配电快速仿真及其分布式智能系统关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境保护、技术进步、社会发展和国家政策使得智能电网成为世界电力工业发展的必然选择。由于迫切需要提高电网自愈能力、电力基础设施利用效率、电能质量和供电可靠性的原因,智能电网的建设,将首先在配电网和终端用户展开。
     智能配电网的研究和实践尚处于起步阶段,涉及众多技术领域,其中配电快速仿真与模拟(DFSM)是智能配电网的基础和核心功能之一。本文紧紧围绕着DFSM及其分布式智能系统的几个关键问题展开研究工作,目的是:应用分布式人工智能的相关理论和方法建立起DFSM的分布式智能系统;并在DFSM的核心功能及相关领域取得实质性的成果。
     配电网三相状态估计是DFSM的核心功能和研究难点之一。对于基于支路电流的配电网三相状态估计算法,采用Java语言编制了相应的应用程序。算例分析表明该算法可以实现三相解耦计算,能够处理多种类型的量测数据,为本文的后续研究奠定了基础。
     应用MP广义逆矩阵和加权最小二乘问题的唯一极小最小二乘解等数学方法,推导出配电网状态估计中量测误差和状态向量估计误差之间的数学关系表达式;提出了一种新颖的量测评估和配置优化方法,避免了组合爆炸的产生,能够简单准确地确定量测装置的类型和最佳安装地点。为配电网量测系统建设和持续性优化提供了理论上和方法上的支持。
     结合智能科学的理论和方法研究智能配电网,提出了一个改进的人类智能模型,阐明“信息→知识→智能”的转换过程即是智能形成的核心机制,用于指导DFSM的分布式智能系统的研究。将Agent和MAS的理论与方法应用于DFSM的分布式智能系统的研发,提出Agent的八元素实现结构模型,设计并初步实现了基于MAS的DFSM分布式智能系统(masDFSM)。
     应用Agent的八元素实现结构模型,将配电网三相状态估计算法程序嵌入Agent的动作库中,开发了基于MAS的配电网三相状态估计并行分布式计算软件(masDSE),为进一步开发DFSM中的其它仿真分析软件和提高计算性能提供了新的方法和可供借鉴的模板。
     对masDSE中的任务调度问题进行研究,建立了相对应的调度问题数学模型,提出了基于模糊C均值(FCM)聚类分析算法的任务调度优化方法,使得各计算节点的计算负载均衡程度最佳,进一步提高了masDSE的计算性能。
Environmental protection, technological progress, social development and national policy, all the factors together makes the choice of Smart Grid be inevitable for the world electric power industry. Because of urgent needs to improve the self-healing ability, utilization efficiency of electric infrastructure, power quality and reliability, the construction and development of Smart Grid will start from distribution system and terminal consumers.
     The research and practice on Smart Grid is still at the initial stage, which involve a great number of technical fields. Distribution Fast Simulation and Modeling (DFSM) is the basis and one of the key functions of Smart Distribution. This dissertation focuses on the key issues of DFSM and its Distributed Intelligence System (DIS). The aim is to design and develop the DIS of DFSM, and achieve substantive results on kernel application and related fields in DFSM.
     The distribution state estimation is the core function of DFSM. A three-phase state estimation algorithm based on the branch current for distribution network is realized by practical programming using Java. Large numbers of tests prove that this algorithm can perform decoupled three-phase calculation, and deal with many types of meter data, which is the foundation of later studies.
     The theories of Moore-Penrose generalized inverse matrix and the only minimal least squares solution of the weighted least squares problem are applied to deduce the formula, which expresses the mathematical relationship between the meter data error and the state vector estimation error in distribution state estimation; and a novel method for meters evaluation and configuration optimization in distribution network is proposed. This method can avoid the combinatorial explosion problem, and determine the type and the optimal installation site of measurement devices simply and exactly, thus provide theoretical and methodological support for the construction and continuous optimize of measurement system.
     The theory and perspective of intelligent science are introduced into the study on Smart Grid, and an improved human intelligence model is proposed. It explores that the conversion process of“information→knowledge→intelligence”is the kernel mechanism of the formation of intelligence, which is used to direct the study on DIS of DFSM. The theory and methodology of Agent and Multi-Agent System (MAS) is applied in the study on DFSM and its DIS, an eight-elements structure model of Agent is proposed. Furthermore, DIS of DFSM based on MAS (masDFSM) is being designed and developed.
