变压器油中溶解气体碳纳米管气敏检测与动态隧道模糊诊断
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电气设备的安全运行是电力系统安全、稳定、经济运行的重要基础。随着特高压电网建设,电力输送容量更大,覆盖范围更广,全国各级电网联系也更加紧密,因此电网事故的危害性更大。大型电力变压器是电力系统的枢纽设备,实时检测变压器绝缘状态,准确预知故障,做到防患于未然,是保证电网安全运行、提高设备利用率和降低设备检修费用的重要举措,也是建设坚强智能电网的关键技术课题,意义十分重大。
     油中溶解气体分析是目前判断油浸式电力变压器早期潜伏性故障最方便、最有效的方法,实际应用最为广泛,已成为判断充油电气设备内部故障和监视设备安全运行不可缺少的手段。近年来,应用气体传感技术开发研制小型气体检测装置,已成为新的发展趋势,目的在于实现对变压器油中溶解气体进行在线监测,随时掌握设备的运行状况。近年来传感技术取得了突破性进展,特别是纳米技术的发展,为传感器研发提供了全新的材料和加工方法,其中碳纳米管气敏传感器已经成为新的研究热点。
     作者在现有变压器油中气体检测和分析方法研究基础上,对纳米气敏传感技术应用于油中气体检测和分析进行了深入研究,研制了新型碳纳米管气体传感器,对碳纳米管气敏机理和特性进行研究,并通过气敏试验和计算机仿真进行验证,掌握了基本规律,提出了一种基于动态隧道模糊C均值的油中溶解气体故障诊断算法,丰富了变压器故障特征分析手段。
     对碳纳米管的制备、化学修饰以及表征方法进行了探讨,首次提出通过对碳纳米管进行化学修饰,来实现对变压器油中溶解气体的检测。采用透射电子显微镜技术对碳纳米管进行了微观结构分析,表明化学修饰使碳纳米管长度变短,端口打开,比表面积增大,同时管壁被撕裂,缺陷变大增多;采用红外吸收光谱分析技术进行了碳纳米管活性官能团分析,发现碳纳米管端头、部分侧壁或有缺陷的位置接上了羟基、羧基、羰基等活性官能团,可以作为吸附油中溶解气体分子的中心。表明化学修饰可以提高碳纳米管对变压器油中溶解气体的敏感性。
     研制了一种碳纳米管薄膜传感器(MWNTs),构建了传感器检测油中溶解气体试验装置。在此基础上,对碳纳米管的温度特性进行了测试,分析了碳纳米管薄膜的导电模型,发现化学修饰改变了碳纳米管的电学特性,使其具有更好的半导体性质。
     首次进行了油中溶解气体碳纳米管的气敏检测,机理分析和实验结果表明,混酸修饰使碳纳米管产生了大量的活性官能团,为气体的吸附增加了更多的活性点,提高了传感器对油中溶解气体的敏感性;采用氯化镍掺杂加剧了碳纳米管的结构缺陷,改变了表面势垒,构造了局部催化活性中心,提高了电荷转移能力,进一步改善了碳纳米管的气敏性,检测灵敏度更高。
     首次对羟基化碳纳米管(SWNT-OH)对变压器油中各溶解气体的吸附特性进行了计算机仿真,基于第一性原理及密度泛函理论,采用Materials Studio进行了大量计算,结果表明SWNT-OH对有机气体的吸附能力大于无机气体,而且在有机气体中,对C2H2最为敏感。将实验结果与仿真结果进行了对比分析,得到了很好的验证。
     针对模糊C均值聚类算法(FCM)用于溶解气体分析时易陷入局部极小的问题,利用全局最优化性能强的动态隧道算法,将两种算法结合,提出一种基于动态隧道FCM聚类的变压器故障诊断算法。该算法首先采用FCM算法聚类得到局部最优值,再利用动态隧道算法以该局部最优值为初始值寻找更小的能量盆地,再将其值返回给FCM算法进行迭代寻优,直到找到全局最小值。通过该算法应用于变压器DGA数据分析,从而实现变压器的故障诊断。变压器油色谱样本及加噪样本故障诊断试验表明,该算法能快速、有效地对样本进行聚类,具有较高的诊断准确率。
The safe operation of electrical equipment is the basic of the safety, stability and economical operation of electrical power system. Along with the extra-high voltage grid construction, power transmission capacity becomes larger, coverage area becomes wider, and the national power grids at all levels are closely linked to each other, so the harm of grid accidents would be more serious. Large power transformer, as the key equipment of power system, plays influential role to ensure the safe operation of power system. Real-time detecting the insulation state of transformer, accurately predicting the fault and avoiding possible trouble are important measures to ensure the safe operation of the electrical grid, to improve equipment utilization and reduce costs of equipment maintenance, which are also key technical issuese of constructing the strong and intelligent electrical grid.
