陡山沱组盖帽白云岩和黑色页岩的铁同位素特征及其古海洋意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陡山陀组地层是新元古代雪球事件以后沉积的第一套地层,记录了这个重要转折期的环境与生物演化信息。我国南方扬子地台陡山沱早期是以碳酸盐岩以及上部的黑色页岩为主的沉积层序。本文选取了不同沉积相的五个剖面进行Fe同位素研究,分别是台地相小峰河、九龙湾和中岭剖面,斜坡相的四都坪剖面,以及深海盆地相的怀化袁家剖面。通过对碳酸盐岩和黑色页岩的铁同位素以及元素地球化学的研究,主要取得以下的成果和认识:
     1、九龙湾地区处于浅水体系,沉积环境为氧化状态,随着冰川的溶解,海平面逐渐上升,沉积环境转化为弱氧化,反映了雪球事件结束后古海洋水体环境的转变。而四都坪地区一直处于相对深水的体系,沉积环境为还原环境。
     2、首次在陡山沱组获得碳酸盐岩和黑色页岩的Fe同位素数据。黑色页岩Fe同位素变化范围为δ56Fe=-0.26-0.69‰,平均值为0.24‰。碳酸盐岩Fe同位素变化范围为δ56Fe=-0.67~0.07‰,平均值为-0.34%o。相对于标准物质IRMM-014,所分析的黑色页岩样品显示重同位素富集(除了怀化袁家的黑色页岩),而碳酸盐岩样品富集轻同位素。
     3、碳酸盐岩样品的Fe同位素在不同沉积相间存在着差异,即使是相同沉积相中,也存在着差别。这说明海水中的铁同位素在空间上是不均一的,受到铁的来源以及沉积环境的影响。对四都坪剖面的盖帽白云岩和黑色页岩夹层的灰岩的Fe同位素研究表明,在所研究的时间段内,海洋的铁同位素组成没有发生明显演化。
     4、与盖帽碳酸盐相比,九龙湾、小峰河、中岭、四都坪等剖面的黑色页岩都富集Fe的重同位素,表明黑色页岩来自于海水的铁主要是以Fe3+的氧化物或氢氧化物的形式沉淀的。结合微量元素所反映的信息:九龙湾剖面处于弱氧化沉积环境,四都坪剖面处于弱还原环境。怀化袁家剖面的黑色页岩的Fe同位素与盖帽碳酸盐一致,暗示该剖面中来自海水中的铁以亚铁硫化物形式沉淀,说明该剖面形成于强还原环境的静海相(Euxinic)。这表明海洋是分层的,而且陡山沱早期海洋的氧化还原界面应位于九龙湾所处的台地和四都坪所处的大陆斜坡的深度之间。由此推断在陡山沱早期,从台地相、斜坡相到深水盆地相,海水逐渐由表层氧化向深层的还原状态转化。
The Doushantuo Formation is the first sedimentary strata after the Neoproterozoic snowball earth, recording the information of the environmental and biological evolution during this critical transition. In Yangtze platform of southern China, the lower Doushantuo strata are mainly composed of carbonate rocks and black shales. Five sections of different sedimentary facies were selected for this study, which are Xiaofenghe, Jiulongwan, Zhongling Sections of the platform facies, Sidouping Section of the shelf facies, and Huaihua-Yuanjia Section of the deep-sea basin facies.
     Through combination of Fe isotope investigation to some details and elemental characterization on cap carbonates and black shales from these profiles significant advances have been made:
     1. Ratios of trace elements and enrichment coefficient have been studied. The sedimentary environment is oxidation state in the Jiulongwan area. Following the melt of glaciers and rising of the sea-level, Ancient ocean became deeper. The sedimentary environment changes to weak oxidation, reflecting a transformation of paleo-ocean condition from oxidation to reduction right after the termination of snowball earth event. The Sidouping area lay in a relatively deep water system. Its sedimentary environment is reductive.
     2. Fe isotope of Doushantuo Formation carbonate rocks and black shales is for the first time measured in this study. Theδ56Fe values of analyzed black shales varies between -0.03%o and 0.69%o with an average of 0.24%o. A range of -0.67%o<δ56Fe<0.07%o is defined by carbonate samples, with an average of -0.34%o. Relative to the IRMM-014 standard, black shales samples show a tendency towards enrichment in heavy isotope (except for the black shale of Huaihua-Yuanjia), whereas carbonate samples are enriched in light isotope.
     3. Carbonate samples from different sedimentary facies display distinct differences in composition of Fe isotopes even at a single sidementary facies, indicating the iron isotope of seawater is influenced by iron source and sedimentary environment shows a spatial heterogeneity. Fe isotopes of dolomite and limestone samples from Sidouping were analyzed and consistent Fe isotope values were found in these samples. Take Sidouping profile into accout, iron isotope in ocean shows temporal homogeneity.
     4. The black shales samples from Doushantuo formation (except Huaihua-Yuanjia section) are enriched in heavy isotope. This demonstrates that iron from seawater is mainly controlled by the Fe3+ minerals. Combined with the information reflected by trace elements that Jiulongwan profile is in weak oxide environment. It's suggested the ocean is stratification. The redox interface should be located between the platform and the slope. The 8'6Fe value of black shales from Huaihua-yujia profile of the deep-sea basin facies is mainly controlled by the sulfide minerals. The environment in the deep-sea basin is in Euxinic. Stratification of ocean is strengthened from platform facies, slope facies to deep-sea basin facies gradually, which transformed from oxide water at surface to Eusintic water in deep-sea gradually.
