新型超导材料的制备、超导电性及电子结构和弹性性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从1911年超导电性被发现以来,无论是超导电性理论研究还是超导材料的应用研究,都取得了巨大的发展。近10年来,又有几类重要的超导材料相继被发现,其中包括金属间化合物超导体MgB2和MgCNi3.铁基超导体LnFeAsO1-xFx(Ln=Rare Earth elements), Ba1-xKxFe2As2, LiFeAs(NaFeAs), FeSe(Te),Sr4V2O6Fe2As2等。本论文利用微波直接合成(固相反应)方法制备了MgB2和MgCNi3系列多晶块材样品,并研究了其晶体结构、相成分、形貌和超导电性;利用虚晶近似(VCA)和基于密度泛函理论(DFT)第一性原理的广义梯度近似(GGA)研究了掺杂对MgB2和MgCNi3、铁基超导母体材料LaFeAsO和BaFe2As2的晶格参数、电子结构和弹性性质的影响。论文主要研究内容和结果如下:
     利用微波直接合成方法制备了MgB2、纳米SiC掺杂Mg(B1-2x(SiC)x)2 (x=0,0.05,0.10)和纳米CuO掺杂MgB2-xCuO (x=0,0.03,0.05)多晶块材样品,通过X射线衍射(XRD)、扫描电子显微镜(SEM)以及超导量子干涉仪(SQUID)等对它们的晶体结构、相成分、形貌和超导电性进行了研究。结果证实纳米SiC掺杂的Mg(B1-2x(SiC)x)2样品中实现了B位原子被部分替代;而MgB2-xCuO超导样品中CuO并未进入MgB2晶格。纳米掺杂MgB2样品的合成时间更短,晶粒更细,致密度更高,晶粒间的连接性更好。在20K温度下,掺杂样品的临界电流密度J。在较高外场下都有较大幅度的提高,显示出了微波直接合成和纳米掺杂的优越性。
     利用杂化微波合成方法在短时间内和较低温度下制备了Mg1.1 C1.2Ni3超导样品。样品主相为MgCNi3,含有少量未反应的石墨和微量的MgO杂相,样品晶粒较细,超导转变温度约为6.9K,转变宽度约为0.8K。用固相反应法、以C纳米管为碳源制备了Mg1.1CxNi3 (x=1.35,1.45,1.55)超导样品。除主相MgCNi3外,还含有少量未反应的Ni(或C纳米管)和微量的MgO杂相,晶粒大小在几百纳米至几微米之间。最佳样品的转变温度Tc为7.2K,在自场、5K下其临界电流密度J。约为3.44×104A/cm2,比其它碳源制备的MgCNi3样品的要高。
     利用VCA和第一性原理GGA计算了C掺杂对Mg(B1-xCx)2 (x=0,0.05,0.10,0.15,0.2)晶体及C、Si共掺杂对Mg(B1-2xSixCx)2 (2x=0,0.5, 0.1,0.15,0.2)和Mg(Bo.9C0.1-xSix)2 (x=0,0.02,0.03,0.04,0.05)晶体的晶格参数、能带结构、态密度、单晶体和多晶体的弹性性质的影响。结果表明C掺杂Mg(B1-xCx)2晶体晶格参数变化与实验结果符合较好,而C、Si共掺杂Mg(B1-2xSixCx)2和Mg(B0.9C0.1-xSix)2晶体晶格参数随掺杂量增加而增大;Mg(B1-xCx)2和Mg(B1-2xSixCx)2费米能级附近的能带结构发生明显变化;费米能级处态密度的变化与超导转变温度的变化一致,符合BCS超导机制;单晶体和多晶体的弹性性质都发生较大变化;泊松比v和BH/GH的比值表明Mg(B1-xCx)2、Mg(B1-2xSixCx)2和Mg(B0.9C0.1-xSix)2晶体是脆性的化合物;与C单独掺杂Mg(B1-xCx)2晶体比较而言,C、Si共掺杂Mg(B1-2xSixCx)2和Mg(B0.9C0.1-xSix)2晶体的脆性有所改善。
     计算了B掺杂对MgC1-xBxNi3 (x=0,0.05,0.10,0.15,0.2)晶体和Zn掺杂对Mg1-xZnxCNi3 (x=0,0.1,0.15,0.2,0.25,0.3)晶体的晶格参数、能带结构、态密度、单晶体和多晶体的弹性性质的影响。结果显示掺杂晶体晶格参数变化与实验结果符合较好;费米能级处态密度的变化与超导转变温度的变化一致,符合BCS超导机制;Zn掺杂Mgl-xZnxCNi3晶体费米能级附近的能带结构、单晶体和多晶体的弹性性质都发生明显变化,而B掺杂MgC1-xBxNi3晶体的变化不明显;泊松比v和BH/GH的比值表明MgC1-xBxNi3晶体是延展性的化合物,而Mg1-xZnxCNi3晶体处于延性和脆性的边缘。
     计算了F掺杂对LaFeAsO1-xFx (x=0,0.05,0.08,0.11,0.15)晶体和K掺杂对Ba1-xKxFe2As2 (x=0,0.1,0.2,0.3,0.4,0.5)晶体的晶格参数、能带结构、态密度、单晶体和多晶体的弹性性质的影响。结果说明掺杂晶体晶格参数变化与实验结果定性一致;费米能级附近的能带结构变化不大;费米能级处态密度的变化与超导转变温度的变化不一致,不符合传统的BCS超导机制;单晶体和多晶体的弹性性质都发生较大变化;泊松比v和BH/GH的比值表明LaFeAsO1-xFx处于延性和脆性的边缘,而Ba1-xKxFe2As2晶体是脆性的化合物。
Both the research on theories of superconductivity and the applications of superconductor materials have made tremendous progress since the discovery of superconductivity in 1911. In the latest decade, several kinds of novel superconductor, including intermetallic compounds MgB2 and MgCNi3, Fe-based superconductor materials LnFeAsO1-xFx(Ln=Rare Earth elements), Ba1-xKxFe2As2, LiFeAs (NaFeAs), FeSe(Te), Sr4V2O6Fe2As2, et al., have been discovered in turn. In this thesis, we systematically studied the preparation, crystal structure, appearance and superconductivity of MgB2 and MgCNi3 series samples by microwave direct synthesis (solid state reaction). We also studied the effects of doping on crystal lattice parameters, electronic structure and elastic properties of superconductor MgB2, MgCNi3, Fe-based superconducting parent materials LaFeAsO and BaFe2As2 by virtual crystal approximation (VCA) and the first principles based on density functional theory (DFT). The main contents and results are listed in the following.
