超声波固液反应球磨研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验室研究团队采用机械力场和超声波场耦合,首次提出了超声波固液反应球磨工艺,即在超声波场的作用下,对水溶液中的金属粉末进行搅拌球磨,金属粉末与水在超声波和球磨机械力的共同作用下生成纳米氧化物粉体。研究人员自行设计了超声波固液反应球磨机。论文给出了该设备的结构示意图并对各部分组成以及设计思想与工作原理做了简单介绍。通过超声波固液反应球磨机,探索性地研究了多种金属粉末、非金属粉末以及氧化物粉末的超声波固液反应球磨和固液反应球磨。采用XRD、激光粒度分析仪、SEM、TEM等检测手段对反应产物进行相成分分析、粉末粒度分析以及形貌观察。探索了超声波对固液球磨粉末粒度影响的规律以及超声波固液反应球磨生成相的演变规律。实验得到以下结果:
     (1)利用超声波固液反应球磨机进行了多种粉末的球磨实验,从多种粉末球磨产物的粒径分布图对比分析可知,超声波对能够产生固液反应的粉末的粒度细化作用比较明显,而对不能够产生固液反应的粉末的粒度细化作用比较弱。
     (2)相对于无超声波作用下的球磨,超声波固液反应球磨可以大幅度缩短由金属生成纳米氧化物的时间,如Cu粉末在超声波固液反应球磨时生成纳米CuO的时间是固液反应球磨生成纳米CuO所需球磨时间的27%。
     (3)超声波固液反应球磨可以使得分解反应得以发生,如CuCO3Cu(OH)2粉末在超声波固液球磨时分解为纳米CuO粉末,而在固液反应球磨和高能球磨时均不能使其发生分解。
     (4)相对于固液反应球磨,超声波固液反应球磨可以改变反应路径,如Zn在超声波固液反应球磨时生成的最终产物是纯的纳米ZnO,而在固液反应球磨时生成的最终产物是ZnO和Zn(OH)2的混合物。这种超声波固液反应球磨工艺制备单相纳米氧化物的方法属国内外首例,是一种新的纳米氧化物制备工艺。
Combined mechanochemistry with sonochemistry, the auther's group has developed an ultrasonic solid-liquid reactive ball milling technology, which is that metal powders are ball milled under ultrasonic processing in the distilled water solution and then nano-oxides are attained through metal powders reacting with water. The group designs an ultrasonic solid-liquid reactive ball milling equipment, and the sketch map of it is drawn in the paper. The paper simply introduces the parts of the ultrasonic solid-liquid reactive ball milling equipment, its designed motive and its wok processing. Via the ultrasonic solid-liquid reactive ball milling equipment, a lot of original powders are milled with ultrasonic waves and without ultrasonic waves in the distilled water solution. X-ray diffraction, Laser Particle Size Analyzer, SEM and TEM are employed to analyze the composition, the gain size and micro structure of the products, respectively. The rule of the gain size of ball milling products under ultrasonic processing is investigated. The further research has been done on the rules of the reactive processing and the composition of ball milling of the metal powders and water solution under ultrasonic processing. The experimental results are as follows:
     (1) Compared ultrasonic solid-liquid reactive ball milling a lot of original powders with solid-liquid reactive ball milling them in the distilled water solution, the ultrasonic waves can obviously minish the particle size of the products if the powders and water solution can reactive after ball milling under ultrasonic processing, but the effect on grain refinement of the ultrasonic waves may weaken if the powders and water solution can not reactive after ball milling under ultrasonic processing.
     (2) Compared to ball milling without ultrasonic waves in the pure distilled water solution, ultrasonic solid-liquid reactive ball milling can reduce the time to attain nano-oxides. For example, the time to attain CuO from ball milling Cu powders with ultrasonic waves in the distilled water solution is 27% of that without ultrasonic waves.
     (3) By the ultrasonic solid-liquid reactive ball milling, CuCO3Cu(OH)2 powders can be decomposed to CuO, while CuCO3Cu(OH)2 powders can not react via ball milling without ultrasonic waves in the distilled water solution and ball milling in the Planetary Ball Mill.
     (4) Compared to ball milling without ultrasonic waves in the pure distilled water solution, ultrasonic solid-liquid reactive ball milling can change the reactive pathway of ball milling. For example, the pure ZnO can be attained by ball milling Zn powders with ultrasonic waves in the distilled water solution, while only the mixture of ZnO and Zn(OH)2 can be attained by ball milling Zn powders without ultrasonic waves in the distilled water solution. The single-phase nano-oxides can be attained via ultrasonic solid-liquid reactive ball milling, providing a new preparation method in domestic and abrosd.
