基于模糊Fisher准则的聚类与特征降维研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚类分析与特征降维是模式识别领域两个重要的研究课题。聚类分析作为一种重要的非监督模式识别工具,可用于多种领域,如数据挖掘、生物学、计算机视觉、文档分析等。它旨在将最相似的数据聚为一类,而将最不相似的数据聚为不同的类。特征降维包括特征抽取和特征选择,在模式识别中起着非常重要的作用,它有助于去除多余特征,降低原始数据集的维数。
     本文针对模糊聚类与特征降维中的几个问题进行了研究,包括基于模糊Fisher准则的半模糊聚类算法、无监督特征抽取以及不平衡数据集特征选择等。
     本文的创造性研究成果主要有:
     1将Fisher线性判别扩展为模糊Fisher线性判别,并基于此提出了一种新的聚类算法,称为基于模糊Fisher准则的半模糊聚类算法。该算法将鉴别矢量引入迭代更新方程,因此其异于常见的FCM聚类方程形式。严格地讲,该算法不仅仅基于模糊类内散布矩阵,还基于模糊类间散布矩阵,不同于大多数类似于FCM的聚类只基于模糊类内散布矩阵,因此,从以模糊Fisher准则作为聚类目标函数这个意义上说,FBSC可以视为一个新的模糊聚类算法。实际上,该研究也拓展了Fisher线性判别的应用;
     2提出一种将最佳鉴别平面特征抽取技术扩展到无监督模式的方法,其基本思想是通过最优化定义的模糊Fisher准则函数求得无监督模式下的第一个最佳鉴别矢量以及模糊散布矩阵。基于此,求得最大化模糊Fisher准则函数前提下满足正交、共轭正交或者既正交又共轭正交的第二个鉴别矢量,由这两个鉴别矢量分别构成无监督最佳鉴别平面、无监督统计不相关最佳鉴别平面或改进的无监督统计不相关最佳鉴别平面;
     3提出一种将最佳鉴别矢量集扩展到无监督模式下的方法,其基本思想是通过定义的模糊Fisher准则函数将Fisher线性判别扩展成一种半模糊聚类算法,通过该算法求得最佳鉴别矢量和模糊散布矩阵,进而构造出最佳鉴别矢量集。实验结果表明,尽管该方法无法优于传统的有监督最佳鉴别矢量集技术,但却具有与同属无监督特征抽取的主成分分析算法可比的性能;
     4提出了一种针对不平衡数据的基于后验概率的分类器独立的特征选择算法。该算法首先引入基于Parzen-window方法估算的不平衡因子,并以Tomek Links中点为初始值进行迭代,找出满足后验概率相等的判别边界点,通过对这些点法向量进行投影计算得到反映各特征重要性的权值。实验表明,对于不平衡数据,该算法在不降低分类器总体性能地基础上,不仅可以有效降低维度,节省计算开销,而且能够避免常规特征选择算法用于不平衡数据时忽视小类的缺点。
Clustering analysis and feature dimension reduction are two important research topics in pattern recognition field. As an important unsupervised pattern recognition tool clustering analysis has been used in diverse fields such as data mining, biology, computer vision, document analysis. It aims to cluster a dataset into most similar groups in the same cluster and most dissimilar groups in different clusters. Feature dimension reduction including feature extraction and feature selection plays a very important role in pattern recognition. It helps to remove noisy features and reduce the dimensionality of original datasets.