     We prepared MgB2, nano SiC doped Mg(B1-2xSiCx)2 (x=0,0.05, 0.10) and nano CuO doped MgB2-xCuO(x=0,0.03,0.05) samples by microwave direct synthesis. And we systematically studied their crystal structure, phase composition, appearance and superconductivity via X-ray diffraction (XRD), scan electron microscope (SEM) and superconducting quantum interferometer device (SQUID). Results show that B atoms are partly substituted in SiC doped Mg(B1-2xSiCx)2 samples, while substitution not take place in CuO doping MgB2-xCuO samples. Owe to the advantages of microwave synthesis and nano materials doping, the cost of time on synthesizing the doped samples is less, the grains of the samples are finer, the densities of the samples are tight and the connection of the grains is better, and the Jc of the doped samples is also greatly increased in external magnetic field and temperature 20 K.
     We prepared MgCNi3 sample with lower temperature and in shorter time by hybrid microwave synthesis. The results indicate that the phases of the synthesized sample are MgCNi3 (major phase), a small amount of unreacted graphite and a little MgO. The MgCNi3 particle sizes are very fine. The onset superconducting transition temperature of the MgCNi3 sample was 6.9 K, and the superconducting transition width was about 0.8 K. We also synthesized MgCNi3 using carbon nanotubes (CNTs) as starting materials by the conventional powder metallurgy method. The results present that the phases of the synthesized samples are MgCNi3 (major phase) and traces of Ni (or C) and MgO. The MgCNi3 particle sizes range from several hundreds of nanometres to several micrometres. The onset superconducting transition temperature Tc of the optimal MgCNi3 sample is about 7.2 K. The critical current density Jc is about 3.44×104 A/cm2 at 5K and zero applied fields, which is higher than Jc of MgCNi3 sample synthesized by other type of carbon.
     We calculated the crystal structure, energy band structure, density of states and elastic constants of single crystal and polycrystal of C doped Mg(B1-xCx)2 (x=0,0.05,0.10,0.15,0.2) and C. Si co-doped Mg(B1-2xSixCx)2 (2x=0,0.5,0.1,0.15,0.2), Mg(Bo.9C0.1-xSix)2 (x=0,0.02, 0.03,0.04,0.05) crystal by VCA and the first principles based on DFT. Calculated results show that the theory value of lattice parameters for C doped Mg(B1-xCx)2 is consistent with experiment value, while lattice parameters of C and Si co-doped Mg(B1-2xSixCx)2 and Mg(B0.9C0.1-xSix)2 are increasing with dopant augmented. The energy band structures of Mg(B1-xCx)2 and Mg(B1-2xSixCx)2 near the Fermi Energy level are changed evidently. The change of the density of states near the Fermi Energy level is consistent with the change of superconductivity transformation temperature Tc, which is obeying the BCS theory. Elastic characters of single crystal and polycrystal are changed obviously. Passion ratio v and value of BHIGH indicate that Mg(B1-xCx)2, Mg(B1-2xSixCx)2 and Mg(B0.9C0.1-xSix)2 are brittle compounds. Compared with C doped Mg(B1-xCx)2, the brittleness of C and Si co-doped Mg(B1-2xSixCx)2 and Mg(B0.9C0.1-xSix)2are improved.
     We calculated the crystal structure, energy band structure, density of states and elastic characters of single crystal and polycrystal of B doped MgC1-xBxNi3 (x=0,0.05,0.10,0.15,0.2) and Zn doped Mg1-xZnxCNi3 (x=0,0.1,0.15,0.2,0.25,0.3) crystal. The calculated lattice parameters are in agreement with experiment results. The change of the density of states near the Fermi Energy level is consistent with the change of superconductivity transformation temperature Tc, which is obeying the BCS theory. The energy band structure near the Fermi Energy level and the elastic characters of single crystal and polycrystal of Zn doped Mg1-xZnxCNi3 are changed evidently, while that of B doped MgC1-xBxNi3 are changed less. Passion ratio v and value of BH/GH indicate that MgC1-xBxNi3 is ductile compounds, while Mg1-xZnxCNi3is in the border of brittleness and ductibility.
     We also calculated the crystal structure, energy band structure, density of states and elastic parameters of single crystal and polycrystal of F doped LaFeAsO1-xFx (x=0,0.05,0.08,0.11,0.15) and K doped Ba1-xKxFe2As2 (x=0,0.1,0.2,0.3,0.4,0.5) crystal. The calculated lattice parameters are quality consistent with experiment results. The energy band structures near the Fermi energy level are almost not changed. The change of the density of states near the Fermi Energy level is not consistent with the change of superconductivity transformation temperature Tc, and is not obeying the traditional BCS theory. Elastic characters of single crystal and polycrystal are changed obviously. Passion ratio v and value of BH/GH indicate that LaFeAsO1-xFxis in the border of brittleness and ductibility, while Ba1-xKxFe2As2 is brittle compounds.
