杨梅素和二氢槲皮素的电化学与光谱电化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
类黄酮化合物(Flavonoids)广泛存在于蔬菜、水果和药用植物中,是一类天然抗氧化剂。杨梅素和二氢槲皮素均属于类黄酮化合物,能够清除体内过剩的超氧自由基,具有抗炎、抗肿瘤及抗衰老等药理作用,近年来得到国内外研究者的广泛关注。本文以这两种化合物为模型化合物,采用循环伏安法、微分脉冲伏安法和现场薄层长光程紫外可见光谱电化学方法测试它们的电氧化还原行为和光谱变化,探讨C环2,3碳碳键的饱和性对电氧化机理及抗氧化性能的影响。并采用双电势阶跃计时吸光度法和循环伏吸法对两者的电氧化还原过程进行了现场的动态检测。此外,通过光谱电化学方法对两者与金属离子相互作用的机理进行了研究。
     电化学测试结果表明,杨梅素和二氢槲皮素在CPE表面有较强的吸附。在较低电势下两种物质均有一对准可逆的氧化还原峰A1和C1,对应于B环上3',4'-二羟基的两电子两质子反应。不同扫速曲线反映出杨梅素和二氢槲皮素在CPE表面同时受到吸附作用和扩散作用控制。通过pH值的考察发现,酸性条件更利于两者的氧化。
     循环伏安现场薄层光谱电化学测试表明,在不同的恒电势下氧化还原,杨梅素和二氢槲皮素的UV/Vis特征吸收峰表现出的变化趋势,对应于这两种物质碳环不同位置上的羟基的氧化还原。同时探讨了杨梅素和二氢槲皮素的氧化机理及其抗氧化性构效关系,结果表明杨梅素的氧化遵守随后转化机理,但其分子中B环5'-OH的存在对随后转化步骤有阻碍作用,导致抗氧化性减弱;二氢槲皮素分子中C环2,3位C-C饱和键则完全阻断了随后转化步骤的进行,从而导致抗氧化性大幅度减弱。可见随后转化步骤对黄酮醇抗氧化活性具有十分重要的贡献。
     本论文用紫外吸收光谱法考察了类黄酮化合物与金属离子(如Fe3+、Cu2+)的相互作用,同时考察了活性氧组分H2O2对类黄酮化合物与金属离子络合作用的影响。研究表明,杨梅素与Cu2+、Fe3+这两种金属离子以1:2的比例络合,3-OH、4-羰基以及B环上的3',4'-二羟基是其结合位点。二氢槲皮素与金属离子很难络合,很大程度上是受C环2,3位C-C饱和键的影响。酸性条件下,H2O2可以缓慢氧化杨梅素成醌式结构,并在294 nm处出现新的特征吸收峰,同时Fe3+对H2O2的缓慢氧化过程具有显著的促进作用。
As a series of natural antioxidants, flavonoids are abundant in vegetables, fruits and medicinal plants. Myricetin and dihydroquercetin belong to flavonoids, which can scavenge superfluous superoxide free radicals in human body and show pharmacological effects in anti-tumour, anti-inflammation and anti-senility, etc. Therefore, they have got great attention in recent years. In this paper, these two compounds were investigated as model compounds to test their electric redox behavior and spectral changes using cyclic voltammetry, differential pulse voltammetry and in situ UV-Vis spectroelectrochemical methods, and then explored the influence of 2,3 C-C saturated bond in electro-oxidation mechanism and anti-oxidation properties. We also used double potential chronoabsorptometry and cyclic voltabsorptometry to test electric redox behavior of the two compounds. In addition, the interactions between metal ions and flavonoids were deeply investigated by spectroelectrochemical methods.