     Dissolved gas-in-oil analysis (DGA) is the most convenient and effective method of judging the early potential fault of oil-immersed power transformers at present, and the method is the most extensive one in the real application, which has become an indispensable approach to judge the internal fault of oil-filled electrical equipment and oversee the safe operation of equipment. For the past few years, it has become the new trend to develop the pint-sized gas-detecting device by using the gas sensing technology, which is aimed at achieving on-line monitoring to dissolved gas in transformer oil and grasping the operational state of equipment at any time. In recent years a breakthrough has been making in the sensor technology. Especially the development of nanotechnology has been providing the new material and processing method, in which the CNTs gas sensor has become the new research focus.
     Based on the study of the existing method of detecting and analyzing dissolved gas-in-oil, the Nano-gas sensing technology, used in the detection and analysis of dissolved gas-in-oil, is studied in depth in this paper. A new kind of CNTs gas sensor is developed and the verification of experiments and theoretical simulation for gas-sensing properties are carried out. The basic laws are grasped, and a fault diagnosing method of dissolved gas-in-oil based on dynamic tunneling fuzzy C-means Algorithm(DTFCM)is proposed, which enriches analytical tools of transformer fault features.
     The preparation, modification and characterization are investigated. For the first time, it is introduced to modify CNTs to test the dissolved gas-in-oil of transformer.,. The micro-structure analysis of CNTs is carried out using transmission electron microscope, which shows that chemical modification reduces the length of MWNTs, opens the ports, enlarges the specific surface area. And the walls of tubes are torn, then larger defects are generated. The analysis of CNTs’active functional groups is carried out using infrared spectrum technology, which shows that the parts such as CNTs tips, some side walls or the positions of defectiveness, are connected with active functional groups such as hydroxide radical, carboxyl, carbonyl etc., and could be the centre of physical adsorbing dissolved gas-in-oil. It shows that chemical modification may improve the CNTs sensibility of dissolved gas-in-oil.
     The MWNTs film Sensor is developed, and the testing device for the sensor detecting gas-in-oil is built. The temperature property of MWNTs is tested, and the conduction model of the MWNTs film is analyzed, then it is found that chemical modification changes electrical characteristics of MWNTs, and makes CNTs have better semiconductor properties.
     For the first time, gas sensing detection of dissolved gas-in-oil is carried out using CNTs. The detection results and mechanism analysis show that the modification by mixed acid makes CNTs generate a number of active functional groups such as hydroxide radical, carboxyl, carbonyl and so on, which increases more active sites for gas absorption, and improve the sensibility of the sensor absorbing dissolved gas-in-oil; doping nickel chloride aggravates structure defects of CNTs, changes surface potential barrier, Constructs partial catalytic active centre, and enhances the ability of charge transfer, further improves the sensibility of CNTs.
     For the first time, the computer simulation of the absorbing ability of SWNT-OH to dissolved gas-in-oil is carried out. According to the first-principles and DFT(Density Functional Theory), the computer simulation is carried out by Materials Studio simulation software, then it is obtained that the absorbing ability of SWNT-OH to organic gas is better than that to inorganic gas, among which sensitivity to C2H2 is the best. The conclusion is well verified by contrastive analysis between experimental results and simulation results.