引文
[1]张裕恒.超导物理.合肥:中国科技大学出版社,1997
    [2]章立源.超导理论.北京:科学出版社,2003
    [3]章立源,张金龙,崔广霁.超导物理学.北京:电子工业出版社,1995
    [4]Bardeen J, Cooper L N, Schrieffer J R. Microscopic Theory of Superconductivity. Phys. Rev.1957,106:162-164
    [5]Cooper L N. Bound electron pairs in a degenerate Fermi gas. Phys. Rev.1956,104: 1189-1193
    [6]张其瑞.高温超导电性.杭州:浙江大学出版社,1992
    [7]韩汝珊.高温超导物理.北京:北京大学出版社,1998
    [8]Bednorz J G and Muller K A. Possible high Tc superconductivity in the Ba-La-Cu-O system. Z. Phys. B.:Cond. Matter.1986,64(2):189-193
    [9]Wu M K, Ashburn J R, Torng C J, et al. Superconductivity at 93 K in a new mixed-phase Yb-Ba-Cu-O compound system at ambient pressure. Phys. Rev. Lett. 1987,58(9):908-911
    [10]Zhao Z X, Cheng L Q, Yang Q S, et al. Superconductivity above liquid nitrogen temperature in Ba-Y-Cu oxides. Science Bulletin.1987,32(4):412-414
    [11]Maeda H, Tanaka Y, Fukutomi M, et al. New high-Tc oxide superconductor without a rare earth element. Japanese J. App. Phys.1988,27(2):L209-210
    [12]Putilin S N, Antipov E V, and Marezio M. Superconductivity above 120 K in HgBa2CaCu206+δ. Physica C.1993,212(3-4):266-270
    [13]Gao L, Xue Y Y, Chen F, et al. Superconductivity up to 164 K in HgBa2Cam-i-CumO2m+2+δ (m=1,2, and 3) under quasi-hydrostatic pressures. Phys. Rev. B.1994, 50(6):4260-4263
    [14]Jin J X. High Temperature Superconductivity in the Past Twenty Years-Discovery, Material, and Theory. J. Electronic Science and Technology of China.2008, 6(2):225-236
    [15]Akimitsu J. Symposium on Transition Metal Oxides.2001.1.10, Sendai, Japan
    [16]Nagamatsu J, Nakagawa N, Muranaka T, et al. Superconductivity at 39 K in magnesium diboride. Nature,2001,410:63-64
    [17]Jones M, Marsh R. The preparation and structure of magnesium boride. J Am Chem Soc.1954,76:1434-1436
    [18]MacMillan W L. Transition temperature of strong-coupled superconductors. Phys. Rev.1968,167:331-344
    [19]Hinks D G, Claus H, Jorgensen J D. The complex nature of superconductivity in MgB2 as revealed by the reduced total isotope effect. Nature.2001,411:457-460
    [20]Bugoslavsky Y, Cohen L F, Perkins G K, et al. Enhancement of the high-field critical current density of superconducting MgB2 by proton irradiation. Nature.2001, 411:561-563
    [21]Jin S, Mavoori H, van Dover R B. High critical currents in iron-clad superconducting MgB2 wires. Nature.2001,411:563-565
    [22]Bugoslavsky Y, Perkins G K, Qi X, et al. Vortex dynamics in superconducting MgB2 and prospects for applications. Nature.2001,410:563-565
    [23]Hyoung J C, David R, Hong S, et al. The origin of the anomalous superconducting properties of MgB2. Nature,2002,418:758-760
    [24]Eom C B, Lee M K, Choi J H, et al. High critical current density and enhanced irreversibility field in superconducting MgB2 thin film. Nature.2001,411:558-560.
    [25]Larbalestier D C, Cooley L D, Rikel M O, et al. Strongly linked current flow in polycrystalline forms of the superconductor MgB2. Nature.2001,410:186-189.
    [26]Slusky J S, Ragado H, Hayward M A, et al. Loss of superconductivity with the addition of Al to MgB2 and a structural transition in Mg1-xAlxB2. Nature.2001,410: 343-345
    [27]Kang W N, Kim H J, Choi E M, et al. MgB2 superconducting thin films with a transition temperature of 39 Kelvin. Science.2001,292:1521-1523
    [28]Monteverde M, Nunez-Regueiro M, Rogado N, et al. Pressure dependence of the superconducting transition temperature of magnesium diboride. Science.2001,292: 75-77
    [29]Souma S, Machida Y, Sato T, et al. The origin of multiple superconducting gaps in MgB2. Nature.2003,423:65-67
    [30]Buzea C, Yamashita T. Review of the superconducting properties of MgB2. Supercond. Sci. Technol.2001,14:R115-R146
    [31]He T, Huang Q, Ramirez A P, et al. Superconductivity in the non-oxide perovskite MgCNi3. Nature,2001,411 (6833):54-57.