     Electrochemical tests showed that CPE displayed great power to adsorb myricetin and dihydroquercetin. The two flavonoids both had a couple of reversible redox peaks A1 and C1 at lower potentials, which corresponded to the oxidations of 3',4'-OHs at B-ring involving 2-electrons and 2-protons. Curves at different scan rates indicated that the reactions of myricetin and dihydroquercetin were both controlled by adsorption and diffusion on CPE surface. Through the examinations at different pH values, we found that acidic conditions were suitable for oxidations of the two flavonoids.
     Cyclic voltammetry and thin layer spectroelectrochemistry test results indicated that the adsorption and oxidation of myricetin and dihydroquercetin on a CPE in a longoptical-path thin-layer electrochemical cell. The characteristic bands of the two flavonoids showed potential-dependent variations under controlled-potential oxidation. Cyclic voltammetry and in situ UV-Vis spectroelectrochemical methods were used to investigate the electro-oxidation mechanisms of myricetin and dihydroquercetin, in order to understand the relationship between flavonols’antioxidant activity and their chemical structures. The results indicated that the presence of the 5'-OH at the B-ring of myricetin may, to a certain extent, hinder the subsequent chemical transformation, while the 2,3 C-C saturated bond in dihydroquercetin can completely stop the subsequent step, leading to the decrease in antioxidant activity, less for myricetin and more for dihydroquercetin. This suggests that the subsequent chemical transformation gives very important contribution to the antioxidant activity of flavonols.
     In this work, the interactions between flavonoids and metal ions were studied by spectroelectrochemical methods. We also studied the effect of hydrogen peroxide, one of the reactive oxygen species, on the complexation of flavonoids and metal ions. We have shown that myricetin forms 1:2 complexes with Cu2+, in which 3-OH and 4-oxo groups and 3',4'-OH groups are coordination sites. The same result was obtained for Fe3+. Spectral changes were hardly obtained for the complexation of dihydroquercetin and metal ions, which corresponded to the 2,3 C-C saturated bond in dihydroquercetin. Hydrogen peroxide can oxidize myricetin to quinine in acidic solutions slowly, whose characteristic absorption peak appears at 294 nm. The slow myricetin oxidation by hydrogen peroxide is accelerated in the presence of Fe3+.
引文
[1]张岩,曹国杰,张燕.黄酮类化合物的提取以及检测方法的研究进展[J].食品研究与开发, 2008, 29(1): 154-157.
    [2] Balant L, Wermeille M, Griffith L. Metabolism and pharmacokinetics of hydroxyethylated rutosides in animals and man [J]. Drug Metab Drug Interact, 1984, 5(1): 1-24.
    [3]裴凌鹏,惠伯棣,金宗濂, et al.黄酮类化合物的生理活性及其制备技术研究进展[J].食品科学, 2004, 25(2): 203-207.
    [4] Ferenci P, Dragosics B, Dittrich H, et al. Randomized controlled trial of silymarin treatment in patients with cirrhosis of the liver [J]. Hepatol, 1989, 9: 105-113.
    [5]黄华艺.黄酮类化合物抗肿瘤作用进展[J].中国新药与临床杂志, 2002, 21(7): 428-433.
    [6]海丽娜.天然抗高血压活性成分研究进展[J].云南师范大学学报, 2002, 22(4): 74-78.
    [7]赵保路.自由基和天然抗氧化剂[M].北京, 1999.
    [8] Kanazawa K, Ashida H, Danno G, et al. Antimutagenicity of flavones and flavonols to heterocyclic am ines by specific and strong inhibition of the cytochrome P450 A family [J]. Biotechnology and Biochemistry, 1998, 62(5): 970-977.
    [9]杨滨,黄璐琦.电化学分析法研究天然抗氧剂的应用及展望[J].中国中药杂志, 2002, 27(12): 881-883.
    [10]郑裕国,王远山,薛亚平, et al.抗氧化剂的生产和运用[M].北京:化学工业出版社, 2003.
    [11] Zhu N Q, Huang T C, u Y N Y. Identification of Oxidation Products of (-)-Epigallocatechin Gallate and (-)-Epigallocatechin with H202 [J]. Agric Food Chem., 2000, 48: 979-981.