     This paper is aimed at several issues based on fuzzy clustering and feature dimension reduction, including fuzzy Fisher criterion based semi-fuzzy clustering, unsupervised feature extraction and feature selection for imbalanced dataset etc. In this paper, the creative research results are:
     1 Fisher linear discriminant (FLD) is extended to fuzzy FLD and then a novel fuzzy clustering algorithm, called fuzzy Fisher criterion based semi-fuzzy clustering algorithm FBSC, is proposed based on fuzzy FLD. The proposed fuzzy clustering algorithm incorporates the discriminating vector into its update equations such that the obtained update equations do not take commonly-used FCM-like forms. Strictly speaking, the proposed fuzzy clustering algorithm here is rooted at both the fuzzy within-class scatter matrix and the fuzzy between-class scatter matrix, unlike most fuzzy clustering algorithms such as FCM are rooted only at fuzzy within-class scatter matrix. Thus, in the sense of fuzzy Fisher criterion as the objective function of the proposed clustering algorithm, FBSC can be viewed as a novel fuzzy clustering algorithm. In fact, this study also exploits a new application aspect of FLD.
     2 A method is presented to extend optimal discriminant plane feature extraction technology for unsupervised pattern. The basic idea is to optimize the defined fuzzy Fisher criterion function to figure out the first optimal discriminant vector and fuzzy scatter matrixes in unsupervised pattern. Based on these, the second discriminant vector which maximizes the fuzzy Fisher criterion function with the orthogonal constraint or the conjugated orthogonal constraint or both the orthogonal constraint and conjugated orthogonal constraint is obtained. Then this two discriminant vectors make up an unsupervised optimal discriminant plane (UODP), an unsupervised uncorrelated optimal discriminant plane(UUODP) or an improved unsupervised uncorrelated optimal discriminant plane(IUUODP) respectively.
     3. An extension of optimal set of discriminant vectors in unsupervised pattern is presented. The basic idea is to extend Fisher linear discriminant to a novel semi-fuzzy clustering algorithm through the defined fuzzy Fisher criterion function. With the proposed algorithm, an optimal discriminant vector and fuzzy scatter matrixes can be figured out and then unsupervised optimal set of discriminant vectors can be obtained. The experimental results demonstrate that although this method is unable to surpass traditional supervised optimal set of discriminant vectors, it has comparable performance with principal component analysis algorithm which belongs to unsupervised feature extraction.
     4 A novel classifier-independent feature selection algorithm based on the posterior probability is proposed for imbalanced datasets. First, an imbalanced factor is introduced and computed by Parzen-window estimation. The middle point of Tomek links is chosen as the initial point. Accordingly, this algorithm is iterated to find out the boundary points which have the equality of posterior probability. Through the project computation on the normal vectors of these points, the weights of each feature can be obtained, which actually indicate the importance degree of each feature. The experimental results demonstrate that this proposed algorithm can not only reduce the computational cost but also overcome the shortcoming that the minority class may be ignored in the conventional feature selection algorithm.
引文
1.边肇祺,张学工等编著.模式识别[M].第2版.北京:清华大学出版社,2000.1-3
    2. Sergios Theodoridis, Konstantinos Koutroumbas著.模式识别[M].第3版.李晶皎,王爱侠,张广渊译.北京:电子工业出版社,2006.
    3. Richard O.Duda,Peter E.Hart,David G.Stork著.模式分类(英文版)[M].第2版,北京:机械工业出版社,2004.
    4. 何清.模糊聚类分析理论与应用研究进展[J].模糊系统与数学,1998,12(2):89-94.
    5.高新波,谢维信.模糊聚类理论发展及应用的研究进展[J],科学通报,1999,44(21):2241-2248.
    6. Zadeh LA. Fuzzy sets. Inf Cont,1965,8:338-353.
    7. Ruspini E H. A new approach to clustering. Inf Cont,1969,15:22-32.
    8. Gitman I,Levine M D. An Algorithm for Detecting Unimodal Fuzzy Sets and Its Application as a Clustering Technique[J]. IEEE Transactions on Computers,1970,19(7): 583-593.
    9. Dunn J C.A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters[J]. Cybernetics and Systems:An International Journal,1973,3(3): 32-57
    10. Bezdek J C.Pattern Recognition with Fuzzy Objective Function Algoritms[M]. New York:Plenum Press,1981.
    11. M. A. Ismail, Shokri Z. Selim,Fuzzy c-means:Optimality of solutions and effective termination of the algorithm[J]. Pattern Recognition,1986,19(6):481-485.