引文
[1]Peters K. Mechanochemische Peaktionen. Frankfurt,1962,21(2):78-98
    [2]倪颂.Cu-H20二元系及Cu-Cl-H2O三元系反应球磨研究:[湖南大学硕士论文].长沙:湖南大学,2008,1-2
    [3]Ostwald W. Handbuch der allgemeine Chemie Band I Ambrosius Barth. Leipzig, Germany,1919:70
    [4]陈更莉.锌及其氧化物在水溶液中球磨规律研究:[湖南大学硕士论文].长沙:湖南大学,2008,1-2
    [5]Bertran F. Mechanochemistry.an overview. Pure Appl Chem,1999,71(4): 581-586
    [6]盖国胜.超细粉碎分级技术.北京:中国轻工业出版社,2000,257-258
    [7]陈振华,陈鼎.机械合金化与固液反应球磨.北京:化学工业出版社,2006,429-431
    [8]李英芝.金属粉末球磨生成相研究:[湖南大学硕士论文].长沙:湖南大学,2008,1-2
    [9]Saito F. Change in Physicochemical Properties and Synthesis of Inorganic Materials with an Aid Mechanochemical effect.粉体ぉょひ粉末冶金,1993, 25(4):27-37
    [10]周奇.电弧加热蒸发法制备二元合金纳米粉末的相生成规律研究:[湖南大学硕士论文].长沙:湖南大学,2006,1-3
    [11]Umemoto M, Liu Z G, Tsuchiya K. The development of research and application of mechanical alloying. Journal of Japan Society of Powder and Powder Metallury,2001,48(10):926-934
    [12]Takahashi H. Effect of dry grinding, on kaolin minerals I Koalinte. Bull Chem Soc JPn,1959,32(3):235-245
    [13]Umemoto M, Liu Z G, Tsuchiya K. The development of research and application of mechanical alloying. Journal of Japan Society of Powder and Powder Metallury,2001,48(10):926-934
    [14]杨树升.固液反应球磨制备Ni基二元金属间化合物的研究:[湖南大学硕士论文].长沙:湖南大学,2005,1-2
    [15]吴薇.固液反应球磨制备Cu系及Mo系金属间化合物的研究:[湖南大学硕士论文].长沙:湖南大学,2008,1-2
    [16]黄锡峰.高能球磨制备氧化亚铜及铁锡亚价氧化物的研究:[湖南大学硕士论文].长沙:湖南大学,2009,4
    [17]Li Y X, Reno R C, Takacs L. Mossbauer study of nanophase iron produced by mechanical alloying. Materials Research Society Symposium Proceedings,1993, 286:215-220
    [18]蔡建国.固液反应球磨过程中三元合金相形成规律及机理研究:[湖南大学硕士论文].长沙:湖南大学,2005,9-12
    [19]Aning A O, Hong C, Desu S B. Novel synthesis of lead titanate by mechanical alloying. Mater Sci Forum,1995,179-181:207-213
    [20]杨华明,陈德良,邱冠周.超细粉碎机械化学的研究进展.中国粉体技术,2002,8(2):32-37
    [21]Osseo A K. Solution chemistry of tungsten leaching system. Metall Trans,1982, 13B(4):555-558
    [22]马学鸣.氧化铜室温下机械还原的研究.金属学报,1991,27(6):A470-472
    [23]Saito F. Change in Physicochemical Properties and Synthesis of Inorganic Materials with an Aid Mechanochemical effect.粉体ぉょひ粉末冶金,1993, 25(4):27-37
    [24]陈振华,陈鼎,陈刚.制备金属间化合物粉末的方法及其装置.中国.发明专利,ZL02114332.3.2003-02-05
    [25]Chen D, Chen Z H, Chen J H, et al. Preparation of the Al-Cu-Fe and Al-Fe-Si ternary intermetallic powders via a novel reaction ball milling technique. Journal of Alloys and Compounds,2004,376(1-2):89-94
    [26]Chen Z H, Chen D, Chen G, et al. Preparation of elevated- temperature intermetallic powders via a novel reaction ball milling technique. Journal of Alloys arid Compounds,2004,370(1-2):43-46
    [27]陈鼎,陈振华,黄培云.固液反应球磨制备Fe-Zn和Fe-Sb系金属间化合物.湖南大学学报(自然科学版),2004,31(1):12-16
    [28]陈鼎,陈振华,陈刚,等.固液球磨制备Fe-Sn金属间化合物粉末.中国有色金属学报,2003,13(3):579-583
    [29]Chen Z H, Chen D. Preparation of binary and ternary intermetallic powdersvia a novel reaction ball milling technique. Journal of Metastable and Nanocrystalline Materials,2005,24-25:719-722
    [30]Chen D, Chen J H, Yan H G, et al. Synthesis of binary and ternary intermetallic powders via a novel reaction ball milling technique. Materials Science and Engineering A,2007,444(1-2):.1-5