引文
Aitken J D.1991. The Ice Brook Formation and Post-Rapitan, Late Proterozoic glaciation, Mackenzie Mountains, northwest Territories. Geol. Surv. Can. Bull,404.
    Albarede F., Telouk P., Blichert-Toft J., Boyet M.,2004. Agranier A and Nelson B. Precise and accurate isotopic measuments using multiple-collector ICP-MS. Geochim. Cosmochim. Acta, (68):2725-2744.
    Alexander COM'D and Wang J.2001. Iron isotopes in Chondrules:Implications for the role of evaporation during chondrule formation. Meteorites. Planets, (36):419-428.
    Algeo T J, Maynard J B.2004. Trace element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclot hems. Chemical Geology,206:289-318.
    Allen P A, Hoffman P F.2005. Extreme winds and waves in the aftermath of a Neoproterozoic glaciation. Nature,433:123-127.
    Amthor J E, Gratzinger J P, Schroder S, Bowring S A, Ramezani J, Martin M W, Matter A.2003.Extinction of Cloudina and Namacalathus at the Precambrian-Cambrian boundary in Oman. Geology,31: 431-434.
    Anbar A D, Knoll A H.2002. Proterozoic Ocean Chemistry and Evolution:A Bioinorganic Bridge? Science, 297:1137-1142.
    Anbar A D, Jarzecki A A, Spiro T G,2005. Theoretical investigation of iron isotope fractionation between Fe(H2O)63+ and Fe(H2O)62+:implications for iron stable isotope geochemistry. Geochimica Cosmochimica Acta,69:825-837.
    Arnold G L, Anbar A D, Barling J, Lyons T W.2004. Molybdenum isotope evidence for widespread anoxia in Mid-Proterozoicoceans. Science,304:87-90.
    Arthur M A, Sageman B B.1994. Marine black shales:depositional mechanisms and environments of ancient deposits. Annu Rev Earth planet Sci,22:499-551.
    Balci N, Bullen T D, Witte-Lien K, Shanks W C, Motelica M, Mandernack L W.2006. Iron isotope fractionation during microbially stimulated Fe(Ⅱ) oxidation and Fe(Ⅲ) precipitation. Geochim Cosmochim Acta,70:622-639.
    Barley M E, Pickard A L,Sylevester P J. Sylvester,1997.Emplacement of a large igeous province as a possible cause of banded ifon formation 2.45 billion years aga. Nature,385:55-58.
    Barley M E, Bekker A, Krapez B.2005. Late Archean to Early Paleoproterozoic global tectonics, environmental change and the raise of atmospheric oxygen. Earth and Planetary Science Letters,238: 156-171.
    Beard B L, Johnson C M.1999. High-precision iron isotope measurements of terrestrial and lunar materials. Geochim. Cosmochim. Acta.,63:1653-1660.
    Beard B L, Johnson C M.2004a. Fe isotope variations in the modern and ancient Earth and other planetary bodies. In:Johnson, C.M., Beard, B.L., Albare'de, F. (Eds.), Geochemistry of Non-Traditional Stable Isotopes. Reviews in Mineralogy and Geochemistry,55:319-357.
    Beard B L, Johnson C M.2004b. Inter-mineral Fe isotope variations in mantle derived rocks and implications for the Fe geochemical cycle. Geochim. Cosmochim. Acta,68:825-837.
    Beard B L, Johnson C M, Cox L, Sun H, Nealson K H.1999. Iron isotope biosignatures. Science,285: 889-1892.
    Beard B L, Johnson C M, Von Damm K L, Poulson R L.2003a. Iron isotope constraints on Fe cycling and mass balance in oxygenated Earth oceans. Geology,31:629-632.
    Beard B L, Johnson, C.M., Skulan J L, Nealson K H, Cox L, Sun H.2003b. Application of Fe isotopes to tracing the geochemical and biological cycling of Fe. Chem. Geol.,195:87-117.
    Bekker A, Holland HD,Wang PL, Rumble D, Stein HJ, et al.2004. Dating the rise of atmospheric oxygen. Nature 427:117-120.
    Beukes N J, Klein C, Kaufman A J, Hayes J M,1990. Carbonate petrography, kerogen distribution, and carbon and oxygen isotope variations in an early Proterozoic transition from limestone to iron-formation deposition, Transvaal Supergroup, South Africa. Econ. Geol.,85:663-690.
    Belshaw N S, Zhu X K, Guo Y and O'Nions R K.2000. High precision measurement of iron isotopes by plasma source mass spectrometry. Int. J. Mass. Spectrom. Ion. Phys,197:191-195.
    Bergquist B A, Boyle E A.2006. Iron isotopes in the Amazon River system:Weathering and transport signatures. Earth Planet Sci Lett.,248(1-2):54-68.
    Bostrom K.1983. Genesis of Ferromanganese deposits-diagnostic criteria for recent and old deposist. Rona P A., Bostrom K, Luabier L. Jr Smiht K L, Hydorhtemral Processes at Seafloor Spreading Centers. New York:Plenum Perss,473-489.
    Boyle E.1997. What controls dissolved Fe concentrations in the world ocean?—a comment. Mar. Chem., 57:163-167.
    Brantley S L, Liermann L J, Bullen T D.2001. Fractionation of Fe isotopes by soil microbes and organic acids. Geology,29(6):535-538.