     By applying the eight-elements structure model of Agent, the distribution three-phase state estimation program is embedded in the action database of Agent, and a parallel distributed computing environment for distribution three-phase state estimation (masDSE) is established based on the MAS. This work provides new methods and templates for developing other simulation software and performance improvement of DFSM.
     A suitable mathematical model is built for the study of the task scheduling problem in masDSE. And a new optimal method for task scheduling based on fuzzy C-means clustering algorithms is proposed, which can achieve optimal balance of calculation load for all computers, thus further improve the whole performance of masDSE.
引文
[1]余贻鑫,栾文鹏.智能电网[J].电网与清洁能源. 2009, 25(1): 1-5.
    [2] European Commission. European Technology Platform Smart Grids: Vision and Strategy for Europe’s Electricity Networks of the Future[R/OL]. European Commission, 2006. http://ec.europa.eu/research/energy/pdf/smartgrids_en.pdf.
    [3] Per Lund. The Danish Cell Project - Part 1: Background and General Approach: Power Engineering Society General Meeting, 2007. IEEE, 24-28 June 2007[C]. 2007.
    [4] EPRI US, EDF R&D. Profiling and Mapping of Intelligent Grid R&D Programs[R]. US EPRI, Palo Alto, CA and EDF R&D, Clamart, France, 2006.
    [5] EPRI US. Technical and System Requirements of Advanced Distribution Automation[R]. US EPRI, Palo Alto, CA, 2003.
    [6] Haase Paul. IntelliGrid: A Smart Network of Power[J]. EPRI Journal. 2005(Summer): 17-25.
    [7] NETL. The NETL Modern Grid Initiative: A Vision for Modern Grid[R/OL]. NETL, 2006. http://www.netl.doe.gov/moderngrid/docs/A Vision for Modern Grid Final_v1_0.pdf.
    [8] Serena Lee, Arnaud Valenti, Ivan BEL. Distribution Fast Simulation and Modeling (DFSM) High Level Requirements[R]. US EPRI, 2005.
    [9] U. S. Department Of Energy, National Energy Technology Laboratory. Modern Grid Initiative: A Vision for Modern Grid[R/OL]. US DOE, 2007. http://www.netl.doe.gov/moderngrid/docs/.
    [10] U. S. Department Of Energy, National Energy Technology Laboratory. Modern Grid Benefits[R/OL]. US DOE, 2007. http://www.netl.doe. gov/modern grid/docs/.
    [11] O. Siddiqui. The Green Grid Energy Savings and Carbon Emissions Reductions Enabled by a Smart Grid[R]. Palo Alto, California: EPRI, 2008.
    [12]中华人民共和国国务院新闻办公室.《中国的能源状况与政策》白皮书[R].北京: 2007.
    [13] National Energy Technology Laboratory. The NETL Modern Grid Initiative: A SYSTEMS VIEW OF THE MODERN GRID[R]. U.S. Department of Energy, 2007.
    [14] U.S. Energy Independence and Security Act of 2007s[R/OL]. , 2007.http://www.thomas.gov/cgi-bin/query/z?c110:H.R.6.ENR.
    [15] EPRI US. Electric Power Research Institute 2009 Portfolio: IntelliGrid[R]. Palo Alto, California: EPRI US, 2008.
    [16] EPRI Project Manager D. Dollen. 2008 Update of the Profiling and Mapping of Intelligent Grid R&D Programs[R]. Palo Alto, California: EPRI US, 2008.
    [17] David A. Cohen. GridAgents?: Intelligent agent applications for integration of distributed energy resources within distribution systems[J]. Digital Object Identifier. 2008, 10.1109/PES.2008.4596818 : 1-5.
    [18] COMMISSION OF THE EUROPEAN COMMUNITIES. GREEN PAPER: A European Strategy for Sustainable, Competitive and Secure Energy[R]. COMMUNITIES, COMMISSION OF THE EUROPEAN, 2006.
    [19] Research Reports International. Understanding the Microgrid[R]. International, Research Reports, 2008.
    [20] CEIDS. (Electricity Innovation Institute Consortium for Electric Infrastructure to Support a Digital Society). The integrated energy and communication systems architecture: Vol I User Guidelines and recommendations[R/OL]. Palo Alto, CA, USA: , 2004. http://intelligrid.info/IntelliGrid_Architecture/IECSA_Volumes/IECSA_VolumeI.pdf.