    [12] Wang H, Joseph J. Structure-activity relationships of quercetin in antagonizing hydrogen peroxide-induced calcium dysregulation in PC12 cells [J]. Free Radical Biology and Medicine, 1999, 27(5): 683-694.
    [13] Mora A. Structure-activity relationship of polymethoxyflavones and other flavonoids as inhibitors of non-enzymic lipid peroxidation [J]. Biochem. Pharmacol, 1990, 40: 793-797.
    [14]何建波,独家启,袁圣杰, et al.木犀草素与槲皮素抗氧化性能差异的电化学研究[J].食品科学, 2009, 30(9): 37-40.
    [15] Gandow A V, Joubert E, Hausmann C F. Comparison of the Antioxidant Activity of Aspalathin with That of other Plant Phenols of Rooibos Tea (Aspalathus Linearis),α-Tocopherol, BHT, and BHA [J]. Agric Food Chem., 1997, 45: 632-638.
    [16] Husain R S, Cillard J. Hydroxyl Radical Scavenging Activity of Flavonoids [J]. Phytochemistry, 26(9): 2487-2491.
    [17] Pokorny J. Autoxidation of Unsaturated Lipids[M]. London: Academic Press, 1987.
    [18]武冬梅,刘爽,高洪福, et al.杨梅酮的电化学和光谱性质研究[J].电化学, 2007, 13(3): 258-263Wu Dong-mei, Liu Shuang, Gao Hong-fu, Li Jin-lian, Liu Hai-yan, Liang Qi-chao, Investigation on the electrochemical and spectra properties of myricetin. Electrochemistry (in Chinese), .
    [19] Janeiro P, Corduneanu O, Brett A M O. Chrysin and (±)-taxifolin electrochemical oxidation mechanisms [J]. Electroanalysis, 2005, 17(12): 1059-1064.
    [20] Cook N C, Samman S. Flavonoids - Chemistry, metabolism, cardioprotective effects, and dietary sources [J]. J Nutr Biochem, 1996, 7: 66-76.
    [21]王晓梅,曹稳根.黄酮类化合物药理作用的研究进展[J].宿州学院学报, 2007, 22(1): 105-107.
    [22] Orawan KhantamatM S , Wittaya Chaiwangyen M. Screening of flavonoids for their potentialinhibitory effect on P - glycoprotein activity in human cervical carcinoma KB cells [J]. Chiang Mai Med Bull, 2004, 43(2): 45-56.
    [23]崔恩贤,龙丽辉,刘静, et al.黄栌的抗凝血作用[J].中药材, 2007, 30(2): 202-205.
    [24]龙丽辉,马卓,崔恩贤, et al.黄栌降压作用研究[J].中国实验诊断学, 2009, 13(3): 330-331.
    [25]白凤梅,蔡同一.类黄酮生物活性及其机理的研究进展科学[J].中国农业科学, 1998(8): 11-13.
    [26]张庆建,赵毅民,杨明, et al.黄酮类化合物对中枢神经系统的作用[J].中国中药杂志, 2001, 26(8): 511-514.
    [27]赵海峰,李秀花,李学敏, et al.大豆异黄酮对神经管畸形细胞氧化损伤保护作用[J].中国公共卫生, 2006, 22(11): 1383-1384.
    [28]王超云,傅风华,田京伟, et al.黄芩苷对化学性肝损伤的保护作用[J].中草药, 2005, 36(5): 730-732.
    [29]于长青,张丽萍,王宪青.麦胚黄酮抗动脉粥样硬化体内机制的研究[J].中国粮油学报, 2005, 20(5): 27-30.
    [30]彭志刚.黄酮类化合物的抗白血病作用[J].国外医学输血及血液学分册, 2004, 27(2): 159-162.
    [31]朱丹,袁芳,孟坤, et al.黄酮类化合物的研究进展[J].中华中医药杂志, 2007, 22(6): 387-389.
