环境;同时,为了适应封装材料无铅化的趋势,粘结膜需要经历更为极端的可靠性试验。这些内部和外部的因素直接导致了高密度芯片封装中粘结膜界面分层现象日趋严重。所以,选取典型的高密度芯片封装类型、针对界面分层的影响因素进行数值模拟研究、将数值模拟方法应用于界面分层机理分析和实际的分层解决方案,显得尤为重要。
     本文以高密度芯片封装中粘结膜界面分层为研究对象,选取典型的高密度芯片封装—玻璃载芯片封装和芯片级封装为实例,针对其中的界面分层现象进行相应的数值模拟研究,将验证之后的数值模拟方法应用于界面分层机理分析,最后在机理分析的基础上、通过数值模拟方法提出实用的分层解决方案。主要的研究内容和成果总结如下:
     一、选取典型的高密度芯片封装—玻璃载芯片封装和芯片级封装为应用实例,研究其数值模拟方法、界面分层机理和分层解决方案,研究内容具有一定的代表性,对于其他高密度芯片封装的界面分层研究具有一定的参考价值。
     二、针对玻璃载芯片封装中粘结膜—各向异性导电膜的界面分层现象,提出了“非线性、顺序热-力耦合”模拟方法,解决了在以往热-力载荷同时作用的封装过程模拟中、由于模拟技术限制而不能耦合瞬态热-力载荷的问题;并且针对各向异性导电膜封装模拟提出了“等效颗粒”的概念,解决了以往各向异性导电膜封装模拟中众多导电颗粒难以模型化的问题;通过“全局-局部”模拟方法,将各向异性导电膜的界面分层研究从毫米级深入到亚微米级。同时,针对湿气灵敏度试验(可靠性试验的一种,包括高温高湿试验和回流焊试验)中芯片级封装的芯片粘结膜界面分层现象,提出“直接湿气浓度法”,实现了环境温度和湿度变化情况下的湿气扩散模拟;并且在应用广泛的“微观蒸汽压模型”基础上提出“简化瞬态微观蒸汽压模型”,简化了封装模块内部蒸汽压的计算步骤。
     三、通过翘曲测量实验验证了玻璃载芯片全局模型预测芯片翘曲量的精确性(数值模拟精度为93%),通过芯片剪切实验验证了局部模型确定的易断裂面—各向异性导电膜/玻璃界面。同时,基于湿气释放解析解和独立变量方法从理论上验证了“直接湿气浓度法”的模拟精确性(数值模拟精度为97%),通过实验验证了“直接湿气浓度法”应用于芯片级封装湿气扩散模拟的可行性,并且运用条件判断准则和“微观蒸汽压模型”理论验证了“简化瞬态微观蒸汽压模型”。
     四、将数值模拟方法应用于界面分层机理分析,建立了芯片翘曲和各向异性导电膜界面分层之间的关系,指出玻璃载芯片封装冷却过程中、芯片与玻璃基板之间巨大的收缩量和翘曲量的差值,导致各向异性导电膜界面产生巨大的残余剪力和张力,从而引起界面分层;界面分层主要位于芯片边缘输出端的各向异性导电膜/玻璃界面。同时,通过对湿气灵敏度试验中芯片级封装内部湿气扩散和蒸汽压变化的数值模拟结果分析,指出回流焊高温时湿气蒸汽化产生的蒸汽压是导致芯片粘结膜界面分层的主要因素。
     五、基于分层机理分析、通过对玻璃载芯片封装过程的参数化模拟,提出了改善各向异性导电膜界面分层的方案:降低绑头温度,提高玻璃基板温度,降低绑定温度差;减小芯片厚度,缩短芯片长度,增加玻璃基板厚度;加强各向异性导电膜/玻璃基板界面的结合强度。同时,基于芯片级封装中芯片粘结膜界面分层机理的分析,通过湿气扩散和蒸汽压变化的数值模拟以及湿气灵敏度试验的验证,提出了解决芯片粘结膜界面分层的方案:减少基板厚度和延长回流焊的保温过程。
     本文选取的两个应用实例具有一定的代表性,对于其他高密度芯片封装的界面分层研究具有一定的借鉴意义。本文提出的“非线性、顺序热-力耦合”模拟方法适用于热-力载荷下的芯片封装过程的模拟,“等效
     颗粒”模拟方法适用于应用各向异性导电膜的芯片封装模拟;“直接湿气浓度法”和“简化瞬态微观蒸汽压模型”分别适用于高密度芯片封装的湿气扩散模拟和蒸汽压变化模拟。本文提出的粘结膜界面分层解决方案,已在玻璃载芯片封装和芯片级封装中得到了实验验证,具有一定的实用价值。
With the more density of the electronic packaging, the film, which is the mechanical interconnection between IC and substrate, becomes thinner. It suffers more serious stress condition in the packaging process. With the trend of lead-free material application, the film would suffer more stringent reliability test. These inner and outer factors cause interface delamination, which is more serious in the high density package. Therefore, it is important to adopt the typical packages, develop numerical simulation study for interface delamination, and apply the numerical methods to delamination mechanism analysis and solutions.