    [31]Chen D, Chen G L, Chen G, et al. Phase Formation Regularities of ultrafine TiAl, NiAl and FeAl intermetallic compound powders during solid-liquid reaction milling. Journal of Alloys and Compound,2008,457(1-2):292-295
    [32]Chen D, Chen Z H, Cai J G, et al. Preparation of W-Al intermetallic compound powders by a mechanochemical approach. Journal of Alloys and Compound, 2008,461(1-2):L23-L25
    [33]陈刚,陈鼎,严红革,等.固液反应球磨工艺.材料导报,2005,19(Z1):222-224
    [34]陈振华,陈鼎.机械合金化与固液反应球磨.北京:化学工业出版社,2006,476-477
    [35]陈鼎,陈振华.机械力化学.北京:化学工业出版社,2008,125-127
    [36]Chen D, Ni S, Chen G L, et al. Preparation of nano-particles of metal oxides via a novel solid-liquid mechanochemical reaction technology. Advanced Materials Research,2007,26-28:671-674
    [37]陈鼎,倪颂,陈振华,等.在酸性条件下采用高能球磨法制备Cu2O纳米粉末.无机材料学报,2007,22(6):1251-1254
    [38]Chen Ding, Ni Song, Chen Zhenhua. Synthesis of Fe3O4 nanoparticles by wet milling iron powder in a planetary ball mill. China Particuology,2007,5(5): 357-358
    [39]陈更莉,郝亮,陈刚,等.Zn粉在水溶液中球磨的生成相演化规律研究.矿业工程,2007,27(6):61-63
    [40]陈振华,周奇,严红革,等.锰粉在水溶液中球磨生成相的研究.机械工程材料,2006,30(4):73-75
    [41]陈振华,李英芝,倪颂,等.水磨法制备金属氧化物粉末研究.矿业工程,2008,28(2):76-78
    [42]陈辉,强颖怀,葛长路.超声波空化及其应用.新技术新工艺,2005,7:63-65
    [43]孙汝继.超声波及其应用.中专物理教学,1994,2(1):38-39
    [44]Thompson L H, Doraiswamy L K. Sonochemistry:Science and Engineering. Ind. Eng Chem Res,1999,38:1215-1249
    [45]Little C, Hepher M J, El-Sharif M. The sono-degradation of phenanthrene in an aqueous environment. Ultrasonics,2002,40:667-674
    [46]Weissler A. Sonochemistry:The Production of Chemical Changes with Sound Waves. Journal of the Acoustical Society of America,1953,25(4):651-657
    [47]李廷盛,尹其光.超声化学.北京:科学出版社,1995,32-41
    [48]Suslick K S, Fang M M, Hyeon T, et al. Applications of Sonochemistry to Materials Synthesis. In:Sonochemistry and Sonoluminescence, Netherlands, Dordrecht:Kluwer Publishers,1999,291-320
    [49]Noltingk B E, Neppiras E A. Cavitation produced by ultrasonics Proc Phys Soc, 1950,63B(9):674-685
    [50]Neppolian B, Park J S, Choi H. Effect of Fenton-like oxidation on enhanced oxidative degradation of para-chlorobenzoic acid by ultrasonic irradiation. Ultrasonics Sonochemistry,2004,11:273-279
    [51]Wang J, Jiang Z, Zhang L Q, et al. Sonocatalytic degradation of some dyestuffs and comparison of catalytic activities of nano-sized TiO2, nano-sized ZnO and composite TiO2/ZnO powders under ultrasonic irradiation. Ultrasonics Sonochemistry,2009,16:225-231
    [52]Mason T J, Lorimer J P. Sonochemistry. Theory, Application and Uses of Ultrasounds in Chemistry. Chichester:ellis Horwood Publishers,1988
    [53]冯若,李化茂.声化学及其应用.合肥:安徽科学技术出版社,1992,201
    [54]Gedanken A. Using sonochemistry for the fabrication of nanomaterials. Ultrasonics Sonochemistry,2004,11:47-55
    [55]Sulick K S. Applications of Ultrasound to Materials Chemistry. MRS Bulletin, 1999,29:295-326
    [56]刘艳真,张景林.超声波在纳米Ni粉制备中的应用.科技情报开发与经济,2005,15(11):187-188
    [57]任春洁,刘冬梅,曲立杰,等.超声波合成技术在纳米羟基磷灰石制备中的应用.佳木斯大学学报,2009,27(3):402-404
    [58]Koltypin Y, Katabi G, Cao X, et al. Sonochemical preparation of amorphous nickel. Non-Crystalline Solids,1996,201(2):159-162