    [32] Kang J W, Li Z F, Lu X Q. Electrochemical study on the behavior of morin and its interaction with DNA [J]. J. Pharm. Biome. Anal., 2006, 40(5): 1166-1171.
    [33]董社英,郑建斌,高鸿. 3'-大豆甙元磺酸钠的电化学行为及应用研究[J].化学学报, 2003, 61(4): 487.
    [34]余丛立,何建波.槲皮素在石蜡-石墨粉末电机上的电化学行为[J].化学与生物工程, 2006, 23(5): 55-57.
    [35] Yang X-f, Wang F, Hu S-s. The electrochemical oxidation of troxerutin and its sensitive determination in pharmaceutical dosage forms at PVP modified carbon paste electrode [J]. Collods and sufaces, B, Biointerfaces, 2006, 52(1): 8-13.
    [36]刘成伦,唐德容,高瑜.姜辣素的电化学行为研究[J].食品科学, 2007, 28(2): 33-36.
    [37]杨运发.芦丁在玻碳电极上的阳极伏安行为及其测定[J].分析化学, 1996, 24(11): 1277.
    [38]张秀琦,郑建斌,高鸿.抗癌新药染料木素的电化学行为及其应用研究[J].化学学报, 2001, 59(4): 571-577.
    [39]彭志刚.黄酮类化合物的抗白血病作用[J].国外医学输血及血液学分册, 2004, 27(2): 159-162.
    [40] Chen G, Zhang Y H. Determination of baicalein, baicalin and quercetin in Scutellariae Radix and its preparations by capillary electrophoresis with electrochemical detection [J]. Talanta, 2000(53).
    [41] Dantuluri M, Gunnarsson G T, Riaz M, et al. Capillary electrophoresis of highly sulfated flavanoids and flavonoids [J]. Anal Biochem, 2005, 336: 316-322.
    [42] Shah A-u-H A, Holze R. Spectroelectrochemistry of aniline-o-aminophenol copolymers [J]. Electrochimica Acta, 2006, 52(3): 1374-1382.
    [43] Koca A, ?zkaya A R, Arslano?lu Y, et al. Electrochemistry, spectroelectrochemistry and electrochemical polymerization of titanylphthalocyanines [J]. Electrochimica Acta, 2007, 52(9): 3216-3221.
    [44] Bilal S, Holze R. In situ UV-vis spectroelectrochemistry ofpoly(o-phenylenediamine-co-m-toluidine) [J]. Electrochim Acta, 2007, 52(17): 5346-5356.
    [45] Zak J, Porter M D, Kuwana T. Thin-layer electrochemical cell for long optical path length observation of solution species [J]. Anal Chem, 1983, 55(14): 2219-2222.
    [46] Anderson J L, al. e. Circulating, long-optical-path, thin-layer electrochemical cell for spectroelectrochemical characterization of redox enzymes [J]. Anal. chem., 1979, 51: 2312.
    [47] Yang X-f, Wang F, Hu S-s. The electrochemical oxidation of troxerutin and its sensitive determination in pharmaceutical dosage forms at PVP modified carbon paste electrode [J]. Collodia and suface Biointerface, 2006, 52(8-13).
    [48] Gandow A V, Joubert E, Hausmann C F. Comparison of the Antioxidant Activity of Aspalathin with That of other Plant Phenols of Rooibos Tea(Aspalathus Linearis),α-Tocopherol,BHT,and BHA [J]. Agric Food Chem., 1997, 45: 632-638.
    [49]胡春,丁霄霖.黄酮类化合物在不同氧化体系中的抗氧化作用研究[J].食品与发酵工业, 1996(3): 46-53.
    [50] He J-B, Gong X-J. Chronoamperometric curves obtained from optical absorption signals [J]. Chinese J Anal Chem, 2008, 36(4): 537-540.