    [21] CEIDS. The integrated energy and communication systems architecture: Vol II IECSA Functional requirements[R/OL]. Palo Alto, CA, USA: , 2004. http://intelligrid.info/IntellGrid_Architecture/IECSA_Volumes/IECSA_VolumeII.pdf.
    [22] CEIDS. The integrated energy and communication systems architecture: Vol III IECSA Model[R/OL]. Palo Alto, CA, USA: , 2004. http://intelligrid.info/IntellGrid_Architecture/IECSA_Volumes/IECSA_VolumeIII.pdf.
    [23] CEIDS. The integrated energy and communication systems architecture: Vol IV IECSA technical analysis[R]. , 2004. http://intelligrid.info/IntellGrid_Architecture/IECSA_Volumes/IECSA_VolumeIV.pdf.
    [24] Jih-Sheng Lai, Maitra A, Mansoor A, et al. Multilevel intelligent universal transformer for medium voltage applications[C]. Industry Applications Conference, 2005. Fourtieth IAS Annual Meeting. Conference Record of the 2005. 1893-1899.
    [25] F. Goodman. Technical and System Requirements for Advanced Distribution Automation[R]. Palo Alto, California: EPRI, 2004.
    [26] Research Reports International. Advanced Metering Infrastructure[R]. Research Reports International, 2007.
    [27] EPRI US. Electric Power Research Institute 2008 Portfolio: P161 IntelliGrid[R].US EPRI, Palo Alto, CA, 2008.
    [28] Holland J. H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Application to Biology, Control and Artificial Intelligence[M]. 2nd edition ed. Cabridge: MIT Press, 1992.
    [29]焦李成,刘静,钟伟才.协同进化计算与多智能体系统[M].科学出版社, 2006.
    [30] Weiss G. Multi-Agent Systems: A Modern Approache Distributed Artificial Intelligence[M]. Cambridge, MA: MIT Press, 1999.
    [31] Marvin Minsky. Society Of Mind[M]. Simon & Schuster, 1988.
    [32] Michael Wooldridge, Nick Jennings. Intelligent Agents: Theory and Practice[J]. The Knowledge Engineering Review. 1995, 10(2): 115-152.
    [33]周永林,潘云鹤.面向Agent的分析与建模[J].计算机研究与发展. 1999, 36(4): 27-33.
    [34] Shoham Y. Agent Oriented Programming[J]. Artificial Intelligence. 1993, 60(1): 51-92.
    [35] N. R. Jennings, Nicholas R. On agent-based software engineering[J]. Artificial Intelligence. 2000, 117(2): 277-296.
    [36]毛新军,常志明,王戟,等.面向Agent的软件工程:现状与挑战[J].计算机研究与发展. 2006, 43(10): 1782-1789.
    [37] Mesut E. Baran, Arthur W. Kelley. A branch-current-based state estimation method for distribution systems[J]. IEEE Transactions on Power Systems. 1995, 10(1): 483-489.
    [38] Wang Haibin, Schulz Noel. A Revised Branch Current-Based Distribution System State Estimation Algorithmand Meter Placement Impact[J]. IEEE Transactions on Power Systems. 2004, 19(1): 207-213.
    [39] W. M. Lin, J. H. Teng. Distribution Fast Decoupled State Estimation by Measurement Pairing[J]. IEE Proc.-Gener. Transm. Distrib. 1995, 143(1): 43-48.
    [40] C. N. Lu, J. H. Teng, W. -H E. Liu. Distribution System State Estimation[J]. IEEE Transactions on Power Systems. 1995, 10(1): 229-239.
    [41] C. W. Hansen, A. S. Debs. Power System State Estimation Using Three-phase Models[J]. IEEE Transaction on Power Systems. 1995, 10(2): 818-824.
    [42] Wu F. F. Power System State Estimation: A Survey[J]. Electrical Power& Energy Systems. 1990, 12(2): 80-87.
    [43] Mesut E. Baran, Arthur W. Kelle. State Estimation For Real Time Monitoring Of Distribution Systems[J]. IEEE Transactions on Power Systems. 1994, 9(3): 1601-1609.
    [44] J. H. Teng. Using voltage measurements to improve the results of branch-current-based state estimators for distribution systems[J]. IEE Proc.-Gener. Transm. Distrib. 2002, 149(6): 667-672.
    [45]李建,王心丰,段刚,等.基于等效功率变换的配电网状态估计算法[J].电力系统自动化. 2003, 27(10): 39-44.
    [46]孙宏斌,张伯明,相年德.基于支路功率的配电状态估计方法[J].电力系统自动化. 1998, 22(8): 12-17.