     This paper studied the interface delamination in high density package, adopted two typical packages—chip on glass (COG) and chip scale package (CSP), developed advanced numerical simulation methods for interface delamination, applied the numerical methods to mechanism analysis, gave the methods to solve the delamination for different packages. The content and results are summarized as follows.
     Firstly, this paper adopted two typical packages—COG and CSP to study numerical methods, delamination mechanism and solutions respectively. The interface delamination study can be applied to other high density electric packages.
     Secondly, this paper developed several advanced numerical simulation methods. For the anisotropic conductive film (ACF) delamination of COG, the paper proposed novel non-linear and sequentially coupled thermal-mechanical method to solve the uncoupling of transient thermal-mechanical loadings in the previous packaging process modeling. This paper also proposed the equivalent particle method for ACF packaging simulation to model the numerous conductive particles. By the global-local method, the delamination study was implemented from mm scale to um scale. Meanwhile, for the die-attach (DA) film interface delamination of CSP during preconditioning test (one of the reliability test, including soaking and reflow), the paper proposed the moisture diffusion modeling method, named direct concentration approach (DCA), to simulate the moisture diffusion under varying ambient temperature and humidity. Also, this paper proposed simplified transient micromechanics-based vapor pressure model (STMVPM) to simplify the vapor pressure calculation inside electronic package.
     Thirdly, the COG process was simulated with advanced modeling methods, the IC warpage from global model was validated with the resolution of 93% by warpage measurement system, and ACF/glass interface was determined to be easier to delaminate by local model and IC shear test. Meanwhile, moisture diffusion and vapor pressure evolution during preconditioning test were simulated with advanced modeling methods, and the DCA was validated by analytical solution and independent variable method with the resolution of 97%. The feasibility of DCA application to CSP was validated by experiments. The STMVPM was validated by conditional criterion and micromechanics-based vapor pressure model.
     Fourthly, the relationship between IC warpage and ACF delamination was established with the dalamination mechanism analysis. The ACF delamination was induced due to the large difference of shrinkage and warpage between IC and glass substrate during cooling, which caused large residual shear and normal stress at ACF interface. The interface delamination located at the ACF/glass interface at the IC edge. Meanwhile, vapor pressure was determined as the major driving force for the DA film delamination with the analysis of moisture diffusion and vapor pressure evolution during preconditioning test.
     Lastly, with the parametric modeling and delamination mechanism analysis for COG packaging process, ACF delamination can be avoided by decreasing bonding head temperature, increasing glass substrate temperature, decreasing bonding temperature difference, thinning IC thickness, shortening IC length, thickening glass substrate thickness, improve adhesion between ACF and glass. Meanwhile, with the DA film delamination mechanism analysis, moisture diffusion and vapor pressure evolution modeling, and test validation, DA film delamination can be solved by thinning substrate thickness and extending in-line baking of reflow process.
     The interface delamination study based on the COG and CSP can be applied to other high density electric packages. The non-linear and sequentially coupled thermal-mechanical method can be applied to the packaging process modeling under thermal-mechanical loadings. The equivalent particle method can be applied to the ACF bonding simulation. The DCA and STMVPM can be applied to moisture diffusion and vapor pressure evolution modeling for high density electric package. The methods to solving film delamination in this paper have been validated in the COG and CSP.
引文
[1] Tummala, R. R., Rymaszewski, E. J., Microelectronics packaging handbook, Van Nostrand Reinhold. 1989.
    [2] Pecht, M., Handbook of electronic package design. Marcel-Dekker, Inc. 1991.
    [3] Tummala, R.R., Rymaszewski, E.J., Microelectronic packaging handbook. Van Nostrand Reinhold. 1997.
    [4] Harper, C.A., Electronic packaging and interconnection. McGraw-Hill. 1997.
    [5] Stephen, A.M.K., Mechanical analysis of electronic packaging systems. Marcel-Dekker, Inc. 1999.
    [6] International technology roadmap for semiconductors (ITRS), 2006 Update, http://www.itrs.net/
    [7] Charles, A.H., Harper, C.A., Electronic packaging and interconnection handbook. McGraw-Hill. 2000.
    [8] Blackwell, G.R., The electronic packaging handbook. CRC&IEEE Press. 2000.
    [9] Puttlitz, K.J., Totta, P., Area array interconnection handbook. Kluwer Academic. 2001.
    [10] Gilleo, K., Area array packaging handbook. McGraw-Hill. 2002.
    [11] Lau, J., Low cost flip chip technologies. McGraw-Hill. 1996.
    [12] Lau, J. H., Wong, C. P., Prince, J. L., Nakayama, W., Electronic packaging: design, materials, process and reliability. McGraw-Hill. 1998.
    [13] Tummala, R.R., Sundaram, V., High density packaging in 2010 and beyond. Electronic Materials and Packaging. 2002: 30-36.
    [14] Kumbhat, N., Markondeya, R.P., Pucha, R.V., Next generation of package/board materials technology for ultra-high density wiring and fine-pitch reliable interconnection assembly. Electronic Components and Technology. 2004, 2: 1843-1850.
    [15] Wakabayashi, S., Shimizu, M., Technical trends of LSI packaging: recent advances in CSPs and high density substrates. VLSI Circuits. 1999: 69-72.