    [51] He J-B, Wang Y, Deng N, et al. Study of the adsorption and oxidation of antioxidant rutin by cyclic voltammetry-voltabsorptometry [J]. Bioelectrochemistry, 2007, 71(2): 157-163.
    [52] He J-B, Wang Y, Deng N, et al. Cyclic voltammograms obtained from the optical signals: Study of the successive electro-oxidations of rutin [J]. Electrochimica Acta, 2007, 52(24): 6665-6672.
    [53] He J-B, Yu C-L, Duan T-L, et al. In situ spectroelectrochemical analysis of quercetin in acidic medium [J]. Analytical Sciences, 2008, 24(12).
    [54]焦奎,吕刚,孙伟, et al.紫外可见薄层光谱电化学[J].青岛化工学院学报, 2001, 22(3): 201-208.
    [55]谢远武,董绍俊.光谱电化学方法-理论与应用[M].吉林:科学出版社, 1993.
    [56]屈海云,程圭芳,彭惠琦, et al.抗癌药物柔红霉素的光谱电化学研究[J].高等学校化学学报, 2001, 22(12): 2000-2004.
    [57]杨频,席小莉,杨曼曼.吡柔比星与DNA作用的光谱和电化学法研究[J].山西大学学报(自然科学版), 2007, 30(2): 220-223.
    [58]万红艳,张亚锋,陈敬华, et al.芦荟大黄素与DNA相互作用的紫外光谱和电化学研究[J].分析测试学报, 2007, 26(1): 59-61.
    [59]程圭芳,张冬梅,丁敏, et al.柔红霉素与DNA作用的序列特异性研究[J].高等学校化学学报, 2003, 24(8): 1395-1399.
    [60]冯敏,何品刚,杨玉林, et al.阿霉素的光谱电化学研究[J].高等学校化学学报, 1999, 20(6): 866-871.
    [61] Kenyliercz T M, Heineman W R. Thin layer spectroel electrochemical study of vitamin B12 and related cobalamin compounds in Aqueous Midea [J]. Erc.J Am Chem Soc, 1976, 98: 2469.
    [62] Parsons T R, Takahashi M, Hargrave. B. Biological Oceanographic Processes[M]: Pergamon Press (Oxford), 1977.
    [63] Cui H, Wu L-S, Chen J, et al. Multi-mode in situ spectroelectrochemical studies of redox pathways of adrenaline [J]. Journal of Electroanalytical Chemistry, 2001, 504: 195-200.
    [64] Ma S-H, Wu Y-R, Wang Z-H. Spectroelectrochemistry for a coupled chemical reaction in the channel cell Part I. Theoretical simulation of an EC reaction [J]. Journal of Electroanalytical Chemistry, 1999, 464: 176-180.
    [65]方禹之,蒋季春.去甲肾上腺素的光谱电化学研究[J].分析化学, 1996, 24(12): 1371-1374.
    [66] Bancroft E E, Sidwell J S, Blount H N. Derivative Linear Sweep and Derivative Cyclic Voltabsorptometry [J]. Analytica Chemistry, 1981, 53(9): 1390-1394.
    [67] He J-B, Zhou Y, Meng F-S. Time-derivative cyclic voltabsorptometry for voltammetric characterization of catechin film on a carbon-paste electrode: one voltammogram becomes four [J]. Journal of Solid State Electrochemistry, 2009, 13: 679-685.
    [68]唐传核.植物生物活性物质[M].北京:化学工业出版社, 2005.
    [69] Xu G-R, In M Y, Yuan Y, et al. In situ spectroelectrochemical study of quercetin oxidation and complexation with metal ions in acidic solutions [J]. B Korean Chem Soc, 2007, 28(5): 889-892.
    [70] Brown J, Khodr H, Hider R, et al. Structural dependence of flavonoid interactions with Cu2+ions:implications for their antioxidant properties [J]. Biochemical Journal, 1998, 330(3): 1173-1178.