    [32]Ren Z A, Che G C, Jia S L, et al. The structural change and superconductivity in MgCxNi3 (x=0.5-1.55) and MgxCyNi3 (x=0.75-1.55, y=0.85,1.0,1.45) and the phase diagram of Ni-rich region in Mg-C-Ni ternary system. Physica C.2002,371 (1):1-6
    [33]Huang Q, He T, Regan K A, et al. Temperature dependence of the structural parameters of the non-oxide perovskite MgCNi3. Physica C.2001,363 (4):215-218
    [34]Li S Y, Fan R, Chen X H, et al. Normal state resistivity, upper critical field, and Hall effect in superconducting perovskite MgCNi3. Phys. Rev. B.2001,64:132505
    [35]Lin J Y, Ho P L, Huang H L, et al. BCS-like superconductivity in MgCNi3. Phys. Rev. B.2003,67:052501
    [36]Kumary T Geetha, Janaki J, Mani Awadhesh, et al. Normal and superconducting states of MgCNi3 upon Fe and Co substitution and external pressure. Phys. Rev. B. 2002,66:064510
    [37]Young D P, Moldovan M, Craig D D, et al. Superconducting properties of MgCNi3 films. Phys. Rev. B.2003,68:020501
    [38]Rana Rohit K, GPol Vilas, Felner Israel, et al. Encapsulating a superconducting material, MgCNi3, in a Carbaon Nanoflask. Adv Mater.2004,12:972-975
    [39]Young D P, Moldovan M and Adams P W. Scaling behavior of the critical current density in MgCNi3 microfibers. Phys. Rev. B.2004,70:064508
    [40]Szajek A. Electronic structure of superconducting non-oxide perovskite MgCNi3. J Phys.:Conden. Matter.2001,13(26):L595-L600
    [41]Shim J H, Kwon S K and Min B I. Electronic structures of antiperovskite superconductors MgXNi3 (X=B, C, and N). Phys. Rev. B.2001,64:180510(R)
    [42]Dugdale S B and Jarlborg T. Electronic structure, magnetism, and superconductivity of MgCxNi3. Phys. Rev. B.2001,64:100508(R)
    [43]Lee Hyun-Sook, Jang Dong-Jin, Lee Hye-Gyong et al. Growth of Single Crystals of MgCNi3. Adv. Mater.2007,19:1807-1809
    [44]吴柏枚,李波,杨东升,等.新型超导体MgB2和MgCNi3热、电输运性质研究.物理学报,2003,52(12):3150-3155
    [45]Yoichi Kamihara, Takumi Watanabe, Masahiro Hirano, et al., Iron-Based Layered Superconductor LaO1-xFxFeAs (x=0.05-0.12) with Tc=26K. J. Am. Chem. Soc.2008, 130:3296-3297
    [46]Chen G F, Li Z, Li G, et al. Superconducting properties of Fe-based layered superconductor LaO0.9Fo.1-δFeAs. Phys. Rev. Lett.2008,101:057007
    [47]Zhu X Y, Yang H, Fang L, et al. Upper critical field, Hall effect and magnetoresistance in the iron-based layered superconductor LaO0.9F0.1-δFeAs. Supercond. Sci. Technol.2008,21:105001
    [48]Sefat A S, McGuire M A, Sales B C, et al. Electronic correlations in the superconductor LaO0.89F0.11FeAs with low carrier density. Phys. Rev. B.2008,77: 174503
    [49]Wen H H, Mu G, Fang L, et al. Superconductivity at 25 K in hole-doped La1-xSrxOFeAs. Euro. Phys. Lett.2008,82(1):17009
    [50]Chen X H, Wu T, Wu G, et al. Superconductivity at 43K in SmFeAsO1-xFx. Nature.2008,453(7193):761-762
    [51]Chen G F, Li Z, Wu D, et al. Superconductivity at 41 K and its competition with spin-density-wave instability in layered CeO1-xFxFeAs. Phys. Rev. Lett.2008,100: 247002
    [52]Ren Z A, Yang J, Lu W, et al. Superconductivity at 52 K in iron based F doped layered quaternary compound PrO1-xFxFeAs. Mater. Res. Innov.2008,12(3):105-106
    [53]Ren Z A, Lu W, Yang J, et al. Superconductivity at 55 K in iron-based F-doped layered quaternary compound SmO1-xFxFeAs. Chin. Phys. Lett.2008,25(6): 2215-2216
    [54]Ren Z A, Che G C, Dong X L, et al. Superconductivity and phase diagram in iron-based arsenic-oxides ReFeAsO1-δ(Re=rare-earth metal) without fluorine doping. Euro. Phys. Lett.2008,83(1):17002
    [55]Wang C, Li L J, Chi S, et al. Thorium-doping-induced superconductivity up to 56 K in Gd1-xThxFeAsO. Euro. Phys. Lett.2008,83(6):67006
    [56]Li L J, Li Y K, Ren Z, et al. Superconductivity above 50 K in Tb1-xThxFeAsO. Phys. Rev. B.2008,78(13):132506
    [57]Bos J W, Penny G B, Rodgers J A, et al. High pressure synthesis of late rare earth RFeAs(O,F) superconductors:R=Tb and Dy. Chem. Commun.2008,31:3634-3635
    [58]Satoru Matsuishi, Yasunori Inoue, Takatoshi Nomura, et al. Superconductivity induced by Co-doping in quaternary fluoroarsenide CaFeAsF. J. Am. Chem. Soc.2008, 130(44):14428-14429
    [59]Marianne Rotter, Marcus Tegel, and Dirk Johrendt. Superconductivity at 38 K in the iron arsenide Ba1-xKxFe2As2. Phys. Rev. Letts.2008,101:107006
    [60]Wang X C, Liu Q Q, Lv Y X, et al. The superconductivity at 18 K in LiFeAs system. Solid State Comm.2008,148:538-540
    [61]Hsu Fong-Chi, Luo Jiu-Yong, Yeh Kuo-Wei, et al. Superconductivity in the PbO-type structure alpha-FeSe. PNAS.2008,105(38):14262-14264
    [62]Zhu X Y, Han F, Mu G, et al. Transition of stoichiometric Sr2VO3FeAs to a superconducting state at 37.2 K. Phys. Rev. B.2009,79:220512(R)
    [63]Jin J X. High temperature superconductivity in the past twenty years-Towards to practical applications. J. Electronic Science and Technology of China.2008,6(2): 237-254
    [64]梁锦霞.MgB2超导块体材料的研究:[硕士学位论文].北京:北京工业大学,2004
    [65]李绍春,朱嘉林,禹日成,等.MgB2超导体块材的高压合成.高压物理学报.