    Brantley S L, Liermann L J, Guynn R L, et al.2004. Fe isotopic fractionation during mineral dissolution with and without bacteria. Geochim Cosmochim Acta,68(15):3189-3204.
    Brasier M D, Shields G 2000. Neoproterozoic chemostratigraphy and correlation of the PortAskaig glaciation Dalradian Supergroup of Scotland. Journal of Geological Society, London,157:909-914.
    Brookfield M E.1994. Problems in applying preservation, facies and sequence models to Sinian (Neoproterozoic) glacial sequences in Australia and Asia. Precambrian Res,70:113-43.
    Bua M, Dulski P.1996. Distribution of yttrium and rare-earth elements in the Penge Kuruman iron-formations, Trnasvaal Supergroup, South Africa. Precambrian Res,79:37-55.
    Bua M, Kosehinsky A, Dulsk P, Hein J R.1996. Comparison of the Partitioning behaviours of yttrium, rare earth elements, and its titanium between hydrogenetic marine ferromanganese Crusts and seawater. Geoehim.Cosmoehim.Acat,60:1709-1725.
    Bullen T D, McMahon P M.1998.Using stable Fe isotopes to assess microbially-mediated Fe3+ reduction in a jet-fuel contaminated aquifer. Mineral. Mag,62:255-256.
    Bullen T D, White A F, Childs C W, Vivit D V, Schulz M S.2001. Demonstration of significant abiotic iron isotope fractionation. Geology,29:699-702.
    Calvert S E, Pedersen T F.1993. Geochemistry of recent oxic and anoxic marine sediments:Implications for t he geological record. Marine Geology,113:67-88.
    Canfield D E.1998. A new model for Proterozoic ocean chemistry. Nature 396:450-453.
    Canfield D E, Thamdrup B, Fleischer S.1998. Isotope fractionation and sulfur metabolism by pure and enrichment cultures of elemental sulfur-disproportionating bacteria.imnol. Oceangr,43:253-264
    Catling D C. Claire M W.2005. How Earth atmosphere evolved to anoxic state:A status report. Earth and Planetary Science Letters,237:1-20.
    Chu N C, Johnson C M, Beard B L, German C R, Nesbitt R W, Frank M, et al.2006. Evidence for hydrothermal venting in Fe isotope compositions of the deep Pacific Ocean through time. Earth Planet. Sci. Lett.245:202-17.
    Condon D, Zhu M, Bowring S, Wang W, Yang A, Jin Y.2005. U-Pb ages from the Neoproterozoic Doushantuo Formation, China. Science,308:95-98.
    Corsetti F A, Awramik S M, Pierce D, et al.2000.Using chemostrati graphy to correlate and calibrate unconformities in Neoproterozoic strata from the Southern GreatBasin of the United States. International Geology Review,42:516-533.
    Corsetti F A, Olcott A N, Bakermans C.2006. The biotic response to Neoproterozoic snowball Earth. Palaeogeography, Palaeoclimatology, Palaeoecology,232:114-130.
    Croal L R, Johnson C M, Beard B L, Newman D K.2004. Iron isotope fractionation by Fe(II)-oxidizing photoautotrophic bacteria. Geochim Cosmochim Acta,68:1227-1242.
    Cron D S,1980. Undewater Minerals. AeademiePerss, London.362.
    Crusius J, Calvert S, Pedersen T. et al.1996. Rhenium and molybdenum enrichment in sediments as indieators of oxic, suboxic and sulfidic conditions of deposition. Earth and Planetary Science Letter, 145:65-78.
    Dauphas N, van Zuilen M, Wadhwa M, Davis A M, Marty B, Janney P E.2004. Clues from Fe isotope variations on the origin of Early Archean BIFs from Greenland. Science,306:2077-2080.
    de Alvarenga C J S, Santos R V, Dantas E L.2004. C-O-Sr isotopic stratigraphy of cap carbonate overlying Marinoanage glacial diamictites in the Paraguay Bet, Brazil. Precambrian Research,131:1-21.
    de Barrhjw, La Roche J.2003. Trace metals in the oceans:evolution, biology and global change. In Marine Science Frontiers for Europe, ed. GWefer, F Lamy, F Mantoura, pp.79-105. Berlin:Springer-Verla.
    Dean W E, Gardner J V, Piper D Z.1997. Inorganic geochemical indicators of glacial -interglacial changes in productivity and anoxia on the California continental margin. Geochim. Cosmochim. Acta.,61 (21): 4507-4518.
    Deynoux M.1982. Periglacial polygonal structures and sand wedges in the late Precambrian glacial formations of the Taoudeni Basin in Adrar of Mauretania (West Africa). Palaeogeogr. Palaeoclimat. Palaeoecol.,39:55-70.
    Dideriksen K, Baker J A, Stipp S L S.2006. Iron isotopes in natural carbonate minerals determined by MC-ICP-MS with a58Fe-54Fe double spike. Geochim. Cosmochim. Acta,70:118-132.
    Dixon P R, Perrin R E, Rokop D J, Maeck R, Janecky D R, Banar J P.1993. Measurement of iron isotopes (Fe-54, Fe-56, Fe-57, and Fe-58) in submicrogram quantities of iron. Anal. Chem,65: 2125-2130.
    Dulski P.1994. Interferences of oxide, hydroxide and chloride analyet species in determination of rare earth elements in geological samples by inductively coupled plasma-mass spectrometry. Fresenius J Anal Chem,350:194-203
    Elderfield H, Gervaes M J.1982. The rear earth elements distribution in seawater. Nature,296:214-219.