     Aiming at the problem that Fuzzy C-Means (FCM) clustering algorithm is likely to fall into local minimum point when being used for dissolved gas analysis, Dynamic tunneling (DT) algorithm was introduced for its high global optimization performance. Then a DT-FCM algorithm was presented based on these two algorithms. On the Basis of local minimum obtained by optimization searching of FCM algorithm, using dynamic tunneling process to search a lower energy valley, then the value was submitted to FCM algorithm for iterative optimization until global minimum point was found by repeating the process. Through the application of this algorithm for DGA in transformer oil, transformer fault diagnosis can be achieved. These tests for fault diagnosis of chromatography transformer oil and noise samples show that, the algorithm can cluster samples quickly and effectively and with high accuracy for diagnosis.
引文
[1]孙才新,陈伟根,李俭,廖瑞金.电气设备油中气体在线监测与故障诊断技术[M].北京:科学出版社,2003.
    [2]严璋.电气绝缘在线检测技术[M].北京:中国电力出版社,1995.
    [3]郭剑波.“八五”期间电网事故统计分析[J].电网技术,1998, 22(2): 72-74.
    [4]屈靖,郭剑波.“九五”期间电网事故统计分析[J].电网技术,2004, 28(21):60-62.
    [5]张晋华,蒋卫平,印永华等.特高压规划电网安全稳定性研究[J].中国电机工程学报,2008, 28(22):64-68.
    [6] Shu Yinbiao. Development of ultra high voltage transmission technology in China[C]. The XIVth International Symposium on High Voltage Engineering. Beijing, 2005.
    [7]舒印彪,刘泽洪,高理迎等.±800 kV 6 400 MW特高压直流输电工程设计初探[J].电网技术,2006, 30(1):1-8.
    [8]申洪,黄镔,赵良.锦屏外送特高压直流系统安全稳定性研究[R].北京:中国电力科学研究院,2007.
    [9] Liang X M, Liu Z H, Wang S W, et al.Planning of UHVDC transmission system in China[C]. IEEE Asia Pacific Region T&D Conference. Dalian, China. 2005.
    [10] Mizutani Yoshinobu, TakahashiTsuguhiro, Ito Testoo. Lifetime evaluation method for pole transformer based on transient temperature analysis. IEEE Transactions on Power and Energy. 2007, 127(5):653-658.
    [11] V.G.Arakelian, The long way to the automatic chromatographic analysis of gases dissolved in insulationg oil. IEEE Electrical Insulation Magzine. 2004,20(6):8-25.
    [12] Yasuo Inoue, Kimio Suganuma, Masaru Kamba, et al. Development of oil-dissolved hydrogen gas detector for diagnosis. IEEE Trans. on Power Delivery. 1990.5(1):226-232.
    [13] Ekard Grossmann, Kurt Feser. Sensitive online PD-measurements of on site oil / paper-insulated devices by means of optimized acoustic emission techniques (AET). IEEE Trans. on Power Delivery. 2005,20(1):158-162.
    [14] Ward. B. A survey of New Techniques in Insulation Monitoring of Power Transformers. IEEE Electrical Insulation Magazine. 2001,17(3):16-23.
    [15]王国利,郑毅,郝艳棒等.用于变压器局部放电检测的超高频传感器的初步研究[J].中国电机工程学报,2002, 22(4):154-160.
    [16]应勇,刘富家.变压器绕组热点温度在线测量方法的研究[J].东北电力技术,2002, (9):17-19.
    [17] M.S. Sachdev, T.S. Sidhu, M.C. Wood. A Digital Relaying Algorithm for Detecting Transformer Winding Faults. IEEE Transactions on Power Delivery. 1989, 4(3): 1638-1648.
    [18]王梦云.110kV及以上变压器事故与缺陷统计分析[J].供用电,2007, 24(1):1-6.
    [19]岳章华,钟建灵,江健武.变压器油中溶解气体在线监测系统的应用[J].广东电力, 2000,13(1):32-34
    [20]程鹏,佟来生,吴广宁,唐平.大型变压器油中溶解气体在线监测技术进展[J].电力自动化设备,2004,24(11):90-93.
    [21]张文亮,刘壮志,王明俊,杨旭升.智能电网的研究进展及发展趋势[J].电网技术,2009, 33(13):1-11.