    2001,15(3):226-228
    [66]Jin C Q, Li S C, Yu R C, et al. Property studies of MgB2 superconductor directly synthesized using high pressure. J. Phys.:Condens. Matter.2002,14:10771-10778
    [67]Gao Y D, Ding J, Rao G V S, et al. Magnetic properties and superconductivity of mechanically alloyed (Mg1-xFex)B2 samples with x=0.0-0.4. J.Appl. Phys.2003,93(10): 8656-8658
    [68]Abe H, Naito M, Nogi K, et al. Low temperature formation of superconducting MgB2 phase from elements by mechanical milling. Physica C.2003,391:211-216
    [69]Agostino A, Bonometti E and Volpe P, et al. Carbon influence in the systhesis of MgB2 by a microwave method. Int. J. Mod. Phys. B.2003,17 (4-6):773-778
    [70]Koseoglu Y, Aktas B, Yildiz F, et al., ESR studies on high-Tc superconductor MgB2. Physica C.2003,390(3):197-203
    [71]Dong C, Guo J, Fu G C, et al. Rapid preparation of MgB2 superconductor using hybrid microwave synthesis. Supercond. Sci. Technol.2004,17(12):L55-L57
    [72]郭娟.钨青铜和Mg(B1-xCx)2体系的微波合成、晶体结构和超导电性研究:[博士学位论文].北京:中科院物理所,2005
    [73]Nesterenko V F, Gu Y. Elastic properties of hot-isostatically-pressed magnesium diboride. Appl. Phys. Letts,2003,82(23):4104-4106
    [74]Li Q, Gu G D, Zhu Y. High critical-current density in robust MgB2/Mg nanocomposites. Appl. Phys. Letts.2003,82(13):2103-2105
    [75]Dunand D C. Synthesis of superconducting Mg/MgB2 composites. Appl. Phys. Letts.2001,79(25):4186-4188
    [76]Liao X Z, Serquis A, Zhu Y T, et al. Controlling flux pinning precipitates during MgB2 synthesis. Appl. Phys. Letts.2002,80(23):4398-4400
    [77]Fu B Q, Feng Y, Yan G, et al. High critical current density in Ti-doped MgB2/Ta/Cu tape by powder-in-tube process. J.Appl. Phys,2002,92(12):7341-7344
    [78]Feng Y, Yan G, Zhao Y, et al. Superconducting properties of MgB2 wires and tapes with different metal sheaths. Physica C,2003,386:598-602
    [79]Kumakura H, Matsumoto A, Fujii H, et al. High transport critical current density obtained for powder-in-tube processed MgB2 tapes and wires using stainless steel and Cu-Ni tubes. Appl. Phys. Letts.2001,79(15):2435-2437
    [80]Fujii H, Togano K, Kumakura H. Enhancement of critical current densities of powder-in-tube processed MgB2 tapes by using MgH2 as a precursor powder. Supercond. Sci. Technol,2002,15 (11) 1571-1576
    [81]Canfield P C, Finnemore D K, Bud'ko S L, et al. Superconductivity in Dense MgB2 Wires. Phys. Review. Letts.2001,86(11):2423-2426
    [82]Cunningham C E, Petrovic C, Lapertot G, et al. Synthesis and processing of MgB2 powders and wire. Physica C,2001,353:5-10
    [83]张芹,朱亚彬,王淑芳等.利用电泳技术在不锈钢和铁基底上制备MgB2带材.低温物理学报,2003,25(2):137-140
    [84]Naito M, Ueda K. MgB2 thin films for superconducting electronics. Supercond Sci Technol.2004,17:R1-R18
    [85]Wang S F, Dai S Y, Zhou Y L, et al. Superconducting MgB2 thin films grown by pulsed laser deposition on Al2O3 (0001) and MgO (100) substrate. Supercond Sci Technol.2001,14:885-887
    [86]Zeng X H, Pogrcbnyakov A V, Kotcharov A, et al. In-situ epitaxial MgB2 thin films for superconducting electronics. Nature Mater.2002,1:35-38
    [87]Wang S F, Zhou S Y I, Zhu Y B, et al. Preparation and properties of MgB2 thin films on LaAlO3 substrates by chemical vapor deposition. Supercond Sci Technol. 2003,16:748-751
    [88]Ucda K, Naito M. As-grown superconducting MgB2 thin films prepared by molecular beam epitaxy. Appl. Phys. Lett.2001,79:2046-2048
    [89]Zhai H Y, Christen H M, White C W, et al. Buried superconducting layer comprised of magnesium diboride nanocrystals formed by ion implantation. Appl. Phys. Lett.2002,80:4786-4788
    [90]Wang S F, Zhou Y I, Zhu Y B, et al. MgB2 double sided thick films fabricated on various metals by electrophoresis method. Physica C,2003,390:6-10
    [91]Xu M, Kitazawa H, Takano Y, et al. Anisotropy of superconductivity from MgB2 single crystals. Appl. Phys. Lett.2001,79:2779
    [92]Kim K H P, Choi J H, Jung C U, et al. Superconducting properties of well shaped MgB2 single crystals. Phys. Rev. B,2002,65:100510
    [93]Cho Y C, Park S E, Jeong S Y, et al. Properties of superconducting MgB2 single crystal grown by a modified flux method. Appl. Phys. Letts,2002,80(19):3569-3571
    [94]Souptel D, Behr G, Loser W, et al. Crystal growth of MgB2 from Mg-Cu-B melt flux and superconducting properties. J. Alloys and Compounds.2003,349:193-200
    [95]Lee S. Crystal growth of MgB2, Physics C.2003,385:31-41
    [96]Lee S, Yamamoto A, Jun J, et al. Single crystals of MgB2 superconductor grown under high-pressure in Mg-B-N system. Phvsica C.2002,378-381:33-37
    [97]Karpinski J, Kazakov S M, Jun J, et al. Single crystal growth of MgB2 and thermodynamics of Mg-B-N system at high pressure. Physica C.2003,385:42-48
    [98]Karpinski J, Angst M, Jun J, et al. MgB2 single crystals:high pressure growth and physical properties. Supercond. Sci. Technol.2003,16:221-230
    [99]Du W, Xu D, Zhang H B, et al. Single Crystal Growth of MgB2 by Using Mg-Self-Flux Method at Ambient Pressure. J. Crystal Growth.2004,268(1-2):123-127
    [100]杜伟.MgB2超导单晶生长研究:[博士学位论文].济南:山东大学,2005