    [47] D. M. Falcao, Felix F. Wu, Liam Murphy. Parallel and Distributed State Estimation[J]. IEEE Transactions on Power Systems. 1995, 10(2): 724-730.
    [48]王耀瑜,余贻鑫.分布式能量管理系统(DEMS)状态估计分布式异步迭代算法[J].中国电机工程学报. 1996, 16(3): 160-164.
    [49]韩富春,任先成.电力系统状态估计的分布式并行处理[J].太原理工大学学报. 2003, 30(6): 664-667.
    [50]吉兴全,王成山.电力系统并行计算方法比较研究[J].电网技术. 2003, 27(4): 22-26.
    [51]吴杰,卢志刚,杨斌等.基于改进并行遗传算法的电网状态估计[J].电网技术. 2006, 30(18): 64-68.
    [52] Jose Beleza Carvalho, F. Maciel Barbosa. Parallel and Distributed Processing State Estimation of Power System Energy[C]. Electrotechnical Conference, 2000. MELECON 2000. 10th Mediterranean, 20001128-1131.
    [53] Ali Abur. Distributed state estimation for mega grids[C]. The 15th Power Systems Computation Conference, Liège, Belgium, August 22-26, 2005: 2005.
    [54]刘明,周双喜,邓佑满,等.配电系统状态估计区域解耦算法[J].电力系统自动化. 2005, 29(6): 79-82.
    [55]黎鹏.非侵入式电力负荷分解与监测[D].天津:天津大学, 2009.
    [56] ERPI US. Distribution Fast Simulation and Modeling Technical Update: First Sensor Location Strategy for the Enhancement of Distribution State Estimation[R]. US EPRI, Palo Alto, 2008.
    [57] Mesut E. Baran, Jinxiang Zhu, Arthur W. Kelley. Meter Placement for Real-Time Monitoring of Distribution Feeders[J]. IEEE Transactions on Power Systems. 1996, 11(1): 332-337.
    [58]王亮,高伏英,周京阳.华东电网实时量测系统评价与优化配置[J].电网技术. 2002, 26(10): 30-32.
    [59] Carlo Muscas, Fabrizio Pilo, Giuditta Pisano. Optimal Placement of Measurement Devices in Electric Distribution Systems[C]. IMTC 2006– Instrumentation and Measurement Technology Conference Sorrento, Italy, 24-27 April 2006: 20061873-1878.
    [60]王天擎,谢军,曾洲.网格计算中的资源调度不确定性分析[J].计算机应用. 2007, 27(2): 489-491.
    [61]汪林华,郑衍衡.高性能计算网格资源平台的一种实现方法[J].计算机应用与软件. 2007, 24(1): 118-120.
    [62]尹国定,卫红.云计算——实现概念计算的方法[J].东南大学学报(自然科学版). 2003, 33(4): 502-506.
    [63]朱福喜,何炎祥.并行分布计算中的调度算法理论与设计[M].武汉大学出版社, 2003.
    [64] Yu-Kwong Kwok, Ishfaq Ahmad. Benchmarking the Task Graph Scheduling Algorithms[C]. Proceedings of the First Merged Symposium IPPS/SPDP (the 12th International Parallel Processing Symposium & the 9th Symposium on Parallel and Distributed Processing), March 1998, Orlando, Florida, USA: 531-537.
    [65] Yu-Kwong Kwok, Ishfaq Ahmad. Benchmarking and Comparison of the Task Graph Scheduling Algorithms[C]. Proceedings of the 12th. International Parallel Processing Symposium, April 1999: 381-422.
    [66]陈华平,黄刘生,安虹.并行分布计算中的任务调度及其分类[J].计算机科学. 2001, 28(1): 45-48.
    [67]马丹,张薇,李肯立.并行任务调度算法研究[J].计算机应用研究. 2004, 21(4): 91-94.
    [68] Bertrand Cirou, Emmanuel Jeannot. Triplet: A clustering scheduling algorithm for heterogeneous systems[C]. Parallel Processing Workshops, 2001 International Conference, 3-7 Sept. 2001: 231-236.
    [69] Cristina Boeres, Jose Viterbo Filho. A cluster-based strategy for scheduling task on heterogeneous processors[C]. Proceedings of the 16th Symposium on Computer Architecture and High Performance Computing (SBAC-PAD’04), 27-29 Oct. 2004: 214-221.