    Elderfield H, Schultz A.1996. Mid-ocean ridge hydrothemal fluxes and the chemical composition of the ocean. Annu. Rev. Earth Planet. Sci.24:191-224.
    Elrod V A, Berelson W M, Coale K H, et al.2004. The flux of iron from continental shelf sediments:a missing source for global budgets. Geophys. Res. Lett.31:L12307, doi:10.1029/2004GL020216
    Fairchild I J, Hambrey M J.1984. The Vendian succession of northeastern Spitsbergen:Petrogenesis of a dolomite2tillite association. Precambrian Res,26:111-67.
    Fantle M S, DePaolo D J.2004. Iron isotopic fractionation during continental weathering. Earth Planet Sci Lett,228(3-4):547-562.
    Fike D A, Grotzinger J P, Pratt L M, Summons R E.2006. Oxidation of the Ediacaran Ocean. Nature,444: 744-747
    German C R, Holliday B P, Elderfield H.1991. Redox cycling of rare earth elements in the suboxic zone of the Black Sea. Geochimica et Cosmochimica Acta,55:3553-3558.
    Grosjean E, Adam P, Connan P, Albrecht P.2004. Effect s of weat hering on nickel and vanadyl porphyrins of a Lower Toarcian shale of the Paris basin. Geochim. Cosmochim. Acta.,68:789-804.
    Grotzinger J P. and Knoll A H.1995. Anomalous carbonate precipitates:is the Precambrian the key to the Permian? Palaios,10:578-596.
    Guo Q J, Strauss H, Liu C Q, Goldberg T, Zhu M Y, Pi D H, Heubeck C, Vemhet E, Yang X, Fu P.2007. Carbon isotopic evolution of the terminal Neoproterozoic and early Cambrian:Evidence from the Yangtze Platform, South China. Palaeogeography, Palaeoclimatology, Palaeoecology,254:140-157.
    Halliday A N, Lee D C, Christensen J N, Walder A J, Freedman P A, Jones C E, Hall C M, Yi W and Teagle D.1995. Recent developments in inductively coupled plasma magnetic sector multiple collector mass spectrometry. Int. J. Mass. Spectrom. Ion. Proc,146:21-33.
    Halliday A N, Lee D C.1998. Christensen J.N., Rehkamper M., Li W., Luo X., Hall C.M., Ballentine C.J and Stirling T.C. Applications of multiple collector ICP-MS to cosmochemistry, geochemistry and paleoceanography. Geochim. Cosmochim. Acta,62:919-940.
    Halverson G P, Maloof A C, Hoffman P F.2004. The Marinoan glaciation (Neoproterozoic) in northeast Svalbard. Basin Research,16 (3):297-324.
    Hatch J R, Leventhal J S.1992. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsyvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A. Chemical Geology,99:65-82.
    Hoffman P F, Kaufman A J, Halverson G P.1998. Comings and goings of global glaciations on a Neoproterozoic tropical platform in Namibia. GSA Today,8:1-9.
    Hoffmann K H, Condon D J, Bowring S A, et al.2004. U-Pb zircon date from the Neoproterozoic Ghaub Formation, Namibia:Constraints on Marinoan glaciation. Geology,32:817-820.
    Hoffman P F, Schrag D P.2002. The snowball Earth hypothesis:testing the limits of global change.Terra Nova,14(3):129-155.
    Hurtgen M T, Arthur M A, Halverson G P.2005. Neoproterozoic sulfur isotopes, the evolution of microbial sulfur species, and the burial efficiency of sulfide as sedimentary pyrite. Geology,33:41-44.
    Icopini G A, Anbar A D, Ruebush S S, Tien M, Brantley S L.2004. Iron isotope fractionation during microbial reduction of iron:The importance of adsorption. Geology 32:205-208.
    James N P, Narbonne G M, Kyser T K.2001. Late Neoproterozoic cap carbonates:Mackenzie Mountains, northwestern Canada:precipitation and global glacial meltdown.Canadian Journal of Earth Science, 38(8):1229-1262.
    Jiang Ganqing. Kennedy M J. Christie-Blick N.2003. Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates. Nature 426,822-826.
    Jiang G Q, Kennedy M J, Christie-Blick N, et al.2006. Stratigraphy, sedimentary structures, and textures of the late Neoproterozoic Doushantuo Cap Carbonate in South China. J Sediment Res,76(7-8): 978-995.
    Jiang G Q, Kaufman A J, Christie-Blick N, et al.2007. Carbon isotope variability across the Ediacaran Yangtze platform in South China:implications for a large surface-to-deep ocean δ13C gradient. Earth Planet Sci Lett,261(1-2):303-320.
    Jones B, Maiming D A.1994. Comparison of geochemical indices used for t he interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology,111:111-129.
    Johnson C M, Beard B L.1999. Correction of instrumentally produced mass fractionation during isotopic analysis of Fe by thermal ionization mass spectrometry. Int. J. Mass. Spectrom,193:87-99.
    Johnson C M, Skulan J L, Beard B L, Sum H, Nealson K H, Braterman P S.2002. Isotopic fractionation between Fe(III) and Fe(II) in aqueous solutions. Earth Planet. Sci. Lett.,195:141-153.
    Johnson C M, Beard B L, Beukes N J, Klein C, O'Leary J M.2003. Ancient geochemical cycling in the earth as inferred from Fe isotope studies of banded iron formations from the Transvaal Craton. Contrib. Mineral. Petrol.,144:523-547.