    [16] Tummala, R.R., Fundamentals of microsystems packaging. McGraw-Hill. 2001.
    [17] Wong, C.P., Polymers for electronic and photonic application. Academic Boston. 1993.
    [18] Wong, C.P., Baldwin, D.F., No-flow underfill for flip-chip packages. U.S. Patent disclosure. 1996.
    [19] Evaristo, R., Ricardo, D.C., Electrical properties of polymers. Marcel-Dekker, Inc. 2004.
    [20] Liu, J., Conductive adhesives for electronics packaging. Electrochemical Publication. 1999.
    [21] Kasap, S., Capper, P., Handbook of electronic and photonic materials. Springer. 2006.
    [22] Friedrich, K., Fakirov, S., Polymer composites from nano- to macro-scale. Springer. 2006.
    [23] Ludmila, E., Physics of thin films. Plenum Press. 1984.
    [24] Flick, W.E., Adhesives, sealants and coatings for the electronics industry. Noyes Publications. 1992.
    [25] Chen, P., Molecular interfacial phenomena of polymers. CRC Press. 2005.
    [26] Dehaven, K., Dietz, J., Controlled collapse chip connection (C4) – an enabling technology. Electronic Components and Technology Conference. 1994: 1-6.
    [27] Ingraham, A.P., Mccreary, J.M., Varcoe, J.A., Flip-chip soldering to bare copper circuits. IEEE Transactions on Components, Hybrids and Manufacturing Technology. 1990, 13(4): 656-660.
    [28] Reinert, W., Harder, T., Performance of the stud bump bonding (SBB) process in comparison to solder flip chip technology. Adhesive Joining and Coating Technology. 2000: 136-140.
    [29] Zama, S., Baldwin, F.D., Hikami, T., Flip chip interconnect systems using copper wire stud bump and lead free solder. IEEE Transactions on Electronics Packaging Manufacturing. 2001, 24(4): 261-268.
    [30] Klein, M., Busse, E., Kaschlun, K., Investigation of Cu stud bumping for single chip flip-chip assembly. Electronic Components and Technology Conference. 2004: 1181-1186.
    [31] Yu, H., Mhaisalkar, S.G., Evolution of mechanical properties and cure stresses in non-conductive adhesives used for flip chip interconnects. Electronic Packaging and Technology Conference. 2004: 468-472.
    [32] Cheng, H.C., Ho, C.L., Chiang, K.N., Process-dependent contact characteristics of NCA assemblies. IEEE Transactions on Components and Packaging Technologies. 2004, 27(2): 398-410.
    [33] Kang, U.B., Kim, Y.H., A new COG technique using low temperature solder bumps for LCD driver IC packaging applications. IEEE Transactions on Components and Packaging Technologies. 2004, 27(2): 253-258.
    [34] Wang, Z.P., Challenges in the reliability study of chip-on-glass (COG) technology for mobile display applications. Electronic Components and Technology Conference. 2003: 595-599.
    [35] 吴丰顺, 何敬强, 吴懿平. 各向异性导电胶膜用单分散聚苯乙烯微球的合成. 功能材料. 2006(11):1848~1850.
    [36] 吴懿平, 袁忠发, 吴大海. 各向异性导电胶膜新型填充粒子的研究. 电子元件与材料. 2005(24):28~31.
    [37] Kristiansen, H., Liu, J., Overview of conductive adhesive interconnection technologies for LCD’s. IEEE Transactions on Components, Packaging and Manufacturing Technology. 1998, 21(2): 208-214.
    [38] Itsuo, W., Tohru, F., Motohiro, A., Recent advances of interconnection technologies using anisotropic conductive films in flat panel display applications. Symposium on Advanced Packaging Materials. 2004: 11-16.
    [39] Shooman, L.M., Reliability of computer systems and networks. John Wiley&Sons, Inc. 2002.
    [40] Stavroulakis, P., Reliability, survivability and quality of large scale telecommunication systems. John Wiley&Sons, Inc. 2003.
    [41] Blischke, R.W., Murthy, D.N., Case studies in reliability and maintenance. John Wiley&Sons, Inc. 2003.
    [42] Bhote, R.K., Bhote, K.A., World class reliability: using multiple environment overstress tests to make it happen. AMACOM. 2004.
    [43] Becker, E.B., Carey, G.F., Oden, J.T., Finite elements: an introduction. Prentice-Hall, Inc. 1981.
    [44] Cook, R.D., Malkus, D.S., Plesha, M.E., Concepts and applications of finite element analysis. John Wiley&Sons. 1989.
    [45] Hughes, T.J.R., The finite element method. Prentice-Hall, Inc. 1987.
    [46] Zienkiewicz, O.C., Taylor, R.L., The finite element method. Butterworth-Heinemann. 2000.
    [47] Lakhtakia, A., Nanometer structures: theory, modeling and simulation. SPIE Publications. 2004.
    [48] Yip, S., Handbook of materials modeling. Springer Press. 2005.
    [49] Fan, H.B., Wong, C.K.Y., Yuen, M.M.F., A multi-scale method to investigate delamination in electronic packages. Journal of Adhesion Science and Technology. 2006, 20(10): 1061-1078.