    [101]Wu Y Y, Messer B and Yang P D. Superconducting MgB2 Nanowires. Adv. Mater.2001,13(19):1487-1451
    [102]Yang Q, Sha J, Ma X Y, et al. Aligned single crystal MgB2 nanowires. Supercond. Sci. Technol.2004,17:L31-L33
    [103]Nath Manashi and Parkinson B A. A Simple Sol-Gel Synthesis of Superconducting MgB2 Nanowires. Adv. Mater.2006,18:1865-1868
    [104]Nath Manashi and Parkinson B A. Superconducting MgB2 nano helices grown on various substrates. J. Am. Chem. Soc.2007,129:11302-11303
    [105]Wang Y Z, Zhuang C G, Gao J Y, et al. MgB2 Superconducting Whiskers Synthesized by Using the Hybrid Physical-Chemical Vapor Deposition. J. Am. Chem. Soc.2009,131:2436-2437
    [106]Portesi C, Borini S, Amato G, et al. Fabrication of superconducting MgB2 nanostructures by an electron beam lithography-based technique. J Appl. Phys.2006, 99:066115
    [107]Shibata H, Maruyama T, Akazaki T, et al. Photon detection and fabrication of MgB2 nanowire. Physica C.2008,468:1992-1994
    [108]Kang W N, Jung C U, Kim K H P, et al. Hole carrier in MgB2 characterized by Hall measurements. Appl. Phys. Letts,2001,79(7):982-984
    [109]Xu H Y, Yin D L, Qi Z, et al. Hall effect in the mixed state of superconducting MgB2. Solid State Commun.2002,124:433-436
    [110]Zhao Y, Feng Y, Cheng CH, et al. High critical current density of MgB2 bulk superconductor doped with Ti and sintered at ambient pressure. Appl. Phys. Lett.2001, 79(8):1154-1156
    [111]Feng Y, Zhao Y, Sun YP, et al. Improvement of critical current density in MgB2 superconductors by Zr doping at ambient pressure. Appl. Phys. Lett.2001,79(24): 3983-3985
    [112]Cimberle M R, Novak M, Manfrinetti P, et al. Magnetic characterization of sintered MgB2 samples:effect of substitution or 'doping' with Li, Al and Si. Supercond. Sci. Technol.2002,15(1):43-47
    [113]Wang X L, Zhou S H, Qin M J, et al. Significant enhancement of flux pinning in MgB2 superconductor through nano-Si addition. Physica C.2003,385(4):461-465
    [114]Wang X L, Soltanian S,James M, et al. Significant enhancement of critical current density and flux pinning in MgB2 with nano-SiC, Si, and C doping. Physica C. 2004,408:63-67
    [115]Soltanian S, Horvat J, Wang X L, et al. Effect of nano-carbon particle doping on the flux pinning properties of MgB2 superconductor. Physica C.2003,390:185-190
    [116]Zhao Y, Cheng C H, Rui X F, et al. Improved irreversibility behavior and critical current density in MgB2-diamond nanocomposites. App. Phys. Lett.2003,83(14): 2916-2918
    [117]Dou S X, Yeoh W K, Horvat J, et al. Effect of carbon nanotube doping on critical current density of MgB2 superconductor. Appl. Phys. Lett.2003,83(24): 4996-4998
    [118]Ma Y W, Zhang X P, Nishijima G, et al. Significantly enhanced critical current densities in MgB2 tapes made by a scaleable nanocarbon addition route. Appl. Phys. Letts.2006,88(7):072502
    [119]Dou S X, Yeoh W K, Shcherbakova O, et al. Alignment of carbon nanotube additives for improved performance of magnesium diboride superconductors. Adv. Mater.2006,18(6):785-788
    [120]Zhang X P, Ma Y W, Gao Z S, et al. Strongly enhanced current-carrying performance in MgB2 tape conductors by C-60 doping. J. Appl. Phys.2008,103(10): 103915
    [121]Ghorbani S R, Wang X L, Hossain M S A, et al. Coexistence of the delta I and delta T-c flux pinning mechanisms in nano-Si-doped MgB2. Supercond. Sci. Technol. 2010,23(2):025019
    [122]Zhang C Y, WangY B, Hu W W and Feng Q R. The effect of Si addition in thin films by hybrid physical-chemical vapor deposition using silane as the doping source. Supercond. Sci. Technol.2010,23:065017
    [123]Wang X L, Dou S X, Hossain M S A, et al. Enhancement of the in-field J(c) of MgB2 via SiCl4 doping. Phys. Rev. B.2010,81:224514
    [124]Dou S X, Pan A V, Zhou S, et al. Superconductivity, critical current density, and flux pinning in MgB2-x(SiC)x/2 superconductor after SiC nanoparticle doping. J. Appl. Phys,2003.94(3):1850-1856
    [125]Dou S X, Pan A V, Zhou S, et al. Substitution-induced pinning in MgB2 superconductor doped with SiC nano-particles. Supercond. Sci. Technol.2002,15(11): 1587-1591
    [126]Dou S X, Braccini V, Soltanian S, et al. Nanoscale-SiC doping for enhancing Jc and Hc2 in superconducting MgB2. J. Appl. Phys,2004.96(12):7549-7555
    [127]Dou S X, Shcherbakova O, Yeoh W K, et al. Mechanism of Enhancement in Electromagnetic Properties of MgB2 by Nano SiC Doping. Phys. Rev. Letts.2007,98: 097002
    [128]Ma Z Q, Liu Y C, Hu W P, et al. The enhancement of Jc in nano SiC-doped MgB2 superconductors rapidly synthesized by activated sintering at low-temperature. Scripta Materialia.2009,61:836-839
    [129]Ma Z Q, Liu Y C,, Zhao Q, et al. Mechanism analysis for the enhanced electromagnetic properties in nano-SiC-doped MgB2 based on the discussion of the sintering process. Supercond. Sci. Technol.2009,22:085015
    [130]De la Pena-Seaman O, de Coss R, Heid R, et al. Effects of Al and C doping on the electronic structure and phonon renormalization in MgB2. Phys. Rev. B.2009,79: 134523