    Johnson C M, Beard B L, Roden E E, Newman D K, Nealson K H,2004. Isotopic constraints on biogeochemical cycling of Fe. In:Johnson, CM., Beard, B.L., Albare'de, F. (Eds.), Geochemistry of Non-Traditional Stable Isotopes, Reviews in Mineralogy and Geochemistry,55:359-408.
    Johnson C M, Roden E E, Welch S A, Beard B L,2005. Experimental constraints on Fe isotope fractionation during magnetite and Fe carbonate formation coupled to dissimilatory hydrous ferric oxide reduction. Geochim. Cosmochim. Acta.,69:963-993.
    Johnson C M, Beard B L, Klein C, Beukes N J, Roden E E.2008. Iron isotopes constrain biologic and abiologic processes in banded iron formation genesis. Geochimica et Cosmochimica Acta 72: 151-169.
    Kaufman A J,1996. Geochemical and mineralogic effects of contact metamorphism on banded iron-formation:an example from the Transvaal Basin South Africa. Precambrian Res,79:171-194.
    Kennedy M J.1996. Stratigraphy, sedimentology, and isotope geochemistry of Australian Neoproterozoic postglacial cap dolostones:Deglaciation,δ13C excursions, and carbonate precipitation. J. Sed. Res., 66:1050-1064.
    Kennedy M J, Christie-Blick N, Sohl L E.2001. AreProterozoic capcarbonates and isotopic excursions are cord of gashadrate destabilization following Earth's cold estintervals. Geology,29:443-446.
    Kennedy M J, Runnegar B, Prave A, et al.1998.Two or four Neoproterozoic glaciations? Geology,26 (12): 1056-1063.
    Kimura H, Matsumoto R, Kakuwa Y, et al.1997. TheVendian-Cambrian δ13C record, NorthIran:evidence for over turning of the ocean before the Cambrian explosion. Earth and Planetary Science Letters, E1-E7.
    Kirschvink J L.1992. Late Proterozoic low latitude glaciations:The snowball earth, in SchopfJw, Klein Ceds. The Proterozoic biosphere:Amulti disciplinary study:Cambridge, Cambridge University Press, 51-52.
    Klein C, Beukes N J.1989. Geochemistry and sedimentology of a facies transition from limestone to iron-formation deposition in the early Proterozoic Transvaal Supergroup, South Africa. Econ. Geol., 84:1733-1774.
    Klein C.2005. Some Precambrian banded iron-formations (BIFs) from around the world:Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin. American Mineralogist, Volume,90:1473-1499.
    Knoll A H, Bambach R K, Canfield D E, Grotzinger J P.1996.Comparative earth history and latePermian mass extinction. Science,273:452-457.
    Knoll A H.2000. Learning to tell Neoproterozoic time. Precambrian Research,100:3-20.
    Knoll A H, Walter M R, Narbonne G M, et al.2004. A new period for the geologic time scale. Science,305: 621-622.
    Kvenvolden K A.1998. A primer on the geological occurrence of gashydrate, in Henret. J. P. and Mienert J. eds., Gashydrates:Relevance to world margin stability and climate change. Geological Society Special Publication,137:9-30.
    Levasseur S, Frank M, Hein JR, Halliday A.2004. The global variation in the iron isotope composition of marine hydrogenetic ferromanganese deposits:implications for seawater chemistry? Earth Planet Sci Lett,224:91-105.
    Lewan M D, Maynard J B.1982. Factors controlling the enrichment of vanadium and nickel in the bitumen of organic sedimentary rocks. Geochim. Cosmochim. Acta,46:2547-2560.
    Louis A D, Jacobsen S B.1990. The chemical evolution of Precambrian seawater:Evidence from REEs in banded iron formations. Geochimica et Cosmochimica Acta,54:2965-2977.
    MacRae N D, Nesbitt HW, Kronberg B I.1992. Development of a positive Eu anomaly during diagenesis. Earth and Planetary Science Letters,109:585-591.
    Malinovsky D N, Rodyushkin I V, Shcherbakova E P, Ponter C, Ohlander B, Ingri J.2005. Fractionation of Fe isotopes as a result of redox processes in a basin. Geochem. Int.43:797-803.
    Mandernack K W, Bazylinski D A, Shanks W C III and Bullen T D.1999. Oxygen and iron isotope studies of magnetite produced by magnetotactic bacteria. Science,285:1892-896.
    Marchig V, Gundlach H, Moller P, Schley F.1982. Some geochemical indicators for discrimination between diagenetic and hydrothermal metalliferous sediments. Marine Geology,50:241-256.
    Matthews A, et al.2004. Controls on iron-isotope fractionation in organic-rich sediments (Kimmeridge Clay, Upper Jurassic, southern England). Geochimica Cosmochimica Acta,68:3107-3123.
    McLennan S M,1989. Rare earth elements in sedimentary rocks:influence of provenance and sedimentary processes. In:Lipin, B.R., McKay, GA. (Eds.), Geochemistry and Mineralogy of Rare Earth Elements. Reviews in Mineralogy & Geochemistry, Blacksburg,169-200.
    McFadden K A, Huang J, Chu X L, Jiang G Q, Kaufman A J, Zhou C M, Yuan X L, Xiao S H.2008. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation. PNAS,105(9): 3197-3202.
    Measures C I, Vink S.2001. Dissolved Fe in the upper waters of the Pacific sector of the Southern Ocean. Deep-Sea Research,48:3913-3941.