    [50] Fan, H.B.O., Chung, P.W.K., Yuen, M.M.F., An energy-based failure criterion for delamination initiation in electronic packaging. Journal of Adhesion Science and Technology. 2005, 19(15): 1375-1386.
    [51] Heffes, M.J., Nied, H.F., Analysis of interfacial cracking in flip chip packages with viscoplastic solder deformation. Journal of Electronic Packaging. 2004, 126: 135-141.
    [52] Liu, S., Mei, Y.H., Wu, T.Y., Bimaterial interfacial crack growth as a function of mode-mixity in resin/copper interface. Mechanical Engineering Congress and Exposition. 1994: 101-111.
    [53] Liu, Y., Irving, S., Rioux, M., Delamination modeling for IC package with multiple initial cracks. Electronic Components and Technology Conference. 2003: 1772-1776.
    [54] Ayhan, A.O., Nied, H.F., Finite element analysis of interface cracking in semiconductor packages. IEEE Transactions on Components and Packaging Technologies. 1999, 22(4): 503-511.
    [55] Auersperg, J., Kieselstein, E., Schubert, A., Mixed mode interfacial fracture toughness evaluation for flip-chip assemblies and CSP based on fracture mechanics approaches. Mechanical Engineering Congress and Exposition. 2001: 921-926.
    [56] Driel, W.D., Liu, C.J., Zhang, G.Q., Prediction of interfacial delamination in stacked IC structures using combined experimental and simulation methods. Microelectronics Reliability. 2004, 44: 2019-2027.
    [57] Xu, B.L., Zhang, Q., Cai, X., Underfill delamination and solder joint failure of flip chip on board. Chinese Journal of Semiconductors. 2001, 22(10): 1335-1342.
    [58] Hu, K.X., Yeh, C.P., Wu, X.S., Interfacial delamination analysis for multichip module thin film interconnects. Journal of Electronic Packaging. 1996, 118(4): 206-213.
    [59] Chue, C.H., Chen, T.H., Lee, H.T., Effect of stiffness and thickness ratios on popcorn cracking in IC packages. IEEE Transactions on Components and Packaging Technologies. 2003, 26(2): 340-348.
    [60] Cherepanov, C.P., Crack propagation in continuous media. Applied Math Mechanism. 1967, 31: 476-488.
    [61] Rice, J.R., A path independent integral and the approximate analysis of strain concentrations by notches and cracks. Journal of Applied Mechanism. 1968, 35:379-386.
    [62] Wilson, W.K., Osias, J.R., A comparison of finite element solutions for an elasticplastic crack problem. Int. J. Fracture. 1978, 14: 95.
    [63] Van, D.W.D., Bressers, H.J.L., Janssen, J.H.J., Driving mechanisms of delamination related reliability problems in exposed pad packages. Thermal, Mechanical and Multi-Physics Simulation and Experiments. 2005: 183-189.
    [64] Auersperg, J., Schuber, A., Vogel, D., Fracture and damage evaluation in chip scale packages and flip-chip-assemblies by FEA and microdac. Mechanical Engineering Congress and Exposition. 1997: 133-138.
    [65] Park, J.E., Jasiuk, I., Zubelewicz, A., Interfacial stress analysis and fracture of a bi-material strip with a heterogeneous underfill. Journal of Electronic Packaging. 2003, 125: 400-413.
    [66] Mercado, L.L., Goldber, C., Kuo, S.M., Analysis of flip-chip packaging challenges on copper low-k interconnects. Electronic Components and Technology Conference. 2003: 1784-1790.
    [67] Xu, B.L., Cai, X., Huang, W.D., Research of underfill delamination in flip chip by the J-integral method. Journal of Electronic Packaging. 2004, 126: 94-99.
    [68] Bucholz, F. G., Sistla, R., Krishnamurthy, T., 2D and 3D applications of the improved and generalized modified crack closure integral method. Computational Mechanics. Springer Verlag. 1988.
    [69] Wang, G.T., Groothuis, S., Ho, P.S., Effect of packaging on interfacial cracking in Cu/low k damascene structures. Electronic Components and Technology Conference. 2003: 727-732.
    [70] Krueger, R., The virtual crack closure technique: history, approach and applications. NASA/CR-2002-211628, ICASE Report No. 2002-10.
    [71] Harries, R.J., Sitaraman, S.K., Numerical study of copper-encapsulant interfacial delamination propagation in a peripheral array package. Intersociety Electronics Photonic Packaging Conference. 1999: 1755-1762.
    [72] Harries, R.J., Sitaraman, S.K., Fracture-mechanics-based delamination growth prediction in the VSPA package-numerical simulation. Mechanical Engineering Congress and Exposition. 1998: 1-8.
    [73] Hu, G.J., Tay, A.A.O., Application of modified virtual crack closure method on delamination analysis in a plastic IC package during lead-free solder reflow. Electronics Packaging Technology Conference. 2005: 555-560.
    [74] Brebbia, C. A., Dominguez, J., Boundary elements-an introductory course. McGraw-Hill. 1989.
    [75] Becker, A. A., The boundary element method in engineering. McGraw- Hill. 1992.