    12. M. S. Kamel, Shokri Z. Selim.A thresholded fuzzy c-means algorithm for semi-fuzzy clustering[J]. Pattern Recognition,1991,24(9):825-833.
    13. Shokri Z. Selim, M. S. Kamel.On the mathematical and numerical properties of the fuzzy c-means algorithm[J]. Fuzzy Sets and Systems,1992,49(2):181-191.
    14. Jiu-Lun Fan, Wen-Zhi Zhen, Wei-Xin Xie, Suppressed fuzzy c-means clustering algorithm[J]. Pattern Recognition Letters,2003,24(9):1607-1612.
    15. Xizhao Wang, Yadong Wang, Lijuan Wang.Improving fuzzy c-means clustering based on feature-weight learning[J]. Pattern Recognition Letters,2004,25(10):1123-1132.
    16. DaoQiang Zhang, SongCan Chen.A novel kernelized fuzzy C-means algorithm with application in medical image segmentation[J]. Artificial Intelligence in Medicine,2004,32(1): 37-50.
    17. Weiling Cai, Songcan Chen, Daoqiang Zhang.Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation[J]. Pattern Recognition, 2007,40(3):825-838.
    18. Pierpaolo D'Urso, Paolo Giordani.A weighted fuzzy c-means clustering model for fuzzy data[J]. Computational Statistics & Data Analysis,2006,50(6):1496-1523.
    19. Leski J M.Generalized weighted conditional fuzzy clustering[J]. IEEE Transactions on Fuzzy Systems,2003,11(6):709-715.
    20. Pedrycz W,Amato A,Di Lecce V et al.Fuzzy Clustering With Partial Supervision in Organization and Classification of Digital Images[J]. IEEE Transactions on Fuzzy Systems, 2008,16(4):1008-1026.
    21. Lee H E, Park K H, Bien Z Z.Iterative Fuzzy Clustering Algorithm With Supervision to Construct Probabilistic Fuzzy Rule Base From Numerical Data[J]. IEEE Transactions on Fuzzy Systems,2008,16(1):263-277.
    22.宋枫溪,高秀梅,刘树海,杨静宇.统计模式识别中的维数削减与低损降维[J].计算机学报,2005,28(11):1915-1922.
    23. Jennifer G Dy,Carla E. Brodley. Feature Selection for Unsupervised Learning[J]. Journal of Machine Learning Research,2004,5:845-889.
    24. Jolliffe I T.Principal Component Analysis(Second Edition)[M]. Springer Series in Statistics,2002.
    25. Richard L,Gorsuch.Factor Analysis(Second Edition)[M]. Hillsdale, New Jersey London: Lawrence Erlbaum Associates,1983.
    26. A.Hyvarinen,E. Oja. Independent component analysis:algorithms and applications[J]. Neural Networks,2000,13(4):411-430.
    27. Mirkin B. Concept learning and feature selection based on square-error clustering[J]. Machine Learning,1999,35(1):25-39.
    28.刘涛,吴功宜,陈正.一种高效的用于文本聚类的无监督特征选择算法[J].计算机研究与发展,2005,42(3):381-386.
    29. Rousseeuw P J, Kaufman L, Trauwaert E. Fuzzy clustering using scatter matrices[J]. Computational Statistics & Data Analysis,1996,23(7):135-151.
    30. Krishnapuram R, Kim J. Clustering algorithms based on volume criteria[J]. IEEE Transactions on Fuzzy Systems,2000,8(2):228-236.
    31. Gath I,Geva A B. Unsupervised optimal fuzzy clustering[J]. IEEE Trans on Pattern Anal Machine Intell,1989,11(7):773-781.