    Mojzisis S J, Arrhenius G, Mejeegeen K D, et al.1996. Evidence for life on Earth before 3.8 hillion year age. Nature,384:55-59.
    Morad I P, Felitsyn S.2001.Identification of primary Ce-anomaly signatures in fossil biogenic apateti: implication for the Cambrian oceanic anoxia and phosphogenesis. Sedimentary Geology,143: 259-264.
    Morse J W, Luther Ⅲ G W.1999. Chemical influences on t race metal sulfide interactions in anoxic sediments. Geochim.Cosmochim. Acta.,63:3373-3378.
    Murray R W, Buchholtz ten Brink M R, Gerlach D C, et al.1992. Rare earth, major, and trace element composition of Monterey and DSDP chert and associated host sediment:assessing the influence of chemical fractionation during diagenesis. Geochimica et Cosmochimica Acta,56:2657-2671.
    Nishioka J, Takeda S, Wong C S, Johnson W K.2001. Sizefractionated iron concentrations in the Northeast Pacific Ocean:distribution of soluble and small colloidal iron. Marine Chemistry,74:157-179.
    Rampone E, Botazzi P and Ottolini L.1991. Complementary Ti and Zr anomalies in orthopyroxene and clinopyroxene from mantle peridotites. Nature,354:518-520.
    Piepgras D J, Jacobsen S B.1992. The behavior of rare earth elements in seawater:precise determination of variations in the North Pacific water column. Geochimica et Cosmochimica Acta,56:1851-1862.
    Rimmer S M, Thompson J A, Goodnight S A.2004. Multiplecontrolson the preservationo for ganicmatterin Devonian-Mississippianmarine black shales:geochemical and petrographical evidence. Palaeogeography, Palaeoclimatology, Palaeoecology,215(1-2):125-154.
    Piper D Z,1994. Seawater as the source of minor elements in black shales, phopshoriets and other sedimentary rocks. Chemical Geology,114:95.
    Polyakov V B, Mineev S D.2000. The use of Mossbauer spectroscopy in stable isotope geochemistry. Geochim. Cosmochim. Acta.,64:849-865.
    Rothman D H, Hayes J M & Summons R E.2003. Dynamics of the Neoproterozoic arbon cycle. Proc. Natl Acad. Sci. USA,100:8124-8129.
    Rouxel O, Dobbek N, Ludden J, Fouquet Y.2003. Iron isotope fractionation during oceanic crust alteration. Chem. Geol.202:155-82
    Rouxel O J, Bekker A, Edwards K J.2005. Iron isotope constraints on the Archean and Paleoproterozoic ocean redox state. Science,307:1088-91
    Rouxel O J, Bekker A, Edwards K J.2006. Response to comment on "Iron isotope constraints on the Archean and Paleoproterozoic Ocean redox state". Science,311:177b.
    Prave A R.1999. Two diamictites, two capcarbonates, two δ13C excursions, two rifts:the Neoproterozoic Kingston Peak Formation, DeathValley, California. Geology,27(4):339-342.
    Samuelsson J. Butterfield N J.2001. Neoproterozoic fossils from the Frankl in Mountains, north western Canada:stratigraphic and paleobiologicalim plications. Precambrian Research,107:235-251.
    Schermerhorn L J G.1974. Late Precambrian mixtites:glacial and/ or nonglacial? Am. J. Sci.,274: 673-824.
    Schauble E A, Rossman G R, Taylor H P.2001. Theoretical estimates of equilibrium Fe-isotope fractionations from vibrational spectroscopy. Geochim. Cosmochim. Acta.,65:2487-2497.
    Schoenberg R and von Blanckenburg F.2006. Modes of planetary-scale Fe isotope fractionation. Earth.Planet. Sci. Lett,252:342-359.
    Severmann S, Johnson C M, Beard B L, McManus J.2006. The effect of early diagenesis on the Fe isotope compositions of porewaters and authigenic minerals in continental margin sediments. Geochimica et Cosmochimica Acta,70:2006-2022.
    Sehopf J W, Paker B.1987. Early Archean(3.3-3.5 billion-year-old) microfossils from the Warrawoona Group, Australia. Science,237:70-73.
    Sharma M, Polizzotto M, Anbar A D,2001. Iron isotopes in hot springs along the Juan de Fuca Ridge. Earth Planet. Sci. Lett.,194:39-51.
    Shen Yanan, Zhang Tonggang, Chu Xuelei.2005. C-isotopic sratification in a Neoproterozoic postglacial ocean. Precambrian Research,137(3-4):243-251.
    Shields G A.2005. Neoproterozoic cap carbonates:a critical appraisal of existing models and the plumeworld hypothesis. Terra Nova,17(4):299-310.
    Skulan J L, Beard B L, Johnson C M.2002. Kinetic and equilibrium Fe isotope fractionation between aqueous Fe(Ⅲ) and hematite,Geochim. Cosmochim. Acta 66:2995-3015.
    Staubwasser M, von Blanckenburg F, Schoenberg R.2006. Iron isotopes in the early marine diagenetic iron cycle. Geology,34(8):629-632.
    Strauss H.1997. The isotopic composition of sedimentary sulfur through time. Palaeogeography. Palaeoclimatology. Palaeoecology,132:97-118.
    Sumner D Y, Grotzinger J P.1996. Were kinetics of Archean calcium carbonate precipitation related to oxygen concentration? Geology,24:119-122.