    [71]谭君,王伯初,祝连彩.槲皮素金属配合物的药理作用研究进展[J].中国药学杂志, 2006, 41(22): 1688-1691.
    [72] RUBENS F V S, WAGNER F G. Antioxidant properties of complexes of flavonoids with metal ions [J]. Redox Report, 2004, 9: 97-104.
    [73] Palecek E. in Progress in Nucleic Acids Research and Molecular Biology[M]. New York: Academic press, 1969.
    [74] Oliveira-Brett A M, Diculescu V C. Electrochemical study of quercetin-DNA interactions: Part I. Analysis in incubated solutions [J]. Bioelectrochemistry, 2004, 64: 133-141.
    [75] Oliveira-Brett A M, Diculescu V C. Electrochemical study of quercetin-DNA interactions: Part II. In situ sensing with DNA biosensors [J]. Bioelectrochemistry, 2004, 64: 143-150.
    [76] Oliveira S C B, Corduneanu O, Oliveira-Brett A M. In situ evaluation of heavy metal-DNA interactions using an electrochemical DNA biosensor [J]. Bioelectrochemistry, 2008, 72(1): 53-58.
    [77] Oliveira-Brett A M, Paquim A M C, Diculescu V C, et al. Electrochemistry of nanoscale DNA surface films on carbon [J]. Med Eng Phys, 2006, 28: 963-970.
    [78] Kang J, Zhuo L, Lu X. Electrochemical investigation on interaction between DNA with quercetin and Eu-Qu3 complex [J]. J Inorg Biochem, 2004, 98: 79-86.
    [79] Kang J, Li Z, Lu X. Electrochemical study on the behavior of morin and its interaction with DNA [J]. J Pharmaceut Biomed, 2006, 40(5): 1166-1171.
    [80] Kang J, Li X, Wu G, et al. A new scheme of hybridization based on the Aunano-DNA modified glassy carbon electrode [J]. Anal Biochem, 2007, 364: 165-170.
    [81] Janeiro P, Brett A M O. Catechin electrochemical oxidation mechanisms [J]. Anal Chim Acta, 2004, 518(1-2): 109-115.
    [82] Zhu Z, Li C, Li N-Q. Electrochemical studies of quercetin interacting with DNA [J]. Microchem J, 2002, 71: 57.
    [83] Yamashita N, Tanemura H, Kawanishi S. Mechanism of oxidative DNA damage induced by quercetin in the presence of Cu(II) [J]. Mutat Res-Fund Mol M, 1999, 425: 107-115.
    [84] Montoro P, Braca A, Pizza C, et al. Structure-antioxidant activity relationships of flavonoids isolated from different plant species [J]. Food Chem, 2005, 92(2): 349-355.
    [85]陆曦,王磊,魏红, et al.黄酮类化合物抗氧化活性的构效关系[J].食品科学, 2006, 27(12): 233-227.
    [86] Jin G-P, Lin X-Q. The electrochemical behavior and amperometric determination of tyrosine and tryptophan at a glassy carbon electrode modifiedwith butyrylcholine [J]. Electrochem Commun, 2004, 6: 454-460.
    [87] Diculescu V C, Piedade J A P, Oliveira-Brett A M. Electrochemical behaviour of 2,8-dihydroxyadenine at a glassy carbon electrode [J]. Bioelectrochemistry, 2007, 70(1): 141-146.
    [88] Wang J, Li M, Shi Z, et al. Electrocatalytic oxidation of 3,4-dihydroxyphenylacetic acid at a glassy carbon electrode modified with single-wall carbon nanotubes [J]. Electrochim Acta, 2001, 47(4): 651-657.
    [89] Dekanski A, Stevanovi? J, Stevanovi? R, et al. Glassy carbon electrodes I. Characterization and electrochemical activation [J]. Carbon, 2001, 39: 1195-1205.