    [70] Deo Prakash Vidyarthi, Anil Kumar Tripathi, Biplab Kumer Sarker. Cluster-based multiple task allocation in distributed computing system[C]. Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04), 26-30 April 2004: 239-246.
    [71]蔡自兴,陈爱斌.人工智能辞典[M].化学工业出版社, 2008.
    [72] McCulloch W. C, Pitts W. A logic calculus of the ideas immanent in nervous activity[J]. Bulletin of Mathematical Biophysics. 1943(5): 115-133.
    [73] Simon H. A. The sciences of artificial[M]. Cambridge, MA: The MIT Press, 1969.
    [74] Feigenbaum E. A, Feldman J. Computers and thought[M]. New York: McGraw-Hill, 1963.
    [75] Brooks R. A. Intelligence without representation[J]. Artificial Intelligence. 1991, 47(139-159).
    [76]钟义信.人工智能理论:从分立到统一的奥秘[J].北京邮电大学学报. 2006, 29(3): 1-6.
    [77]钟义信.知行学引论——信息知识智能的统一理论[J].中国工程科学. 2004, 6(6): 1-8.
    [78] EPRI US. Broadband over Power Line (BPL) Electromagnetic Interference (EMI) Assessment[R]. Broadband over Power Line (BPL) ElectromagneticInterference (EMI) Assessment: EPRI US, 2006.
    [79]蔡自兴,贺汉根.智能科学发展的若干问题[J].自动化学报. 2002, 28(supp1): 142-150.
    [80]钱学森.再谈开放的复杂巨系统[J].模式识别与人工智能. 1991, 4(1): 5-8.
    [81]钱学森,于景元,戴汝为.一个科学新领域——开放的复杂巨系统及其方法论[C].科学决策与系统工程——中国系统工程学会第六次年会论文集, 1990.
    [82] Russell S. J, Norvig P. Artificial Intelligence: A modern approach[M]. Englewood Cliffs, New Jersey: Prentice-Hall, 1995.
    [83] Bode A. H, Gasser L. Readings of Distributed Artificial Interlligence[M]. San Francisco: Morgan Kaufmann, 1998.
    [84]史忠植.高级人工智能[M].北京:科学出版社, 1998.
    [85]胡国华,袁树杰.人工智能研究现状与展望[J].淮南师范学院学报. 2006, 8(3): 22-24.
    [86]操龙兵,戴汝为.开放复杂智能系统:基础概念分析设计与实施[M].人民邮电出版社, 2008.
    [87] Kiss G, Reichgelt H. Towards an seantics of desires: Autonomous Agents in a Multi-Agent world[C]. Processdings of the Third European Workshop on modeling, 1992: 115-127.
    [88] Dunin-Keplicz B, Berbrugge R. Collective Commitents[C]. The Second International Conference on Multiagent Systems, Mento Park, California, 1996: AAAI Press, 56-63.
    [89] Bratman M. E, Israel DJ, Pollack M. E. Plans and resource bounded practical reasoning[J]. Computational intelligence. 1988, 4: 349-355.
    [90]毛新军.面向主体的软件开发[M].清华大学出版社, 2005.
    [91] Innes A. Ferguson. TouringMachines: an architecture for dynamic, rational, mobile agents[R/OL]. Technical reports published by the University of Cambridge, 1992. http://www.cl.cam.ac.uk/TechReports/.
    [92] Jorg P. Muller, Markus Pischel. The Agent Architecture InteRRaP: Concept and Application[R/OL]. German Research Center for Artificial Intelligence (DFKI), Stuhlsatzenhausweg 3, D-6600 Saarbrucken 11 http://www.dfki.uni-sb.de/mas/.
    [93]金士尧,黄红兵,范高俊.面向涌现的多Agent系统研究及其进展[J].计算机学报. 2008, 31(6): 881-895.
    [94]戴汝为,操龙兵.一个开放的复杂巨系统[J].系统工程学报. 2001, 15(5): 58-63.
    [95] George F. Luger著,史忠植,张银奎译.人工智能:复杂问题求解的结构和策略(Artificial Intelligence: Structures and Strategies for Comples Problem Solving)[M].机械工业出版社, 2006.
    [96] Auyang S. Y. Foundations of Complex-system Theories: In Economics, Evolutionary Biology, and Statistical Physics[M]. Oxford: Oxford UniversityPress, 1998.
    [97]高波,费奇.从现实世界到MAS世界——基于MAS理论的复杂系统建模思想探讨[J].科学学研究. 2005, 32(2): 179-183.