    Sverjensky D A.1984. Europium redox equilibria in aqueous solution. Earth and Planetary Science Letters, 67:70-78.
    Taylor P D P, Maeck R and De Bievre P.1992. Determination of the absolute isotopic composition and atomic weight of a reference sample of natural iron. Int. J. Mass. Spectrom. Ion Proces,121:111-125.
    Taylor S R, McLennan S M.1985. The continental crust:its composition and evolution. Blackwell, Oxford.
    Toth J R.1980. Deposition of submarine crusts rich in manganese and iorn. Geolgoical Society of America Bulletin,91:44-54.
    Tribovillard N, Riboulleau A, Lyons T, Baudin F.2004. Enhanced trapping of molybdenum by sulfurized organic matter of marine origin as recorded by various Mesozoic formations. Chem. Geol.,213: 385-401.
    Tribovillard N, Algeo T J, Lyons T, Riboulleau A.2006. Trace metals as paleoredox and paleoproductivity proxies-An update. Chemical Geology,232:12-32.
    Valley GE and Anderson H.H.1947. A comparison of the abundances ratios of the terrestrial and of meteoritic iron. Am. Chemi. Soci,69:1871-1875.
    Volkening J and Papanastassiou D A.1989. Iron isotope anomalies. Astrophys,347:43-46.
    von Blanckenburg F, Mamberti M, Schoenberg R, Kamber B S, Webb G E.2008. The iron isotope composition of microbial carbonate. Chemical Geology,249:113-128.
    Walter M R, Veevers J J, Calver C R, et al.2000. Dating the840-544 Ma Neoproterozoic interval by isotopes of strontium, carbon, and sulfur in seawater, and some inter pretative models. Precambrian Research,100:371-433.
    Welch S A, Beard B L, Johnson C M, Braterman P S.2003. Kinetic and equilibrium Fe isotope fractionation between aqueous Fe(Ⅱ) and Fe(Ⅲ). Geochimica. Cosmochimica. Acta.,67(22): 4231-4250.
    Wells M L, Price N M, Bruland K W.1995. Iron chemistry in seawater and its relationship to phytoplankton:a workshop report. Mar. Chem.48:157-82.
    Whitehouse M.J and Fedo C.M.2007. Microscale heterogeneity of Fe isotopes in >3.71 Ga banded iron formation from the Isua Greenstone Belt, Southwest Greenland. Geology,35:719-722.
    Williams G E.1979. Sedimentology, stable isotope geochemistry and palaeoenvironment of dolostones capping late Precambrian glacial sequences in Australia. J. Geol. Soc. Australia.,26:377-386.
    Wiesli R A, Beard B L, Johnson C M.2004. Experimental determination of Fe isotope fractionation between aqueous Fe(Ⅱ), siderite, and green rust in abiotic system. Chem. Geol.,221:343-362.
    Wignall P B,1991, Model for transgressive black shales? Geology,19:167-170.
    Wignall P B, Twitchett R J.1996. Oceanic anoxia and the end Permian mass extinction. Science 272: 1155-58.
    Wright J, Sehrdaer H, Holser W T.1987. Paleoredox Variations in ancient oceans recorded by rare earth element in fossil apatite. Geoehim.Cosmoehim.Acat.,51:637-644.
    Xiao S H, Knoll A H, Yuan X L, et al.2004. Phosphatized multicellular algae in the Neoproterozoic Doushantuo Formation, China, and the early evolution of florideophyte red algae. American Journal of Botany,91:214-227.
    Yarincik K M et al.2000. Oxygenation history of bottom water in the Cariaco Basin, Venezuela, over the past 578000 years:Results from rebox-sensitive metals (Mo, V, Mn, and Fe). Paleoceanography,15 (6):5931
    Yamaguchi K E, Ohmoto H,2006. Comment on "iron isotope constraints on the Archean and Paleoproterozoic ocean redox state". Science,311:177a.
    Yamaguchi K E, Johnson CM, Beard BL, Ohmoto H.2004. Iron-sulfur-carbon contents and isotope systematics of 2.7 Ga shallow and deep facies black shales from the Hamersley Basin, Australia. Geochim. Cosmochim. Acta 68 (Suppl.1):A795.
    Yang Y, Rouxel 0, Shi X, Liu J.2006. Fe isotope composition of Fe-Mn crusts in Pacific and its significance for paleoceanography. Presented at Eur. Geosci. Union Gen. Assem., Vienna, Austria.
    Zhou C, Tucker R, Xiao S, Peng Z, Yuan X, Chen Z.2004. New constraints on the ages of Neoproterozoic glaciations in South China. Geology,32(5):437-440.
    Zhu M, Zhang J, Steiner M, Yang A, Li G, Erdtmann B D.2003. Sinian and early Cambrian stratigraphic frameworks from shallow- to deep-water facies of the Yangtze Platform:an integrated approach. Progress in Natural Science,13(12):951-960.
    Zhu M Y, Zhang J M, Yang A H.2007. Integrated Ediacaran (Sinian) chronostratigraphy of South China. Palaeogeography. Palaeoclimatology. Palaeoecology,254(1-2):7-61.
    Zhu X K, O'Nions R K, Guo Y L, et al.2000. Secular variation of iron isotopes in north Atlantic deep water. Science,287:2000-2002.