    [131]Gao Z S, Ma Y W, Zhang X P, et al. Strongly enhanced critical current density in MgB2/Fe tapes by stearic acid and stearate doping. Supercond. Sci. Technol.2007, 20(5):485-489
    [132]Gao Z S, Ma Y W, Zhang X P, et al. Enhancement of the critical current density and the irreversibility field in maleic anhydride doped MgB2 based tapes. J. Appl. Phys. 2007,102(1):013914
    [133]Gao Z S, Ma Y W, Zhang X P, et al. Influence of sintering temperature on the superconducting properties of Zn-stearate-doped MgB2 tapes. Supercond. Sci. Technol. 2008,21(1):015016
    [134]Wang X L, Cheng Z X, and Dou S X. Silicon oil:A cheap liquid additive for enhancing in-field critical current density in MgB2. Applied Physics Letters.2007, 90(4):42-48
    [135]Jiang C H, Dou S X, Cheng Z X, et al. Light carbon doping by oxygen-free paraffin wax to enhance the current density of MgB2 in the entire field regime. Supercond. Sci. Technol.2008,21(6):065017
    [136]Zeng R, Lu L, Dou S X. Significant enhancement of the superconducting properties of MgB2 by polyvinyl alcohol additives. Supercond. Sci. Technol.2008, 21(8):085003
    [137]Zhang X P, Ma Y W, Wang D L, et al. Phthalocyanine doping to improve critical current densities in MgB2 tapes. Supercond. Sci. Technol.2009,22(4):045019
    [138]Zhang X P, Wang D L, Gao Z S, et al. Doping with a special carbohydrate, C9H11NO, to improve the J(c)-B properties of MgB2 tapes. Supercond. Sci. Technol. 2010,23(2):025024
    [139]Gao Z S, Wang D L, Zhang X P, et al. Simultaneous introduction of scattering and pinning in organic rare-earth salt doped MgB2 tapes. Supercond. Sci. Technol. 2010,23(4):045024
    [140]Rui X F, Zhao Y, Xu Y Y, et al. Improved flux pinning behaviour in bulk MgB2 achieved by nano-SiO2 addition. Supercond. Sci. Technol.2004,17(4):689-691
    [141]Xu G J, Grivel J C, Abrahamsen A B, et al. Enhancement of the irreversibility field in bulk MgB2 by TiO2 nanoparticle addition. Physica C.2004,406(1-2):95-99
    [142]Gharaibeh M, Albiss B A, Jumah I, et al. Effective incorporation of nano-ceria into polycrystalline MgB2. J. Appl. Phys.2010,107:063908
    [143]Vinod K, Varghese N, Syamaprasad U, et al. Structural and superconducting properties of bulk MgB2 with added nano Tb4O7. Supercond. Sci. Technol.2008,21(2): 025003
    [144]Qu B, Sun X D, Li J G, et al. Significant improvement of critical current density in MgB2 doped with ferromagnetic Fe3O4 nanoparticles. Supercond. Sci. Technol.2009, 22(1):015027
    [145]Ojha N, Malik V K, Bernhard C, et al. Enhanced superconducting properties of Eu2O3-doped MgB2. Physica C.2009,469(14):846-851
    [146]Ma Y W, Kumakura H, Matsumoto A, et al. Microstructure and high critical current density of in situ processed MgB2 tapes made by WSi2 and ZrSi2 doping. Appl. Phys. Lett.2003,83(6):1181-1183
    [147]Jiang C H, Nakane T, Kumakura H. Enhanced J(c)-B performance in MgB2/Fe tapes with nanometre Si3N4 addition. Supercond. Sci. Technol.2005,18(6):902-906
    [148]Bhatia M, Sumption M D, Collings E W, et al. Increases in the irreversibility field and the upper critical field of bulk MgB2 by ZrB2 addition. Appl. Phys. Lett.2005, 87(4):042505
    [149]Yamamoto A, Shimoyama J, Ueda S, et al. Effects of B4C doping on critical current properties of MgB2 superconductor. Supercond. Sci. Technol.2005,18(10): 1323-1328
    [150]Vgot T, Schneider G, Hriljac J A, et al. Compressibility and electronic structure of MgB2 up to 8 GPa. Phys. Rev. B.2001,63(22):220505(R)
    [151]Li S C, Wang R J, Li F Y, et al. Ultrasonic properties of the MgB2 superconductor. Chin. Phys. Letts.2001,18(10):1369-1370
    [152]Ignatova T V, Zvyagina G A, Kolobov I G, et al. MgB2:Synthesis, sound velocity, and dynamics of the vortex phase. Low Temp. Phys.2002,28(3):190-193
    [153]Li F Y, Wang R J, Li S C, et al. Ultrasound studies of MgB2 superconductor under hydrostatic pressure. Phys. Rev. B.2002,65:132517
    [154]Ichitsubo T, Ogi H, Nishimura S, et al. Elastic stiffness and ultrasonic attenuation of superconductor MgB2 at low temperatures. Phys. Rev. B.2002,66:052514
    [155]Nesterenko V F, Gu Y. Elastic properties of hot-isostatically-pressed magnesium diboride. Appl. Phys. Letts.2003,82(23):4104-4106
    [156]Milman V, Warren M C. Elastic properties of TiB2 and MgB2. J. Phys.:Cond. Mater.2001,13(24):5585-5595
    [157]Islam A K M A, Islam F N. Ab initio investigation of elastic constants of superconducting MgB2. Physica C.2001,363(3):189-193
    [158]Osorio-Guillen J M, Simak S I, Wang Y, et al. Bonding and elastic properties of superconducting MgB2. Solid State Commun.2002,123(6-7):257-262
    [159]Guo H Z, Chen X R, Zhu J, et al. First-Principles Calculations of Elastic Constants of Superconducting MgB2. Chin. Phys. Lett.2005,22(7):1764-1767
    [160]Guo Y D, Chen X R, Yang X D, et al. Elastic Constants of Superconducting MgB2 from Molecular Dynamics Simulations with Shell Model. Commun. Theor. Phys. 2005,44:936-940
    [161]Wang H Y, Chen X R, Zhu W J, et al. Structural and elastic properties of MgB2 under high pressure. Phys. Rev. B,2005,72(17):172502