    [90]余从立,何建波.槲皮素在石蜡-石墨粉末电极上的电化学行为[J].化学与生物工程, 2006, 23(5): 55-57.
    [91]林丽清,黄丽英,陈敬华, et al.异鼠李素在碳糊电极上的伏安行为及其测定[J].福建医科大学学报, 2007, 41(5): 473-475, 480.
    [92] Zhang H-Y, Wang L-F, Sun Y-M. Why B-ring is the active center for genistein to scavenge peroxyl radical: A DFT study [J]. Bioorg Med Chem Lett, 2003, 13: 909-911.
    [93] Yang B, Kotani A, Arai K, et al. Estimation of the antioxidant activities of flavonoids from their oxidation potentials [J]. Anal Sci, 2001, 17(5): 599-604.
    [94] Magalh?es L M, Segundo M A, Reis S, et al. Methodological aspects about in vitro evaluation of antioxidant properties [J]. Anal Chim Acta, 2008, 613(1): 1-19.
    [95] Nagao A, Maeda M, Lim B P, et al. Inhibition ofβ-carotene-15,15'-dioxygenase activity by dietary flavonoids [J]. J Nutr Biochem, 2000, 11(6): 348-355.
    [96] Rice-Evans C A, Miller N J, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids [J]. Free Radical Bio Med, 1996, 20(7): 933-956.
    [97] Bard A J, Faulkner L R. Electrochemical Methods: Fundamentals and Applications[M]. New York: John Wiley & Sons, 2001.
    [98]方禹之,蒋李春,柏竹平.一种新型的光谱电化学装置[J].华东师范大学学报(自然科学版), 1995(3): 110-112.
    [99]顾登平,张雪英,蒋殿录, et al.一种新型的长光程薄层光谱电化学池[J].物理化学学报, 1993, 9(3): 416-420.
    [100]焦奎,杨涛,任立清, et al.一种新型长光程薄层光谱电化学池的研制[J].青岛科技大学学报, 2003, 24(1): 1-3.
    [101]吴霖生,崔华,晋冠平, et al.长光程薄层紫外-可见光谱电化学法测定多巴胺[J].分析化学, 2000, 28(5): 617-620.
    [102]肖以金,杨汉西,冯子刚, et al.简易多功能光谱电化学池设计[J].光潜学与光谱分析, 1993, 13(6): 103-108.
    [103]杨晨,于俊生,周桃玉, et al.多用途薄层光谱电化学池的设计和表征[J].高等学校化学学报, 1999, 20(8): 1205-1209.
    [104]张为超,杜本妮,郁章玉.一种简易新型长光程薄层光谱电化学池[J].徐州师范大学学报(自然科学版), 2002, 20(3): 51-54.
    [105]赵凯元,王吾文清,易文倩, et al.反射式薄层可见光谱电解池的制作与性能测试[J].分析试验室, 2004, 23(11): 66-69.
    [106]林祥钦,杨锋利,汪尔康.一种简易多用途可见紫外薄层光谱电化学池[J].分析化学, 1991, 19(9): 1100-1103.
    [107] Anderson J L, etal. Circulating, long-optical-path, thin-layer electrochemical cell for spectroelectrochemical characterization of redox enzymes [J]. Anal. chem., 1979, 51: 2312.
    [108] Lin X-Q, M K K. Vacuum-tight thin-layer spectroelectrochemical cell with a doublet platinum gauze working electrod [J]. Anal. chem., 1985, 57: 1498.
    [109] Armstrong N R, Kwana T. Electrochemical and surface charateristics of tin oxide and indium oxide electrodes [J]. Anal. chem., 1976, 48: 741.
    [110] Zielińska D, Pierozynski B. Electrooxidation of quercetin at glassy carbon electrode studied by a.c. impedance spectroscopy [J]. J Electroanal Chem, 2009, 625(2): 149-155.