    [59]Li B, Xie Y, Huang J X, et al.,Sonochemical Synthesis of Silver, Copper and Lead Selenides. Ultrasonics Sonochemistry,1999,6(4):217-220
    [60]Moe K K, Tagawa T, Goto S. Preparation of electrode catalyst for SOFC reactor by ultrasonic mist pyrolysis of aqueous solution. Journal of the Ceramic Society of Japan,1998,106:242-247
    [61]Okuyama K, Lenggoro I W, Tagami N, et al. Preparation of ZnS and CdS fine particls with different particle sizes by a spray-pyrolysis method. Journal of material science.1997,32(5):1229-1237
    [62]Ohshima K, Tsuto K, Okuyama K, et al. Preparation of ZnO-TiO2 composite fine particles using the ultrasonic spray pyrolysis method and their characteristics on ultraviolet cutoff. Aerosol Science and Techology,1993, 19(4):468-477
    [63]Perez-Maqueda L A, Matijevic E. Preparation and characterization of nonosized zirconium (hydrous) oxide particles. Journal of Materials Research,1997, 12(12):3286-3292
    [64]王平,郑少华,陶珍东,等.超声波对微细粉体制备的影响的研究.济南大学学报,2002,16(1):45-48
    [65]Gao G F, Zhao B, Xiang D H, et al. Research on the surface characterisrics in ultrasonic grinding nano-zirconia ceramics. Journal of Materials Processing Technology,2009,209:32-37
    [66]Chave T, Nikitenko S I, Granier D, et al. Sonochemical reations with mesoporous alumina. Ultrasonics Sonochemistry,2009,16:481-487
    [67]Wei Y L, Chang P C. Characteristics of nano zinc oxide synthesized under ultrasonic condition. Journal of Physics and Chemistry of Solids,2008,69: 688-692
    [68]陶珍东,郑少华.粉体工程与设备.北京:化学工业出版社,2003,59
    [69]Maurice D, Courtney T H. Modeling of Mechanical alloying:PartⅠDeformation, Coalescence and Fragmentation Mechanisms. Metallurgical and Material Transactions A,1994,25(1):147-158
    [70]Suslick K S. Sonoluminescence and Sonochemistry. In:Encyclopedia of Physical Science and Technology,3rd Ed. San Diego:Academic Press,2001, 1-22
    [71]Henglein A. Chemical effects of continuous and pulsed ultrasound in aqueous solutions. Ultrasonics Sonochemistry,1995,2(2):S115-S121
    [72]任振.机械法制备纳米粒子的研究:[济南大学硕士论文].济南:济南大学,2006,45-47
    [73]Yu Y L, Zhang J Y. Solution-phase synthesis of rose-like CuO. Materials Letters, 2009,63(21):1840-1843
    [74]Kim Y S, Hwang I S, Kim S J, et al. CuO nanowire gas sensors for air quality control in automotive cabin. Sensors and Actuators B:Chemical,2008,135(1): 298-303
    [75]Anandan S, Wen X G, Yang S H. Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells. Materials Chemistry and Physics,2005,93(1):35-40
    [76]Chen L B, Lu N, Xu C M, et al. Electrochemical performance of polycrystalline CuO nanowires as anode material for Li ion batteries. Electrochimica Acta, 2009,54(17):4198-4201
    [77]Xiang J Y, Tu J P, Zhang L, et al. Self-assembled synthesis of hierarchical nanostructured CuO with various morphologies and their application as anodes for lithium ion batteries. Journal of Power Sources,2010,195(1):313-319
    [78]王家真,王亚平,杨志懋,等.CuO添加剂对Ag/SnO2润湿性与界面特性的影响.稀有金属材料与工程,2005,34(3):405-408
    [79]Wang X Y, Zhang F, Xia B Y, et al. Controlled modification of multi-walled carbon nanotubes with CuO, Cu2O and Cu nanoparticles. Solid State Sciences, 2009,11(3):655-659
    [80]Li D, Leung Y H, Djurisic A B, et al. CuO nanostructures prepared by a chemical method. Journal of Crystal Growth,2005,282(1-2):105-111