    [22]胡学浩.智能电网——未来电网的发展态势[J].电网技术,2009, 33(14):1-5.
    [23]云玉新.基于共振光声光谱的变压器油中溶解气体在线监测原理及方法[D].重庆大学, 2008.
    [24] GB/T 7252—2001.变压器油中溶解气体分析和判断导则[S].2001.
    [25]杨启平,薛五德,蓝之达.变压器油中溶解气体在线监测技术的研究[J].变压器,2005,Vol.42 ,No.3,pp:39-42.
    [26]孙才新,郭俊峰,廖瑞金等.变压器油中溶解气体分析中的模糊模式多层聚类故障诊断方法的研究[J].中国电机工程学报,2001,21(2):37-41.
    [27]熊浩,孙才新,廖瑞金等.基于核可能性聚类算法和油中溶解气体分析的电力变压器故障诊断研究[J].中国电机工程学报,2005,25(20):162-166.
    [28]李俭,孙才新,陈伟根等.灰色聚类与模糊聚类集成诊断变压器内部故障的方法研究[J].中国电机工程学报,2003,23(2):112-115.
    [29]程鹏,佟来生,吴广宁,唐平.大型变压器油中溶解气体在线监测技术进展[J].电力自动化设备,2004,24(11):90-93.
    [30]贾瑞君.关于变压器油中溶解气体在线监测的综述[J].变压器,2002,39(1):39-45.
    [31]丽平,曹铁泽,刘先勇,周方洁.变压器油中溶解气体在线色谱监测综述[J].变压器, 2004, 41(8):36-39.
    [32]陈伟根.以油中多种气体为特征量的变压器绝缘在线监测及故障诊断技术研究[D].重庆大学,2003.
    [33]何道清.传感器与传感器技术[M],北京:科学出版社,2004.
    [34]潘小青,刘庆成.气体传感器及其发展[J].东华理工学院学报(自然科学版) ,2004, 27(1):89-93.
    [35]丁黎明,赵景波.催化燃烧型甲烷传感器的研究[J].微计算机信息,2007, 23(l):177-178.
    [36]马丽杰.日本气体传感器产业化发展现状[J].云南大学学报(自然科学版),1997,19(2) :211-216.
    [37] Noboru Yamazoe. Toward innovations of gas sensor technolog[J].Sensors and Actuators B.2005,Vol108,pp:2-14.
    [38]徐甲强,韩建军,孙雨安,谢冰.半导体气体传感器敏感机理的研究进展[J].传感器与微系统,2006,25(11):5-8.
    [39]侯长平.SnO2薄膜气体传感器研究新进展[J].淮南师范学院学报,2006, 18(37):19-21.
    [40]李瑛,杨集,冯士维.光纤气体传感器研究进展[J].传感器世界,2005,12(l):6-10.
    [41]王玉田,孟宗,刘卫东.环境监测与光纤传感器[J].世界科技研究与发展,2001, 23(6) :15-17.
    [42] W Jin,G Stewarr, B Culshaw. Source noise limitation in a fiber optics gas sensors using a broadband source[J].Applied Optics.1994,Vol35,No.5,pp:55-62.
    [43]史晓军.电化学气体传感器在烟气监测中的应用[J].中国仪器仪表,2009,l6( 6):90-92.
    [44]陈长伦,何建波,刘伟,刘锦淮.电化学式气体传感器的研究进展[J].传感器世界,2004,l4(4):11-15.
    [45]高伟,董瑛,尤政.微悬臂梁谐振式气体传感器研究进展[J].传感器与微系统,2008, 27(11):l-4.
    [46] R T Howe, R S Muller. Resonant micro-bridge vapor sensor[J],IEEE Transactions on Electron Devices.1986,Vol33,pp:499-506.
    [47]王大甲,胡放荣,姚军,邱传凯,王爱娜.基于微悬臂梁的化学传感器的灵敏度研究[J].传感技术学报,2008, 21(8):1333-1336.
    [48]孟凡利.基于一维纳米材料的气体传感器及其应用研究[D].中国科学技术大学,2009.
    [49]刘丽.硅基微结构气体传感器的研制[D].吉林大学,2008.