    Zhu X K, Guo Y, Williams R J P,0'Nions R K, Matthewsa A, Belshaw N S, Canters G W, de Waal E C, Weser U, Burgess B K and Salvato B.2002. Mass fractionation processes of transition metal isotopes. Earth. Planet. Sci. Lett,220:47-62.
    Zhu X K, O'Nions R K, Guo Y, Young E D and Ash R D.2001. Isotope homogeneity of iron in the early solar nebula. Nature,412:311-313.
    陈明,万方,尹福光.2001.滇黔桂地区晚震旦世陡山沱期构造-层序岩相古地理.沉积与特提斯地质,21(1):11-26
    陈孝红,汪啸风,毛晓冬.1999.湘西地区晚震旦世黑色岩系地层层序、沉积环境与成因.地球学报,20(1):87-95.
    储雪蕾,Wolfgang Todt,张启锐,陈福坤,黄晶.2005.南华-震旦系界线的锆石U-Pb年龄.科学通报,50(6):600-602.
    丁振举,刘丛强,姚书振.2000.海底热液系统高温流体的稀土元素组成及其控制因素.地球科学进展,15(3):307-312.
    冯东,陈多福,刘芊.2006.新元古代晚期盖帽碳酸盐岩的成因与“雪球地球”的终结机制.沉积学报,24(2):235-241.
    郭庆军.2002.扬子地台晚震旦至早寒武世沉积碳同位素研究.博士论文.北京:中国科学院地质与地球物理研究所.
    胡修棉,王成善.2001.古海洋溶解氧研究方法综述.地球科学进展,16(1):65-71.
    姜立君,张卫华,高慧等.2004.贵州新元古代陡山沱期碳酸盐岩帽沉积地球化学特征.地球学报,25(2):170-176.
    解古巍,周传明,McFadden K A,肖书海,袁训来.2008.湖北峡东地区九龙湾剖面震旦系陡山沱组微体化石的新发现.古生物学报,47(3):279-290.
    蒋少涌.2003,过渡族金属元素同位素分析方法及其地质应用.地学前缘,10(2):269-278.
    金秉福,林振宏,季福武.2003.海洋沉积环境和物源的元素地球化学记录释读.海洋科学进展,21(1):99-10.
    李美俊,王铁冠,王春江.2006.新元古代”雪球”假说与生命演化的环境.沉积学报,24(1):107-112.
    李津,2008.低温条件下过渡族元素同位素分馏及其在古海洋研究中的应用.博士论文.中国地质科学院地质研究所.
    李志红,朱祥坤,唐索寒.2008.鞍山-本溪地区条带状铁建造的铁同位素与稀土元素特征及其对成矿物质来源的指示.岩石矿物学杂志,27(4):285-290.
    李志红.2007.辽宁省鞍山-本溪地区条带状含铁建造的Fe同位素地球化学研究.博士论文.中国地质科学院地质研究所.
    林治家,陈多福,刘芋.2008.海相沉积氧化还原环境的地球化学识别指标.矿物岩石地球化学通报,27(1):36-45.
    陆松年.2002.关于中国新元古界划分几个问题的讨论.地质论评,48(3):242-248.
    蒲心纯,张继庆,罗安屏等.1987.上扬子区晚震旦世沉积岩沉积相及矿产.重庆:重庆出版社.
    唐天福,张俊明,杨万容,邱金玉,周仰康.1980.中国东部震旦纪和寒武纪磷块岩的结构成因类型及其沉积相和环境.地层学杂志,4(4):264-274.
    唐索寒,朱祥坤,李世珍,何学贤.2005.花岗质岩石中铜铁锌的化学分离方法.地球学报,(26):53-53.
    唐索寒,朱祥坤.2006a. AG MP-1阴离子交换树脂元素分离方法研究.高校地质学报,12:398-403.
    唐索寒,朱祥坤,蔡俊军,李世珍,何学贤,王进辉.2006b.用于多接收器等离子体质谱铜、铁、锌同位素测定的离子交换分离方法.岩矿测试,25:5-8.
    王剑.2005.华南“南华系’研究新进展——论南华系地层划分与对比.地质通报,24(6):91-495.
    王家生,甘华阳,魏清,胡高伟,葛倩.2005.三峡“盖帽”白云岩的碳、硫稳定同位素研究及其成因探讨.现代地质,19(11):14-20.
    熊国庆.2007.新元古代不同沉积环境的白云岩帽碳同位素特征及成因.沉积与特提斯地质,1:14-18.
    袁训来,肖书海,尹磊明等.2002.陡山沱期生物群——早期动物辐射前夕的生命.合肥:中国科学技术大学出版社,1-71
    张同钢,储雪蕾,张启锐,冯连君,霍卫国.2004.扬子地台灯影组碳酸盐岩中的硫和碳同位素记录.岩石学报,20(3):717-724.
    周传明,袁训来,肖书海.2002.扬子地台新元古代陡山沱期磷酸盐化生物群.科学通报,47(22):1734-1739.
    赵新苗.2008.华北克拉通新生代玄武岩携带的地幔橄榄岩Fe同位素地球化学及含金云母地幔岩岩石学研究.博士论文.北京:中国科学院地质与地球物理研究所.
    赵自强,邢裕盛,马国干等.1980.湖北峡东震旦系.中国地质科学院天津地质矿产研究所主编.中国震旦亚界.天津:天津科学技术出版社,31-35.
    朱祥坤,李志红,赵新苗.2008.铁同位素的MC-ICP-MS测定方法与地质标准物质的铁同位素组成.岩石矿物学杂志,27(4):263-272

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700