    32. Kuo-Lung Wu, Jian Yu, Miin-Shen Yang. A novel fuzzy clustering algorithm based on a fuzzy scatter matrix with optimality tests[J]. Pattern Recognition Letters,2005,26(4): 639-652.
    33. Zhonghang Yin, Yuangang Tang, Fuchun Sun et al. Fuzzy Clustering with Novel Separable Criterion[J]. Tsinghua Science & Technology,2006,11(2):50-53.
    34. Dave R N.Fuzzy shell-clustering and applications to circle detection in digital images[J]. International Journal of General Systems,1990,16(4):343-355.
    35. Kim J, Krishnapurm R, Dave R. Application of the least trimmed squares technique to prototype-based clustering[J]. Pattern Recongnition Letters,1996,17(6):633-642.
    36. Krishnapuram R. Keller J M. A possibilistic approach to clustering[J]. IEEE Trans.on Fuzzy System,1993,1(2):98-110
    37. Krishnapuram R, Frigui H, Nasraoui O.Fuzzy and possibilistic shell clustering algorithms and their application to boundary detection and surface approximation[J]. IEEE Trans.on Fuzzy System,1995,3(1):44-60.
    38.谢维信,高新波,裴继红.模糊聚类理论发展及其应用[J].中国体视学与图像分析,1999,4(2):113-119.
    39. D.A.Clausi. K-means iterative Fisher(KIF) unsupervised clustering algorithm applied to image texture segmentation[J]. Pattern Recognition,2002,35(9):1959-1972.
    40. N. Japkowicz. Learning from imbalanced data sets:a comparison of various strategies[C]. In AAAI Workshop on Learning from Imbalanced Data Sets, Technical Report WS-00-05, July 2000.
    41. N. Japkowicz,The Class Imbalance Problem:Significance and Strategies[C]. Proceedings
    of the 2000 International Conference on Artificial Intelligence (IC-AI'2000),vol.1,pp.111-117
    42. R. Barandela, J. S. Sanchez, V. Garcia et al. Strategies for learning in class imbalance problems[J]. Pattern Recognition,2003,36(3):849-851
    43. Gustafson D E, Kessel W C.Fuzzy clustering with a fuzzy covariance matrix[C]. In:Proceedings of the IEEE Conference on Decision Control, SanDiego, CA, 1979,pp.761-766.
    44. James C. Bezdek, Chris Coray, Robert Gunderson and James Watson. Detection and Characterization of Cluster Substructure Ⅱ. Fuzzy c-Varieties and Convex Combinations Thereof[J]. SIAM Journal on Applied Mathematics,1981,40(2):358-372.
    45. Pedrycz W.Conditional fuzzy c-means[J]. Pattern Recognition Letters,1996,17(6): 625-631.
    46. Wu K L,Yang M S.Alternative c-means clustering algorithm[J]. Pattern Recognition, 2002,35(1):2267-2278.
    47. Ozdemir D,Akarun L.A fuzzy algorithm for color quantization of images[J]. Pattern Recognition,35(8):1785-1791.
    48. Ozdemir D,Akarun L.Fuzzy algorithms for combined quantization and dithering[J]. IEEE Trans. on Image Processing,2001,10(6):923-931.
    49.孙即祥等编著.现代模式识别[M].长沙:国防科技大学出版社,2001.53-56,191-201.
    50. Selim S Z, Ismail M A. Soft clustering of multidimensional data:a semi-fuzzy approach[J]. Pattern Recognition,1984,17(5):559-568.
    51. Fisher R A.The use of multiple measurements in taxonomic problems[J]. Annals of Eugenics,1936,7(2):179-188.
    52. Fukuyama Y,Sugeno M.A new method of choosing the number of clusters for the fuzzy c-means method[C]. In:Proceedings of the Fifth Fuzzy Systems Symposium,1989, pp.247-250.