    [50]曾志刚,严学俭,邱伟民等.STM脉冲电压极性对材料微细加工影响的研究.真空科学与技术学报,2006,26(2):98-101.
    [51] Iijima S. Material Science: The Smallest Carbon Nanotube. Nature. 1991, Vol354,pp:56-58.
    [52]刘凯,邹德福,廉五州,马丽铃,马丽敏,陈志东.纳米传感器的研究现状与应用[J].仪表技术与传感器,2008, 1(1):10-12.
    [53] Kong J. Franklin N.R. Zhou C. et al. Nanotube Molecular Wires as Chemical Sensors. Science, 2000, Vol287,pp:622-625.
    [54] Kong J. Chapline M.G. Dai H.J .Functionlized Carbon Nanotubes For Molecular Hydrogen Sensors[J].Adc Mater ,2001,Vol13,No.18,pp:1380-1384
    [55] Pengfei Qi, Ophir Vermesh, Mihai Grecu, et al. Toward Large Arrays of Multiplex Functionalized Carbon Nanotube Sensors for Highly Sensitive and Selective Molecular Detection. Nano Letters. 2003, Vol3,No.3,pp:347-351.
    [56] Varghesea, Kichambreb D. Gongc, K.G. et al. Gas sensing characteristics of multi-wallcarbon nanotubes. Sensors and Actuators B. 2001,Vol81,pp:32-41.
    [57] Modi A, Koratkar N, Lass E, Wei B, Ajayan PM. Miniaturized gas ionization sensors using carbon nanotubes. Nature, 2003,Vol424,pp:171-174.
    [58] Zhang Y, Liu J H, Li X, Zhu C C. The structure optimization of the carbon nanotube film cathode in the application of gas sensor. Sensors and Actuators A, 2006, Vol128,pp: 278-289.
    [59]李昕,刘君华,张勇等.催化剂颗粒对自持放电型碳纳米管气体传感器电极的影响[J].仪器仪表学报,2003, 24(1): 4952-4956.
    [60]李昕,刘君华,朱长纯.基于碳纳米管薄膜的吸附式气体传感器的研究[J].中国科学E辑工程学科,2005,35(7):689-700.
    [61]惠国华,吴莉莉,潘敏等.基于定向纳米碳管气体放电的气敏传感器研究[J].分析化学,2006, 34(12): 1813-1816.
    [62]胡陈果,王万录.碳纳米管的电化学性质及其应用研究[J].功能材料,2005, 36(5):730-733.
    [63] Yunhuai Zhang, Jian He, Peng Xiao, Yun Gong, Flow sensing characteristics of thin film based on multi-wall carbon nanotubes, International Journal of Modern Physics B, 2007,Vol.21.No.18 & 19 P3473-P3476
    [64] Goldoni A , Larciprete R, et al. Single-wall carbon nabotube interaction with gases : sample contaminants and environmental monitoring . J Am Chem Soc, 2003, 125: 11329–11333
    [65] Li J ,Lu Y,Ye Q ,et al. Carbon nanotube sensors for gas and organic vapor detection . Nano Lett, 2003 , 3 (7) : 929-933
    [66] Zhou Z, Gao X P, Yan J, SongD Y.Doping effects of B and N on hydrogen adsorption in single-walled carbon nanotubes through density functional calculations. Carbon,2006,44:939-947
    [67] Liu J, RinzlerAG, DaiHJ, et al. Science, 1998, 280: 1253-1256.
    [68] S C Tsang, Y K Chen, P J F Harris, et al.A Simple Chemical Method of Opening and Filling CarbonNanotubes. Nature, 1994, 372(6502): 159~162.
    [69] H Hiura, T W Ebbesen, K Tanigaki. Opening and Purification of Carbon Nanotubes in High Yields. Advance Materials, 1995,7(3): 275~276.
    [70]柯刚,浣石,刘晓国.碳纳米管的有机化学修饰研究进展.Science & Technology Review , 2007, 25 (21): 76-80.
    [71] Holzinger M, Vostrowsky O, Hirsch A, et al. Angew. Chem. Int. Ed., 2001, 40: 4002—4005.