    [76] Wang, B., Sun, X., Fan, Q.S., Yin, Y., Numerical simulation of interfacial delamination in electronic packaging. Thermal and Thermomechanical Phenomena Electronic Systems. 2000: 400-404.
    [77] Tay, A.A.O., Lee, K.H., Lim, L.M., Numerical simulation of delamination in IC packages using a new variable-order singular boundary element. Journal of Electronic Packaging. 2003, 125: 569-575.
    [78] Driel, W.D.V., Gils, M.A.J., Zhang, G.Q., Prediction of delamination in micro-electronic packages. Electronic Packaging Technology Conference. 2005: 676-681.
    [79] Gils, M.A.J., Novel damage model for delamination in Cu/low-k IC backend structures. Electronic Components and Technology Conference. 2005: 988-994.
    [80] Alder, B. J., Wainwright, T. E., Phase transition for a hard sphere system. Journal of Chemical Physics. 1957, 27: 1208-1211.
    [81] Alder, B. J., Wainwright, T. E., Studies in molecular dynamics. I. general method. Journal of Chemical Physics. 1959, 31: 459-466.
    [82] Yarovsky, I., Atomic simulation of interface in materials: theory and applications. Journal of Physics. 1997, 503: 407-424.
    [83] Iwamoto, N., Pedigo, J., Property trend analysis and simulations of adhesive formulation effects in the microelectronics packaging industry using molecular modeling. Electronic Components and Technology Conference. 1998: 1241-1246.
    [84] Iwamoto, N., Applying polymer process studies using molecular modeling. Adhesive Joining and Coating Technology in Electronics Manufacturing. 2000: 182-187.
    [85] Iwamoto, N., Advancing materials using interfacial process and reliability simulations on the molecular level. Advanced Packaging Materials: Processes, Properties and Interfaces. 2000: 14-17.
    [86] Iwamoto, N., Advancing polymer process understanding in package and board applications through molecular modeling. Electronic Components and Technology Conference. 2000: 1354-1359.
    [87] Liang, Z. Y., Gou, J., Zhang, C., Wang, B., Investigation of molecular interactions between single–walled nanotube and epon 962 resin/DETDA curing agent molecules. Materials Science and Engineering. 2004, 365: 228-234.
    [88] Mijovie, J., Zhang, H., Molecular dynamic simulation of study of motions and interactions of water in a polymer network. Journal of Chemical Physics. 2004, 108: 2557-2563.
    [89] Frankland, S. J. V., Caglar, A., Brenner, D. W., Griebel, M., Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube–polymer interfaces. Journal of Chemical Physics. 2002, 106: 3046-3048.
    [90] Fan, H., Wong, C.K.Y., Yuen, M.M.F., Molecular simulation of Cu-SAM adhesion force. Thermal and Mechanical Simulation and Experiments in Microelectronics and Microsystems. 2004: 575-579.
    [91] Wong, C.K.Y., Fan, H., Yuen, M.M.F., Investigation of adhesion properties of Cu-EMC interface by molecular dynamic simulation. Thermal and Mechanical Simulation and Experiments in Microelectronics and Microsystems. 2005: 31-35.
    [92] Fan, H., Wong, C.K.Y., Yuen, M.M.F., Reliability prediction in electronic packages using molecular simulation. Electronic Components and Technology Conference. 2005: 1314-1317.
    [93] Liu, Y., Irving, S., Desbiens, D., Luk, T., Simulation and analysis for typical package assembly manufacture. Thermal and Mechanical Simulation and Experiments in Microelectronics and Microsystems. 2006: 1-10.
    [94] Kiran, A.S., Kaplan, C., Unal, A.T., Simulation of electronics manufacturing and assembly operations: a survey. Winter Simulation Conference. 1993: 773-779.
    [95] Liu, S., Zhu, J., Zou, D., Benson, J., Study of delaminated plastic packages by high temperature moire and finite element method. IEEE Transactions on Components, Packaging and Manufacturing Technology. 1997, 20(4): 505-512.
    [96] Van, K.M., Bielen, J., Gulpen, J., Ramos, M., Delamination and solder flow-out in underfilled and Pb-free flip chips on laminate. International Microelectronics. 2005, 22(2): 28-34.
    [97] Hu, J.Z., Yang, L.Q., Shin, M.W., Mechanism and thermal effect of delamination in light-emitting diode packages. Microelectronics Journal. 2007, 38:157-163.
    [98] Dudek, R., Meinel, S., Schubert, A., Michel, B., Flow characterization and thermo-mechanical response of anisotropic conductive films. IEEE Transactions on Components and Packaging Technology. 1999, 22(2): 177-185.
    [99] Fukuzawa, I., Ishiguro, S., Nanbu, S., Moisture resistance degradation of plastic LST’s by reflow soldering. International Reliability Physics Symposium. 1985: 192-197.
    [100] Tay, A.A.O., Lin, T.Y., Influence of temperature, humidity and defect location on delamination in plastics packages. IEEE Transactions on Components, Packaging andManufacturing Technology. 1999, 22(4): 512-518.
    [101] Lin, T.Y., Tay, A.A.O., Dynamics of moisture diffusion, hygrothermal stresses and delamination in plastic IC packages. Journal of Electronic Packaging. 1997, 19(1): 1429-1436.