    53. Sugeno M,Yasukawa T.A fuzzy-logic-based approach to qualitative modeling[J]. IEEE Trans.on Fuzzy Systems.1993,1(1):7-31.
    54. Rand W. Objective Criteria for the Evaluation of Clustering Methods[J]. Journal of the American Statistical Association,1971,66(336):846-850.
    55. C.L. Blake, C.J. Merz, UCI repository of machine learning databases, Irvine, CA: University of California, Department of Information and Computer Science[DB/OL]. http://www.ics.uci.edu/~mlearn/MLRepository.html,1998.
    56. Trygve Randen, Brodatz Textures[EB/OL]. http://www.ux.uis.no/~tranden/brodatz.html, 2006.
    57. Jarmo Ilonen, Joni Kamarainen and Heikki Kalviainen. SIMPLEGABOR-Simple Gabor Feature Space[EB/OL].http://www.it.lut.fi/project/simplegabor/,2007.
    58. Ville Kyrki, Joni-Kristian Kamarainen, Heikki Kalviainen. Simple Gabor Feature Space for Invariant Object Recognition[J]. Pattern Recognition Letters,2004,25(3):311-318.
    59. Joni-Kristian Kamarainen, Ville Kyrki, Heikki Kalviainen. Invariance Properties of Gabor Filter Based Features-Overview and Applications[J]. IEEE Transactions on Image Processing,2006,15(5):1088-1099.
    60. Yong Xu, Jingyu Yang, Jianfeng Lu et al. An efficient renovation on kernel Fisher discriminant analysis and face recognition experiments[J]. Pattern Recognition,2004, 37(10):2091-2094.
    61.陈伏兵,张生亮,高秀梅等小样本情况下Fisher线性鉴别分析的理论及其验证[J].中国图象图形学报,2005,10(8):984-991.
    62. Sammon JW. An optimal discriminant plane[J]. IEEE Trans on Computers,1970,19(9): 826-829.
    63. Foley D H, Sammon J W. An optimal set of discriminant vectors[J]. IEEE Trans on Computers,1975,24(3):281-289.
    64. Longstaff I D. On Extensions to Fisher's Linear Discriminant Function[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1987,9(2):321-325.
    65.金忠,娄震,杨静宇.一种具有统计不相关性的最佳鉴别平面[J].模式识别与人工智能,1999,12(3):334-338.
    66.金忠.人脸图像特征抽取与维数研究[D]:[博士论文].南京:南京理工大学,1999
    67.赵海涛,金忠.一种改进的最佳鉴别平面[J],南京理工大学学报,2000,24(1):88-92.
    68.吴小俊,杨静宇,王士同等.A new optimal set of uncorrelated discriminant vetors and its application[C]. Proceedings of WCICA'02(IEEE 02EX527),shanghai,China,2002:340-344.
    69.吴小俊.图像特征抽取与识别理论及其在人脸识别中的应用研究[D]:[博士论文].南京:南京理工大学,2002
    70.吴小俊,杨静宇,王士同等.改进的统计不相关最优鉴别矢量集[J],电子与信息学报,2005,27(1):47-50.
    71.程永清,庄永明,杨静宇.小样本下的最佳鉴别平面[J].南京理工大学学报(自然科学版),1992,61(1):1-5.
    72.吴小俊,杨静宇,王士同等.基于谱分解的F-S最佳鉴别平面及舰船识别研究[J].船舶力学,2003,7(2):116-120.
    73. P.N.Belhumeur,J. P. Hespanha,D.J. Kriegman.Eigenfaces vs. Fisher faces:recognition using class specific linear projection[J]. IEEE Trans. Pattern Anal. Mach. Intell.1997,19(7): 711-720.
    74. Hua Yu,Jie Yang.A direct LDA algorithm for high-dimensional data-with application to face recognition[J]. Pattern Recognition,2001,34(11):2067-2070.