    [72] CahillL S, Yao Z L, Adronov A, et al. J. Phys. Chem. B, 2004, 108: 11412—11418.
    [73] PENG H Q,GU Z N,YANG J P,et al.Fluorotubes as cathodes in lithium electrochemical cells[J]. Nano Lett, 2001,1(11):625-629.
    [74] Curran S A, Ajayan P M, Blau W J, et al. A Composite From Poly (M-Phenylenevinylene-Co-2, 5-Dioctoxy-P-Phenylenevinylene) And Carbon Nanotubes: A Novel Material For Molecular Optoelectronics. Adv Mater, 1998, 10(14):1091~1093.
    [75] Star A, Steuerman D W, Heath J R, et al. Starched carbon nanotubes. Angew Chem Int Ed, 2002, 41(14): 2508~2512
    [76] Chen R J, Zhang Y G, Wang D W, et al. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc, 2001,123(16): 3838~3839.
    [77] B N Khare, M Meyyappan, A M Cassell, et al. Functionalization of carbon nanotubes using atomic hydrogen from a glow discharge. Nano Lett, 2002, 2(1): 73-77.
    [78] Rogers R, Barroelough B,et al. CEGB experience of the analysis of dissolved gas in transformer oil for the detection of incipient faults. 1973 IEE Conference on Diagnostic Testing of High Voltage Power Apparatus in Service. 1973 ,pp:128-130.
    [79]王大忠,徐文,周泽存,陈珩.模糊理论、专家系统及人工神经网络在电力变压器故障诊断中应用──基于油中溶解气体进行分析诊断[J].中国电机工程学报,1996, 16(5):349-353.
    [80]禹成七,张永浩,丰田淳一.基于ANN状态识别系统的变压器故障检测方法.华北电力大学学报,1998, 25(3): 19- 23.
    [81] Yann-Chang Huang and Chao-Ming Huang, Evolving Wavelet Networks for Power Transformer Condition Monitoring, IEEE Trans. on Power Delivery, 2002, Vol.17, No.2,pp412-416.
    [82]高宁,高文胜等.基于模糊理论与自适应共振网络的油中气体分析诊断[J].高电压技术,1997, 23(4):22-25.
    [83] C.E.Lin, J.M. Ling, and C.L. Huang, An Expert System for Transformer Fault Diagnosis Using Dissolved Gas Analysis, IEEE Trans. on Power Delivery, 1993, Vol.8, No.1, pp231-238.
    [84]宋斌,于萍等.变压器油状态监测的专家系统及应用研究[J].变压器,1998, 35(12):27-30
    [85]廖瑞金.变压器绝缘故障诊断黑板型专家系统和基于遗传算法的故障预测研究[D].重庆大学,2003.
    [86]徐文,王大忠,周泽群.试论模糊理论在变压器故障诊断专家系统研制中的应用[J].淮海工学院,1997, 6(2): 21-28.
    [87]张鸣柳.模糊数学在电力变压器内部故障诊断中的应用研究[M].重庆大学硕士学位论文,1997.
    [88]熊浩,李卫国,宋伟,王勇,杨俊,李令.概率聚类技术应用于变压器DGA数据故障诊断[J].高电压技术,2008, 34(5):1022-1026.
    [89]孙才新,郭俊峰,廖瑞金等.变压器油中溶解气体分析中的模糊模式多层聚类故障诊断方法的研究[J].中国电机工程学报,2001, 21(2):37-41.
    [90]熊浩,孙才新,廖瑞金等.基于核可能性聚类算法和油中溶解气体分析的电力变压器故障诊断研究[J].中国电机工程学报,2005,25(20):162-166.
    [91] YONG YAO. Dynamic Tunneling Algorithm for Global Optimization[J]. IEEE Transactions on Systems, Man and Cybernetics. 1989, Vol.19,No.5,pp: 1222-1230
    [92]郑海平,孙才新,李俭,毕强,练波.诊断电力变压器故障的一种灰色关联度分析模式及方法[J].中国电机工程学报,2001,21(10):106~109.