    [102] Tay, A.A.O., Lin, T.Y., Moisture diffusion and heat transfer in plastic IC packages. IEEE Transactions on Components, Packaging and Manufacturing Technology. 1996, 19(2): 186-193.
    [103] Tay, A.A.O., Lin, T.Y., The impact of moisture diffusion during solder reflow on package reliability. Electronic Components and Technology Conference. 1999: 830-836.
    [104] Liu, S., Mei, Y., Wu, T.Y., Bimaterial interfacial crack growth as a function of mode-mixity. IEEE Transactions on Components, Packaging, and Manufacturing Technology. 1995, 18(3): 618-626.
    [105] Liu, S., Mei, Y., Behavior of delaminated plastic IC packages subjected to encapsulation cooling, moisture absorption, and wave soldering. IEEE Transactions on Components, Packaging, and Manufacturing Technology. 1995, 18(3): 634-645.
    [106] Nguyen, L. T., Lo, R.H.Y., Belani, J.G., Molding compound trends in a denser packaging world. IEEE International Electronic Manufacturing Technology Symposium. 1993: 9-11.
    [107] Shook, R., Vaccaro, B.T., Gerlach, D.L., Method for equivalent acceleration of JEDEC/IPC moisture sensitivity levels. International Reliability Physics Symposium. 1998: 214-219.
    [108] Ferguson, T., Qu, J., Moisture absorption analysis of interfacial fracture test specimens composed of no-flow underfill materials. Journal of Electronic Packaging. 2003, 125: 24-30.
    [109] Zhou, J., Upper and lower bound theoretical analysis in characterizing hygroscopic swelling of polymeric materials in electronic packaging. International Symposium on Microelectronics. 2005: 38.
    [110] Crank, J., The mathematics of diffusion. Oxford University Press. 1979.
    [111] Kitano, M., Nishimura, A., Kawai, S., Nishi, K., Analysis of package cracking during reflow soldering process. International Reliability Physics Symposium. 1988: 90-95.
    [112] Carslaw, H.S., Conduction of heat in solids. Oxford University Press. 1980.
    [113] Lin, R., Blackshear, E., May, G., Hamilton, G., Kirby, D., Control of package cracking in plastic surface mount devices during solder reflow process. Electronic Packagingand Technology Conference. 1987: 995-1010.
    [114] Shook, R., Moisture sensitivity characterization of plastic surface mount devices using scanning acoustic microscopy. International Reliability Physics Symposium. 1992: 157-168.
    [115] Ohizurmi, S., Nagasawa, M., Igarashi, K., Kohmoto, M., Ito, S., Analytical and experimental study for designing molding compounds for surface mounting devices. Electronic Components and Technology Conference. 1990: 632-640.
    [116] EDX-4701, Test method of resistance to soldering heat of surface mounting devices for integrated circuits. Electronic Industries Association of Japan. 1990.
    [117] Chan, E.K.L., Fan, H., Yuen, M.M.F., Effect of interfacial adhesion of copper/epoxy under different moisture level. Thermal and Mechanical Simulation and Experiments in Microelectronics and Microsystems. 2006: 1-5.
    [118] Galloway, J.E., Miles, B.M., Moisture absorption and desorption predictions for plastic ball grid array packages. IEEE Transactions on Components, Packaging and Manufacturing Technology. 1997, 20(3): 274-279.
    [119] Gebhart, B., Heat conduction and mass diffusion. McGraw Hill. 1993.
    [120] Kirsten, K.Z., Walter, H., Helene, F., Moisture diffusion in printed circuit boards: measurements and finite-element-simulations. Microelectronics Reliability. 2005, 45: 1662-1667.
    [121] Welty, J.R., Wicks, C.E., Wilson, R.E., Fundamental of mass, heat and momentrum transfer. John Wiley and Sons. 1984.
    [122] Wong, E.H., Teo, Y.C., Lim, T.B., Moisture diffusion and vapor pressure modeling of IC packaging. Electronic Components and Technology Conference. 1998: 1372-1378.
    [123] Wong, E.H., Koh, S.W., Lee, K.H., Rajoo, R., Advanced moisture diffusion modeling and characterisation for electronic packaging. Electronic Components and Technology Conference. 2002: 1297-1303.
    [124] Wong, E.H., Koh, S.W., Lee, K.H., Rajoo, R., Comprehensive treatment of moisture induced failure-recent advances. IEEE Transactions on Electronics Packaging Manufacturing. 2002, 25(3): 223-230.
    [125] Wong, E.H., Chan, K.C., Lim, T.B., Lam, T.F., Non-Fickian moisture properties characterisation and diffusion modeling for electronic packages. Electronic Components and Technology Conference. 1999: 302-306.
    [126] Sun, N., Lin, D.C., Yang, D.G., Analysis of thermal-moisture induced failure of Pb-free soldered IC packages in SMT reflow soldering process. Thermal andMechanical Simulation and Experiments in Microelectronics and Microsystems. 2004: 341-344.
    [127] Yin, C.Y., Lu, H., Bailey, C., Chan, Y.C., Experimental and modeling analysis on moisture induced failures in flip-chip on flex interconnections with anisotropic conductive film. Asian Green Electronics Conference. 2005: 172-177.