    75. Jian Yang,Jing-yu Yang.Why can LDA be performed in PCA transformed space? [J]. Pattern Recognition,2003,36(2):563-566.
    76. V. Vapnik, The Nature of Statistical Learning Theory[M]. New York:Springer,1995.
    77. S. Mika, G. R(?)tsch, J. Weston et al.Fisher Discriminant Analysis with Kernels[C]. Proc. IEEE International Workshop on Neural Networks for Signal Processing Ⅸ,1999.41-48.
    78. Jian Yang, Alejandro F. Frangi, Jing-yu Yang et al. KPCA Plus LDA:A Complete Kernel Fisher Discriminant Framework for Feature Extraction and Recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(2):230-244.
    79. Scholkopf B, Smola A, Muller K R. Kernel Principal Component Analysis[C]. In Proceedings ICANN, Lecture notes in computer science, Springer,1997:583-589.
    80. S. T. Roweis, L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding[J]. Science,2000,290(5500):2323-2326.
    81. J.B. Tenenbaum, V. de Silva, J. C. Langford. A global geometric framework for nonlinear dimensionality reduction[J]. Science,2000,290(5500):2319-2323.
    82. M. Belkin, P. Niyogi. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation[J]. Neural Computation,2003,15(6):1373-1396.
    83. Liu Ke,Cheng Yongqing, Yang Jingyu. Algebraic feature extraction for image recognition based on an optimal discriminant criterion[J]. Pattern Recognition,1993,26(6):903-911.
    84. Yang Jian, Zhang David, Yang Jingyu. Two dimensional PCA:a new approach to appearance-based face representation and recognition[J]. Pattern Analysis and Machine Intelligence,2004,26(1):131-137.
    85.张生亮,陈伏兵,谢永华等.基于类间散布矩阵的二维主分量分析[J].计算机工程,2006,32(11):44-46.
    86. Chen Songcan, Zhu Yulian. Feature extraction approaches based on matrix pattern: MatPCA and MatFLDA[J]. Pattern Recognition Letters,2005,26(8):1157-1167.
    87. L Ming,B Yuan.2D-LDA:a statistical linear discriminant analysis for image matrix[J].Pattern Recognition Letters,2005,26(5):527-532.
    88. Wang Liwei,Wang Xiao, Zhang Xuerong et al. The equivalence of two dimensional PCA and line-based PCA[J]. Pattern Recognition Letters,2005,26(1):57-60.
    89. S Noushath, G Hemantha Kumar, P Shivakumara. (2D)2LDA:An efficient approach for face recognition[J]. Pattern Recognition,2006,39(4):1396-1400.
    90. Zuo Wangmeng, Zhang David,Wang Kuanquan. An assembled matrix distancemetric for 2DPCA-based image recognition[J]. Pattern Recognition Letters,2006,27(1):210-216.
    91.王珏,周志华,周傲英主编.机器学习及其应用[M].北京:清华大学出版社,2006.19-20
    92. Zhu Yulian.Fuzzy within-class matrix principal component analysis and its application to face recognition[J].Transactions of Nanjing University of Aeronautics & Astronautics,2008, 25(2):141-147.
    93. Fukunaga K. Statistical pattern recognition[M]. New York:Academic Press,1990.
    94. Chih-Chung Chang, Chih-Jen Lin, LibSVM:a library for support vector machines[EB/OL]. http://www.csie.ntu.edu.tw/~cjlin/libsvm,2001.
    95. Ralph Gross, Robotics Institute:PIE Database[DB/OL]. http://www.ri.cmu.edu/ research_project_detail.html?project_id=418&menu_id=261,2001.
    96. Cai D., He X., Han J. et al. Orthogonal Laplacianfaces for Face Recognition[J]. IEEE Trans on Image Processing,2006,15(11):3608-3614.
    97. Duchene J, Leclercq S. An optimal transformation for discriminant and principal component analysis[J]. IEEE Trans on Pattern Analysis and Machine Intelligence,1988, 10(6):978-983.