    [111] He J B, Wang Y, Deng N, et al. Cyclic voltammograms obtained from the optical signals: Study of the successive electro-oxidations of rutin[[J]. Electrochim Acta, 2007, 52(24): 6665-6672.
    [112] Zhou A, Kikandi S, Sadik O A. Electrochemical degradation of quercetin: Isolation and structural elucidation of the degradation products [J]. Electrochem. Commun, 2007, 9: 2246-2255.
    [113] Janeiro P, Bret A M O. Solid state electrochemical oxidation mechanisms of morin in aqueous media [J]. Electroanalysis 2005, 17: 733-738.
    [114] J?rgensen L V, Cornett C, Justesen U, et al. Two-electron electrochemical oxidation of quercetin and kaempferol changes only the flavonoid C-ring [J]. Free Radical Research, 1998, 29(4): 339-350.
    [115] He J-B, Wang Y, Deng N, et al. Cyclic voltammograms obtained from the optical signals: Study of the successive electro-oxidations of rutin [J]. Electrochimica Acta, 2007, 52: 6665-6672.
    [101]吴霖生,崔华,晋冠平, et al.长光程薄层紫外-可见光谱电化学法测定多巴胺[J].分析化学, 2000, 28(5): 617-620.
    [102]肖以金,杨汉西,冯子刚, et al.简易多功能光谱电化学池设计[J].光潜学与光谱分析, 1993, 13(6): 103-108.
    [103]杨晨,于俊生,周桃玉, et al.多用途薄层光谱电化学池的设计和表征[J].高等学校化学学报, 1999, 20(8): 1205-1209.
    [104]张为超,杜本妮,郁章玉.一种简易新型长光程薄层光谱电化学池[J].徐州师范大学学报(自然科学版), 2002, 20(3): 51-54.
    [105]赵凯元,王吾文清,易文倩, et al.反射式薄层可见光谱电解池的制作与性能测试[J].分析试验室, 2004, 23(11): 66-69.
    [106]林祥钦,杨锋利,汪尔康.一种简易多用途可见紫外薄层光谱电化学池[J].分析化学, 1991, 19(9): 1100-1103.
    [107] Anderson J L, etal. Circulating, long-optical-path, thin-layer electrochemical cell for spectroelectrochemical characterization of redox enzymes [J]. Anal. chem., 1979, 51: 2312.
    [108] Lin X-Q, M K K. Vacuum-tight thin-layer spectroelectrochemical cell with a doublet platinum gauze working electrod [J]. Anal. chem., 1985, 57: 1498.
    [109] Armstrong N R, Kwana T. Electrochemical and surface charateristics of tin oxide and indium oxide electrodes [J]. Anal. chem., 1976, 48: 741.
    [110] Zielińska D, Pierozynski B. Electrooxidation of quercetin at glassy carbon electrode studied by a.c. impedance spectroscopy [J]. J Electroanal Chem, 2009, 625(2): 149-155.
    [111] He J B, Wang Y, Deng N, et al. Cyclic voltammograms obtained from the optical signals: Study of the successive electro-oxidations of rutin[[J]. Electrochim Acta, 2007, 52(24): 6665-6672.
    [112] Zhou A, Kikandi S, Sadik O A. Electrochemical degradation of quercetin: Isolation and structural elucidation of the degradation products [J]. Electrochem. Commun, 2007, 9: 2246-2255.
    [113] Janeiro P, Bret A M O. Solid state electrochemical oxidation mechanisms of morin in aqueous media [J]. Electroanalysis 2005, 17: 733-738.
    [114] J?rgensen L V, Cornett C, Justesen U, et al. Two-electron electrochemical oxidation of quercetin and kaempferol changes only the flavonoid C-ring [J]. Free Radical Research, 1998, 29(4): 339-350.
    [115] He J-B, Wang Y, Deng N, et al. Cyclic voltammograms obtained from the optical signals: Study of the successive electro-oxidations of rutin [J]. Electrochimica Acta, 2007, 52: 6665-6672.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700