    [128] Fai, L.T., FEA simulation on moisture absorption in PBGA packages under various moisture pre-conditioning. Electronic Components and Technology Conference. 2000: 1078-1082.
    [129] Sun, N., Lin, D.C., Yang, D.G., Finite element analysis of hygro-thermal induced failure in plastic packages. Electronic Packaging and Technology Conference. 2003: 381-385.
    [130] Hu, J.Z., Yang, L.Q., Shin, M.W., Thermal effects of moisture inducing delamination in light-emitting diode packages. Electronic Components and Technology Conference. 2006: 1957-1962.
    [131] Gils, M.A.J., Driel, W.D., Zhang, G.Q., Virtual qualification of moisture induced failures of advanced packages. Microelectronics Reliability. 2007, 47: 273-279.
    [132] Nguyen, L.T., Chen, K.L., A new criterion for package integrity under solder reflow conditions. Electronic Components and Technology Conference. 1995: 478-490.
    [133] Hu, G.J., Tay, A.A.O., A numerical study of the effects of temperature, moisture and vapor pressure on delamination in a PQFP during solder reflow. Electronic Packaging and Technology Conference. 2004: 98-104.
    [134] Lim, J.H., Lee, K.W., Park, S.S., Earmme, Y.Y., Vapor pressure analysis of popcorn cracking in plastic IC packages by fracture mechanics. Electronic Packaging and Technology Conference. 1998: 36-42.
    [135] Hui, C.Y., Muralidharan, V., Thompson, M.O., Steam pressure induced in crack-like cavities in moisture saturated polymer matrix composites during rapid heating. Journal of Solids and Structures. 2005, 42: 1055-1072.
    [136] Lim, J.H., Lee, K.W., Park, S.S., Earmme, Y.Y., Vapor pressure analysis of popcorn cracking in plastic IC packages by fracture mechanics. Electronic Packaging and Technology Conference. 1998: 36-42.
    [137] Yi, S., Goh, J.S., Yang, J.C., Residual stresses in plastic IC packages during surface mounting process proceeded by moisture soaking test. IEEE Transactions on Components, Packaging and Manufacturing Technology. 1997, 20(3): 247-255.
    [138] Sawada, K., Sawada, N., Kawamura, N., Matsumoto, K., Hiruta, Y., Sudo, T., Simplified and practical estimation of package cracking during reflow solderingprocess. International Reliability Physics Symposium. 1994: 114–119.
    [139] Bhattacharyya, B.K., Huffman, W.A., Jahsman, W.E., Natarajan, B., Moisture absorption and mechanical performance of surface mountable plastic packages. Electronic Components and Technology Conference. 1988: 49–58.
    [140] Sawada, K., Nakazawa, T., Kawamura, N., Sudo, T., Package deformation and cracking mechanism due to reflow soldering. International Electronic Manufacturing Technology Symposium. 1993: 295–298.
    [141] Wong, E.H., Koh, S.W., Lee, K.H., Advances in vapor pressure modeling for electronic packaging. IEEE Transactions on Advanced Packaging. 2006, 29(4): 751-759.
    [142] Fan, X.J., Zhou, J., Zhang, G.Q., Ernst, L.J., A micromechanics-based vapor pressure model in electronic packages. Journal of Electronic Packaging. 2005, 127: 262-267.
    [143] Liu, P., Cheng, L., Zhang, Y.W., Interface delamination in plastic IC packages induced by thermal loading and vapor pressure - A micromechanics model. IEEE Transactions on Advanced Packaging. 2003, 26(1): 1-9.
    [144] Fan, X.J., Zhang, G.Q., Driel, W., Ernst, L.J., Mechanism-based delamination prediction during reflow with moisture preconditioning. Thermal and Mechanical Simulation and Experiments in Microelectronics and Microsystems. 2004: 329-335.
    [145] Guo, T.F., Cheng, L., Modeling vapor pressure effects on void rupture and crack growth resistance. Acta Materialia. 2002, 50: 3487-3500.
    [146] Hu, G.J., Tay, A.A.O., On the relative contribution of temperature, moisture and vapor pressure to delamination in a plastic IC package during lead-free solder reflow. Electronic Components and Technology Conference. 2005: 172-178.
    [147] Chong, C.W., Guo, T.F., Cheng, L., Vapor pressure assisted crack growth at interfaces under mixed mode loading. Computational Materials Science. 2004, 30: 425-432.
    [148] Fan, X.J., Zhou, J., Zhang, G.Q., Multi-physics modeling in virtual prototyping of electronic packages - combined thermal, thermo-mechanical and vapor pressure modeling. Microelectronics Reliability. 2004, 44: 1967-1976.
    [149] Tee, T.Y., Ng, H.S., Whole field vapor pressure modeling of QFN during reflow with coupled hygro-mechanical and thermo-mechanical stresses. Electronic Components and Technology Conference. 2002: 1552-1559.
    [150] Tee, T.Y., Zhong, Z.W., Integrated vapor pressure, hygroswelling, and thermo-mechanical stress modeling of QFN package during reflow with interfacial fracture mechanics analysis. Microelectronics Reliability. 2004, 44: 105-114.