    [98] Finin T, Labrou Y, Mayfield J. KQML as an Agent Communication Language[J]. MIT Press. 1997.
    [99] Foundation For Intelligent Physical Agents. FIPA Communicative Act Library Specification[S/OL]. 2003. http://www.fipa.org/specs/fipa00037/SC00037J.html.
    [100] Foundation For Intelligent Physical Agents. FIPA ACL Message Structure Specification[S/OL]. 2002. http://www.fipa.org/specs/fipa00061/SC00061G.html.
    [101] Foundation For Intelligent Physical Agents. FIPA Agent Communication Language Representation Specification[S/OL]. 2002. http://www.fipa.org/specs/aclreps.tar.gz.
    [102] Foundation For Intelligent Physical Agents, FIPA. FIPA Content Language Specifications[S/OL]. 2003. http://www. fipa.org/repository/cls.php3.
    [103] Foundation For Intelligent Physical Agents, FIPA. FIPA Interaction Protocol Specification[S/OL]. 2003. http://www.fipa.org/repository/ips.php3.
    [104] Foundation For Intelligent Physical Agents. FIPA Interaction Protocol Library Specification[S/OL]. 2003. http://www.fipa.org/specs/fipa00025.
    [105] F. Bellifemine, G. Caire, A. Poggi. JADE(Java Agent DEvelopment Framework) A White Paper[R/OL]. Telecom Italia, 2003. http://exp.telecomitalialab.com; http://jade.tilab.com/.
    [106] Moore E. H. On the reciprocal of the general algebraic matrix(Abstract)[J]. Bull. Amer. Math. Soc. 1920, 26: 394-395.
    [107] Penrose R. A generalized inverse for matrices[J]. Proc. Cambridge Philos. Soc. 1955, 51: 406-413.
    [108]张向韵,陈果良.并行Greville方法及其在MPI环境下的实现[J].华东师范大学学报(自然科学版). 2005, 3: 24-30.
    [109]周笋,吉国力.基于改进BP算法的广义逆矩阵求解方法[J].厦门大学学报(自然科学版). 2003, 42(3): 386-389.
    [110]魏木生.广义最小二乘问题的理论和计算[M]. 2006.
    [111] L. A. Zadeh. Fuzzy Sets[J]. Information and Control. 1965(8): 338-353.
    [112] Bezkek J. C. Pattern Recognition with Fuzzy Objective Function Algorithms[M]. NY, US: Plenum Press, 1981.
    [113]高新波,裴继红,谢维信.模糊C均值聚类算法中加权指数m的研究[J].电子学报. 2000, 28(4): 80-83.
    [114] Zbigniew Michalewicz, David B. Fogel著. How to Solve It: Modern Heuritics如何求解问题:现代启发式方法[M].中国水利水电出版社, 2003.
    [115]孙丹,孟濬,管宇凡.基于相空间重构和模糊聚类的永磁同步电机直接转矩控制系统逆变器故障诊断[J].中国电机工程学报. 2007, 27(16): 49-53.
    [116]余贻鑫,陈礼义.电力系统安全性和稳定性[M].北京:科学出版社, 1988.
    [117] D. Von Dollen. Distribution Fast Simulation and Modeling Technical Update: State-of-the-Art, Prototype and Performance Analysis of Distribution State Estimators[R]. Palo Alto, California: EPRI, 2006.
    [118] EPRI US. testfeeders[EB/OL]. http://www.ewh.ieee.org/soc/pes/dsacom/testfeeders.html.
    [119]于尔铿.电力系统状态估计[M].北京:水利电力出版社, 1985.
    [120]华强胜.基于DAG模型的高效并行任务调度算法研究[D].中南大学, 2004.
    [121]朱福喜.启发式混合调度和面向AND/OR约束的调度算法研究[D].武汉大学, 2002.
    [122] Fred S. Robert, Barry Tesman. Applied Combinatorics(Second Edition)[M].机械工业出版社, 2007.
    [123]杨伦标,高英仪.模糊数学—原理及应用[M].华南理工大学出版社, 1995.
    [124]宋清昆,郝敏.一种改进的模糊C均值聚类算法[J].哈尔滨理工大学学报. 2007, 12(4): 8-10.
    [125]王宝文,阎俊梅,刘文远.基于分治法的高维大数据集模糊聚类算法[J].计算机工程. 2007, 33(24): 60-62.
    [126]王益民.实用型配电自动化技术[M].中国电力出版社, 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700