    [93]李俭,孙才新,陈伟根等.灰色聚类与模糊聚类集成诊断变压器内部故障的方法研究[J].中国电机工程学报,2003, 23(2):112-115.
    [94]董立新,肖登明,王俏华,吕干云,刘奕路.模糊粗糙集数据挖掘方法在电力变压器故障诊断中的应用研究一基于油中溶解气体的分析诊断[J].电力系统及其自动化学报,2004, 16(5):1-4.
    [95]王荣杰,胡清.基于粗糙集一神经网络故障诊断技术的研究[J].湖北民族学院学报,2005,23(4):339-341.
    [96]王雷,张瑞青,盛伟,徐治皋.基于模糊规则和支持向量机的凝汽器故障诊断[J].热能动力工程,2009, 24(4):476-480.
    [97]董明,孟源源,徐长响等.基于支持向量机及油中溶解气体分析的大型电力变压器故障诊断模型研究[J].中国电机工程学报,2003, 23(7):88-92.
    [98] Pederson MR, Broughton JQ. Nanocapillarity in fullerene tubules[J]. Phys Rev Lett, 1992, 69: 2689-2692.
    [99] Ajayan PM, Iijima S. Capillarity-induced filling of carbon nanotubes[J]. Nature, 1993, 361: 333-334.
    [100] Saito Y. Nsnoparticles and filled nanocapsules[J]. Carbon, 1995, 33(7): 979-988.
    [101] W. A. de Heer, A. Chatelain, D. Ugarte. Science, 1995, 270: 1179-1180.
    [102] Mishra S R, Rawat H S, Mehendale S C, et al.,Chem.Phys.Lett., 2000, 317-510.
    [103] Bonard J M, Stockli T, Maier F, et al., Phy.Rev.Lett., 1998, 81(7): 1441.
    [104] Brenan M E, Coleman J N, Drury A,et al.,OPt. Lett.,2003,28(4):266.
    [105]王美佳,刘敏,王连英等.功能化多壁碳纳米管的光电性质[J].应用化学,2003, 20(4):318~322.
    [106] E.W.Wong, P.E.Sheehan, C.M.Lieber, Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes[J]. Science,1997, 277(5334): 1971~1975.
    [107] S.Berber, Y.K.Kwon, D.Tomanek, Unusually high thermal conductivity of carbon nanotubes[J]. Phys.Rev.Lett., 2000, 84(20): 4613~4616.
    [108]解思深,李玉宝.神奇的碳纳米管.新材料产业,2000, 51(6):7-8.
    [109]吴锋,徐斌.碳纳米管在超级电容器中的应用研究进展[J].新型炭材料, 2006, 21(2):176-184.
    [110] Dillon A C, Jones K M, Bekkedahl T A, et al. Storage of hydrogen in single-walled carbon nanotubes[J]. Nature, 1997, 386: 377-379.
    [111] Kong H, Gao C, Yan D Y. Macromolecules, 2004, 37: 4022-4030.
    [112] NAKAJIMA T, KASAMATSU S, MATSUO Y. Synthesis and characterization of fluorinated carbon nanotube[J]. Eur J Solid State Inorg Chem, 1996, 33(9): 831-840.
    [113] Stevens J L, Huang A Y, Peng H, et al. Sidewall amino-functionalization of single-walled carbon nanotubes through fluorination and subsequent reactions with terminal diamines. Nano Lett, 2003, 3(3): 331~336.
    [114] Sayago I, Terrado E,Lafuente E, Horrillo M C.Hydrogen sensors based on carbon nanotubes thin films. Synthetic Metals,2005, 146:l5-19.
    [115] J. Chen, A. M. Rao, S. Lyuksyutov, et al. Dissolution of Full-Length Single-Walled Carbon Nanotubes. J. Phys. Chem. B, 2001, 105 (13): 2525–2528.
    [116] K. F. Kelly, I. W. Chiang, E. T. Mickelson, et al. Insight into the mechanism of sidewall functionalization of single-walled nanotubes: an STM study. Chemical Physics Letters, 1999, 313(3-4): 445-450.
    [117] M. Rao, A Jorio, M A Pimenta, et al. Polarized Raman Study of Aligned Multiwalled Carbon Nanotubes. Phys. Rev. Lett. 2000, 84: 1820–1823.