    [151] Tee, T.Y., Fan, X.J. Lim, T.B., Modeling of whole field vapor pressure during reflow for flip chip and wire-bond PGBA packages. International Workshop on Electronic Materials & Packaging. 1999.
    [152] Zhang, G.Q., Driel W.D.V., Fan, X.J., Mechanics of microelectronics, solid mechanics and its applications. Springer Press. 2006.
    [153] Fan, X.J., Zhang, G.Q., Driel, W.V., Ernst, L.J., Interfacial delamination mechanisms during reflow with moisture preconditioning. IEEE Transactions on Components and Packaging Technologies. 2006 (accepted).
    [154] Fan, X.J., Lim, T.B., Mechanism analysis for moisture-induced failures in IC packages. International Mechanical Engineering Congress. 1999: IMECE/EPE-14.
    [155] Fan, X.J., Moisture related reliability in electronic packging. Electronic Components and Technology Conference Professional Development Course Note. 2006.
    [156] Bejan, A., Kraus, A.D., Heat transfer handbook. John Wiley&Sons Press. 2003.
    [157] Toupin, R.A., Saint-Venant’s principle. Arch. Rat’l Mechanics Anal. 1965, 18: 83-96.
    [158] Horgan, C.O., Knowles, J.K., Recent developments concerning Saint-Venant’s principle. Advances in Applied Mechanics. 1983, 23: 179-269.
    [159] Horgan, C.O., Recent developments concerning Saint-Venant’s principle: an update. Appl. Mech. 1989, 42(11): 295-303.
    [160] Chiang, K.N., Chang, C.W., Lin, C.T., Process modeling and thermal/mechanical behavior of ACA/ACF type flip-chip packages. Journal of Electronic Packaging. 2001, 123: 331-337.
    [161] Yim, M.J., Paik, K.W., Design and understanding of anisotropic conductive films for LCD packaging. IEEE Transactions on Components, Hybrids, Manuacturing Technology. 1998, 21(2): 226-234.
    [162] Cheng, Y.N., Lee, S., Lee, J., Finite element analysis of anisotropic conductive film for chip on glass process. Materials and Manufacturing Processes. 2002, 17(6): 765-781.
    [163] Crank, J., Park, G. S., The mathematics of diffusion. Oxford University Press. 1956.
    [164] Yoon, S., Han, B., Wang, Z.Y., On moisture diffusion modeling using thermal-moisture analogy. Journal of Electronic Packaging. 2007 (Accepted)
    [165] Shi, X.Q., Pang, H.L.J., Zhang, X.R., Liu, Q.J., Ying, M., In-situ micro-digital image speckle correlation technique for characterization of materials’ properties and verification of numerical models. IEEE Transactions on Components and Packaging Technologies. 2004, 27(4): 659-667.
    [166] Zhou, J., Analytical and numerical bound analysis of hygroscopic swelling characterization. Electronic Components and Technology Conference. 2006: 734-739.
    [167] Joint Industry Standard J-STD-020D, Moisture/reflow sensitivity classification for plastic integrated circuit surface mount devices. IPC (Institute for Interconnecting and Packaging Electronic Circuits) and JEDEC (Joint Electron Device Engineering Council). 2007.
    [168] Wong, E.H., Chan, K.C., Rajoo, R., Lim, T.B., The mechanics and impact of hygroscopic swelling of polymeric materials in electronic packaging. Electronic Components and Technology Conference. 2000: 576-580.
    [169] Tee, T.Y., Kho, C.L., Yap, D., Toh, C., Baraton, X., Zhong, Z.W., Reliability assessment and hygroswelling modeling of FCBGA with no-flow underfill. Microelectronics Reliability. 2003, 43: 741-749.
    [170] Yoon, S., Han, B., Non-linear finite element analysis for electronic packages subjected to combined hygroscopic and thermo-mechanical stresses. Electronic Components and Technology Conference. 2005: 569-574.
    [171] Kim, D.W., Kong, B.S., The effect of hygro-mechanical and thermo-mechanical stress on delamination of gold bump. Microelectronics Reliability. 2006, 46: 1087-1094.
    [172] Gonzales, J.I.J., Mena, M.G., Moisture and thermal degradation of cyanate-ester-based die attach material. Electronic Components and Technology Conference. 1997: 525-535.
    [173] Ferguson, T.P., Qu, J., Moisture and temperature effects on the reliability of interfacial adhesion of a polymer/metal interface. Electronic Components and Technology Conference. 2004: 1752-1758.
    [174] Ferguson, T.P., Qu, J., An engineering model for moisture degradation of polymer/metal interfacial fracture toughness. Advanced Packaging Materials: Processes, Properties and Interfaces. 2005: 298-301.
    [175] Shi, D., Final report for study of 0.3mm glass warpage and interface strength. ZDR-61/432555/DS/DS. 2005: 10-14.
    [176] Camanho, P.P., Mixed-mode decohesion finite elements for the simulation of delamination in composite materials. NASA/TM-2002-211737. 2002: 1-37.
    [177] Whitney, J.M., Nuismer, R.J., Stress fracture criteria for laminated composites containing stress concentrations. Jounal of Composite Materials. 1974, 8: 253-265.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700