    [81]Saravanan P, Alam S, Mathur G N. A liquid-liquid interface technique to form films of CuO nanowhiskers. Thin Solid Films,2005,491(1-2):168-172
    [82]Yang Z H, Xu J, Zhang W X, et al. Controlled synthesis of CuO nanostructures by a simple solution route. Journal of Solid State Chemistry,2007,180(4): 1390-1396
    [83]Chou M H, Liu S B, Huang C Y, et al. Confocal Raman spectroscopic mapping studies on a single CuO nanowire. Applied Surface Science,2008,254(23): 7539-7543
    [84]Tsai C M, Chen G D, Tseng T C, et al. CuO nanowire synthesis catalyzed by a CoWP nanofilter. Acta Materialia,2009,57(3):1570-1576
    [85]Umar A, Rahman M M, Al-Hajry A, et al. Enzymatic glucose biosensor based on flower-shaped copper oxide nanostructures composed of thin nanosheets. Electrochemistry Communications,2009,11(2):278-281
    [86]彭秧锡,刘士军.微波固相反应前驱体热分解法制备纳米氧化铜粉体.人工晶体学报,2009,38(3):738-741
    [87]李冬梅,夏熙.络合沉淀法合成纳米氧化铜粉体及其性能表征.无机材料学报,2001,16(6):1207-1210
    [88]Song X Y, Yu H Y, Sun S X. Single-crystalline CuO nanobelts fabricated by a convenient route. Journal of Colloid and Interface Science,2005,289(2): 588-591
    [89]Liu Q, Liang Y Y, Liu H J, et al. Solution phase synthesis of CuO nanorods. Materials Chemistry and Physics,2006,98(2-3):519-522
    [90]Zarate R A, Hevia F, Fuentes S, et al. Novel route to synthesize CuO nanoplatelets. Journal of Solid State Chemistry,2007,180(4):1464-1469
    [91]Dar M A, Kim Y S, Kim W B, et al. Structural and magnetic properties of CuO nanoneedles synthesized by hydrothermal method. Applied Surface Science, 2008,254(22):7477-7481
    [92]Jia W Z, Reitz E, Shimpi P, et al. Spherical CuO synthesized by a simple hydrothermal reaction:Concentrationdependent size and its electrocatalytic application. Materials Research Bulletin,2009,44(8):1681-1686
    [93]Dar M A, Ahsanulhaq Q, Kim Y S, et al. Versatile synthesis of rectangular shaped nanobat-like CuO nanostructures by hydrothermal method; structural properties and growth mechanism. Applied Surface Science,2009,255(12): 6279-6284
    [94]Chen D, Chen G L, Chen G, et al. Phase transformation regularities of Zn in the solution systems by solid-liquid reaction milling. Jornal of Non-Crystalline Solids,2009,355(31-33):1602-1604
    [95]倪颂.Cu-H2O二元系及Cu-Cl-H2O三元系反应球磨研究:[湖南大学硕士论文].长沙:湖南大学,2008,25-27
    [96]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001,8
    [97]Weiss T. Radiochemistry of aqueous solutions. Nature,1994,153:748-750
    [98]Suslick K S. Sonochemistry. Science,1990,247:1439-1445
    [99]Pearton S J, Norton D P, Ip K, et al. Recent progress in processing and properties of ZnO. Progress in Materials Science 2005,50:293-340
    [100]Wang Z L. ZnO nanowire and nanobelt platform for nanotechnology. Materials Science and Engineering R 2009, R64:33-71
    [101]孙力军,张文彬,侯象洋.纳米氧化锌在电子电气工业中的应用.有色金属,57(1):42-44
    [102]赵娜.纳米ZnO粉体的制备及其光催化性能研究:[武汉理工大学硕士学位论文].武汉:武汉大学,2008
    [103]Kuppa R, Moholkar V S. Physical features of ultrasound-enhanced heterogeneous permanganate oxidation. Ultrasonics Sonochemistry,2010,17: 123-131

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700