    [118] B. Kaiser, G. U. Flanagan, D. M. Stewart, et al. Heterogeneous model for conduction in conducting polymers and carbon nanotubes[J]. Synthetic Metals, 2001, 117: 67-73.
    [119] N Park, S Han, J Ihm. Effects of oxygen adsorption on carbon nanotube field emitters[J]. Physical review B, 2001, 64(2): 125401-1-125401-4.
    [120] Buldum and J. P. Lu, Contact resistance between carbon nanotubes[J]. Physical review B, 2001, 63(16): 161403-1—161403-4.
    [121]胡陈果.碳纳米管的电化学性质及应用研究[D].重庆大学,2003.
    [122]陈国平.薄膜物理与技术[M].东南大学出版社,1993.
    [123] Bekyarova E , Davis M, Burch T , Zhao B , Sunshine S , Haddon R C. J . Phys. Chem. B , 2004 , 108 : 19717-19720
    [124] Qi P , Vermesh O , Grecu M, Javey A , Wang Q , Dai H , Peng S , Cho KJ . Nano Lett ., 2003 , 3: 347 -351.
    [125] W.Kohn and L.J.Sham,“Self-Consistent Equations Including Exchange and Correlation Effects”.Phys.Rev.140,(1965)1133~1140.
    [126] J.P.Perdew and Y.Wang,“Accurate and simple density functional for the electronic exchange energy:Generalized gradient approximation”,Phys.Rev.B 33,(1986) 8800~8802.
    [127] Shu Peng, Kyeongjae Cho. Ab Initio Study of Doped Carbon Nanotube Sensors [J]. Nano Letters, 2003, 3(4): 513-517.
    [128] Charles See Yeung, Lei Vincent Liu, and Yan Alexander Wang. Adsorption of Small Gas Molecules onto Pt-Doped Single-Walled Carbon Nanotubes. Phys. Chem.2008,112: 7401-7411
    [129] Li J ,Lu Y,Ye Q ,et al. Carbon nanotube sensors for gas and organic vapor detection . Nano Lett, 2003 , 3 (7) : 929-933.
    [130]王若曦,张冬菊,武剑等.硼氮掺杂的碳纳米管对硫化氢气敏性能的理论研究[J].化学学报,2007,65(2):107-110.
    [131] Zhou Z, Gao X P, Yan J, SongD Y.Doping effects of B and N on hydrogen adsorption in single-walled carbon nanotubes through density functional calculations. Carbon,2006,44:939-947
    [132] H.Thomas,The Calculation of Atomic Fields [J].Pro .Camb.Phil.Soe.1927,23:545
    [133] R.Fermi. A Statistieal Method for Determining Some Properties of the Atom [J]. AttiAeead–Lineei, 1927, 6:602
    [134] Bom M,HuangK. Dynamieal Theory of Crystal Lattiees [N]. Oxford: oxford University Press,1954
    [135] P.C.Hohenberg and W.Kohn, Inhomogneneous ElectronGas, Phys.Rev.B 136,(1964): 864 ~871.
    [136] W.Kohn and L.J.Sham,“Self-Consistent Equations Including Exchange and Correlation Effects”.Phys.Rev.140,(1965)1133~1140.
    [137] U.V.Bath and L.Hedin,“A Local exchange-Correlation Potential for the Spin Polarized Case:I”,J.Phys.C:.5,(1972)1629~1642.
    [138] J.P.Perdew and A.Zunger,“Self-Interaction Correction to Density-Functional Approximations for Many-Electron Systems”,Phys.Rev.B 23,(1981)5048~5079.
    [139] Q.Zhao,M.B.Nardelli,W.Lu,J.Bernhole, Carbon Nanotube-Metal Cluste ComPosites:A New Road to Chemical Sensor [J]. NanoLett.2005,5:847一851
    [140]吕佳.基于动态隧道系统的K-means聚类算法研究[J].重庆师范大学学报(自然科学版),2009, 26( 01):73-77.
    [141]曲福恒.一类模糊聚类算法研究及其应用[D].吉林大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700