    98. K Liu, YQ Cheng, JY Yang.Generalized optimal set of discriminant vectors[J]. Pattern Recognition,1992,25(77):731-739.
    99.郭跃飞,杨静宇.求解广义最佳鉴别矢量的一种迭代算法及人脸识别[J].计算机学报,2000,23(11):1189-1195.
    100.郭跃飞.人脸图像代数特征提取与最佳鉴别矢量的研究[D]:[博士论文].南京:南京理工大学,2000.
    101. Guo Yue-Fei, Yang Jing-Yu et al. Feature extraction method based on the generalized fisher discriminant criterion and facial recognition[J]. Pattern Analysis & Application,2001, 4(1):61-66.
    102.吴小俊,杨静宇,王士同等.A new algorithm for solving optimal discriminant vectors[J].Journal of Computer Science and Technology,2001,3(17):324-331.
    103.金忠,杨静宇,陆建峰.一种具有统计不相关性的最佳鉴别矢量集[J].计算机学报,1999,22(10):1105-1108.
    104. Jin Zhong, Yang Jingyu, Hu Zhongshan etc. Face recognition based on the uncorrelated discriminant transformation[J]. Pattern Recognition,2001,34(7):1405-1416.
    105.束婷婷,甘岚,杨静宇.求解统计不相关的最佳鉴别矢量的统一算法[J].南京理工大学学报(自然科学版),2002,26(3):290-294.
    106.吴小俊,杨静宇,王士同等.广义DKL变换及其在人脸识别中的应用研究[J].计算机科学,2003,30(1):87-89.
    107.杨健,杨静宇,刘宁钟.统计不相关最优鉴别分析的理论与算法[J].南京理工大学学报,2002,26(2):179-182.
    108.杨健,杨静宇等.具有统计不相关性的图像投影鉴别分析及人脸识别[J].计算机研究与发展,2003,40(3):447-452.
    109.吴小俊,杨静宇,王士同等.统计不相关最佳鉴别矢量集的本质研究[J].中国工程科学,2004,6(2):44-47.
    110. Z. Liang, P. Shi. Uncorrelated discriminant vectors using a kernel method[J]. Pattern Recognition,2005,38(2):307-310.
    111. Zheng Wenming. A note on kernel uncorrelated discriminant analysis[J]. Pattern Recognition,2005,38(11):2185-2187.
    112. Wenming Zheng, Li Zhao, Cairong Zou. Foley-Sammon Optiaml Discriminant Vectors Using Kernel Approach[J]. IEEE Transactions on Neural Networks,2005,16(1):1-9.
    113. A.K.Qin,P.N.Suganthan,M.Loog.Generalized null space uncorrelated Fisher discriminant analysis for linear dimensionality reduction[J]. Pattern Recognition,2006,39(9):1805-1808.
    114. Liang Yixiong, Li Chengrong, Gong Weiguo et al. Uncorrelated linear discriminant analysis based on weighted pairwise Fisher criterion[J]. Pattern Recognition,2007,40(12): 3606-3615.
    115. Wu Xiaojun, Lu Jieping, Yang Jingyu etc. An extreme case of the generalized optimal discriminant transformation and its application to face recognition[J]. Neurocomputing,2007, 70(4):828-834.
    116. N. Japkowicz. Learning from imbalanced data sets:a comparison of various strategies[C]. In AAAI Workshop on Learning from Imbalanced Data Sets, Technical Report WS-00-05, July 2000.
    117. N. Japkowicz. The Class Imbalance Problem:Significance and Strategies[C]. Proceedings of the 2000 International Conference on Artificial Intelligence (IC-AI'2000), vol.1, pp.111-117
    118. R. Barandela, J. S. Sanchez, V. Garcia et al.Strategies for learning in class imbalance problems[J]. Pattern Recognition,2003,36(3):849-851.
    119.林智勇,郝志峰,杨晓伟.不平衡数据分类的研究现状[J].计算机应用研究,2008,25(2):332-336.
    120.高嘉伟,梁吉业.非平衡数据集分类问题研究进展[J].计算机科学,2008,35(4):10-13.
    121. Nathalie Japkowicz,Shaju Stephen.The class imbalance problem:A systematic study[J].Intelligent Data Analysis,2002,6(5):429-449.
    122. Haibo He, Edwardo A.Garcia. Learning from imbalanced data[J]. IEEE Trans. on Knowledge and Data Engineering,2009,21(9):1263-1284.
    123. A. Nickerson,N. Japkowicz,E. Milios.Using Unsupervised Learning to Guide Re-Sampling in Imbalanced Data Sets[C]. Proceedings of the Eighth International Workshop on Al and Statitsics,2001, pp.261-265.
    124. R. Barandela,J. S. Sanchez, V. Garcia et al.Strategies for learning in class imbalance problems[J].Pattern Recognition,2003,36(3):849-851.
    125. Mu-Chen Chen,Long-Sheng Chen, Chun-Chin Hsu et al.An information granulation based data mining approach for classifying imbalanced data[J].Information Sciences,2008,178(16):3214-3227.
    126. Ying Liu,Han Tong Loh,Aixin Sun. Imbalanced text classification:A term weighting approach[J]. Expert Systems with applications,2009,36(1):690-701.
    127.叶志飞,文益民,吕宝粮.不平衡分类问题研究综述[J].智能系统学报,2009,4(2):148-156.
    128. Claire Cardie, Nicholas Howe. Improving minority class predicting using case-specific feature weights[C]. Proceedings of the 14th International Conference on Machine Learning. San Francisco:Morgan Kaufinann,1997:57-65.
    129. Zheng Z H, Srihari R. Optimally combining positive and negative features for text categorization[C]. International Conference on Machine Learning. Washington DC,2003: 241-248.
    130. Zhaohui Zheng, Xiaoyun Wu, Rohini Srihari.Feature selection for text categorization on imbalanced data[J]. ACM SIGKDD Explorations Newsletter,2004,6(1):80-89.
    131.谢纪刚,裘正定.非平衡数据集Fisher线性判别模型[J].北京交通大学学报,2006,30(5):15-18.
    132.周舒冬,李丽霞,郜艳晖等.加权Fisher线性判别法在非平衡医学数据集中的应用[J].数理医药学杂志,2009,22(1):59-61.
    133.吴洪兴,彭宇,彭喜元.适用于不平衡样本数据处理的支持向量机方法[J].电子学报,2006,34(12):2395-2398.
    134.李建中,杨昆,高宏等.考虑样本不平衡的模型无关的基因选择方法[J].软件学报,2006,17(7):1485-1493.
    135. JigangXie, Zhengding Qiu.The effect of imbalanced datasets on LDA:A theoretical and empirical analysis[J].Pattern Recognition,2007,40(2):557-562.
    136.郭海峰,李洪奇,孟照旭等.基于特征选择、遗传算法和支持向量机的水淹层识别方法[J].石油天然气学报,2008,30(6):94-99.
    137.刘天羽,李国正,尤鸣宇.不平衡故障诊断数据上的特征选择[J].小型微型计算机系统,2009,30(5):924-927.
    138. Alberto Fernandez, Maria Jose del Jesus, Francisco Herrera.On the influence of an adaptive inference system in fuzzy rule based classification systems for imbalanced data-sets[J].Expert Systems with Applications,2009,36(6):9805-9812.
    139. Naoto Abe, Mineichi Kudo. Non-parametric classifier-independent feature selection[J]. Pattern Recognition,2006,39(5):737-746.
    140. I. Tomek. Two modifications of CNN[J]. IEEE Trans. on Syst. Man Commun.,1976, 6(11):769-772.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700