    [162]Souvatzis P, Osorio-Guillen J M, Ahuja R, et al. Elastic properties of Mg1-xAlxB2 from first principles theory. J. Phys.:Cond. Mater.2004,16(29):5241-5250
    [163]Wang H, Ouyang L Z, Zeng M Q, et al. Direct synthesis of MgCNi3 by mechanical alloying. Scripta Materialia,2004,50 (12):1471-1474
    [164]Ouyang L Z, Wang H, Peng C H, et al. Formation of MgCNi3 and Mg-Ni amorphous mixture by mechanical alloying of Mg-Ni-C system. Materials Letters. 2004,58 (16):2203-2206
    [165]Palacios-Lazcano A, Cabanas-Moreno J G, Cruz-Gandarilla F. On the formation of a mixed carbide (MgNi3Cx) during production of nanocrystalline Mg2Ni by mechanical alloying. Scripta Materialia.2005,52:571-575
    [166]Ferretti M, Ciccarelli C, Magnone E, et al. Application of the SHS technique in the synthesis of the perovskite-type MgxCyNi3 compound. Materials Research Bulletin. 2004,39:647-654
    [167]Paolone A, Castellano C, Palumbo O, et al. Local structure characterization of superconducting MgCNi3 prepared by SHS technique. Physica C.2007,454(1-2): 77-81
    [168]Li S Y, Mo W Q, Yu M, et al. Thermopower and thermal conductivity of superconducting perovskite MgCNi3. Phys. Rev. B.2002,65:064534
    [169]Singer P M, Imai T, He T, et al. 13C NMR Investigation of the Superconductor MgCNi3 up to 800 K. Phys. Rev. Lett.2001,87:257601
    [170]Zheng P, Luo J L, Liu G T, et al. Optical properties of MgCNi3 in the normal state. Phys. Rev. B.2005,72:092509
    [171]Mao Z Q, Rosario M M, Nelson K D, et al. Experimental determination of superconducting parameters for the intermetallic perovskite superconductor MgCNi3. Phys. Rev. B.2003,67:094502
    [172]Yao Y X, Ying X N, Huang Y N, et al. The mechanical relaxation study of polycrystalline MgC1-xNi3. Supercond. Sci. Technod.2004,17:608-611
    [173]Yang H D, Mollah S, Huang W L, et al. Pressure effects on the transition temperature of superconducting MgCxNi3. Phys. Rev. B.2003,68:092507
    [174]Garbarino G, Monteverde M, Nunez-Regueiro M, et al. Pressure dependence of the superconducting transition temperature of MgCNi3. Physica C.2004,408-410: 754-755
    [175]Kumar Ravhi S, Cornelius A L, Shen Y R, et al. Structural behavior of non-oxide perovskite superconductor MgCNi3 at pressures up to 32 GPa. Physica B.2005,363: 190-195
    [176]Amos T G, Huang Q, Lynn J W, et al. Carbon concentration dependence of the superconducting transition temperature and structure of MgCxNi3. Solid State Commun. 2002,121:73-77
    [177]Shan L, Xia K, Liu Z Y, et al. Influence of carbon concentration on the superconductivity in MgCxNi3. Phys. Rev. B.2003,68:024523
    [178]Joseph P Jiji Thomas and Singly Prabhakar P. Role of C in MgCxNi3 investigated from first principles. Phys. Rev. B.2005,72:064519
    [179]Walte A, Fuchs G, Miiller K H, et al. Role of carbon for superconductivity in MgCxNi3 from specific heat. Phys. Rev. B.2005,72:100503
    [180]Ignatov A Y, Savrasov S Y and Tyson T A. Superconductivity near the vibrational-mode instability in MgCNi3. Phys. Rev. B.2003,68:220504(R)
    [181]Heid R, Renker B, Schober H, et al. Phonon spectrum and soft-mode behavior of MgCNi3. Phys. Rev. B.2004,69:092511
    [182]Prafulla K Jha. Phonon spectra and vibrational mode instability of MgCNi3. Phys. Rev. B.2005,72:214512
    [183]Rosner H, Weht R, Johannes M D, et al. Superconductivity near Ferromagnetism in MgCNi3. Phys. Rev. Lett.2002,88:0277001
    [184]Klimczuk T, Cava R J. Carbon isotope effect in superconducting MgCNi3. Phys. Rev. B.2004,70:212514
    [185]Lu X F, Shan L, Wang Z, et al. Evidence for s-wave pairing from measurement of the lower critical field in MgCNi3. Phys. Rev. B.2005,71:174511
    [186]Shan L, Tao H J, Gao H, et al. s-wave pairing in MgCNi3 revealed by point contact tunneling. Phys. Rev. B.2003,68:144510
    [187]Prozorov R, Snezhko A, He T, et al. Evidence for unconventional superconductivity in the nonoxide perovskite MgCNi3 from penetration depth measurements. Phys. Rev. B.2003,68:180502
    [188]Lee Hyun-Sook, Jang Dong-Jin, Lee Hye-Gyong, et al. Evidence of conventional superconductivity in single-crystalline MgCNi3. J. Phys.:Condens. Matter.2008,20: 255222
    [189]Kacmarcik J, Pribulova Z, Szabo P. Superconducting energy gap in MgCNi3 single crystals. J. Phys. Chem. Solid.2008,69:3011-3013
    [190]Diener P, Rodiere P, Klein T, et al. s-wave superconductivity probed by measuring magnetic penetration depth and lower critical field of MgCNi3 single crystals. Phys. Rev. B.2009,79:220508
    [191]Hayward M A, Haas M K, Ramirez A P, et al. The suppression of superconductivity in MgCNi3 by Ni site doping. Solid State Commun.2001,119: 491-495
    [192]Das A, Kremer R K. Suppression of superconductivity in Mn-substituted MgCNi3. Phys. Rev. B.2003,68:064503
    [193]Klimczuk T, Gupta V, Lawes G, et al. Effect of Ru substitution for Ni on the superconductivity in MgCNi3-xRux. Phys. Rev. B.2004,70:094511
    [194]Park S H, Lee Y W, Giim J, et al. Specific heat study of (Mg0.85Zn0.15)CNi3 and MgCNi3. Physica C.2004,400(3-4):160-164
    [195]Uehara M, Amano T, Takano S, et al. Chemical pressure effect on the superconductor MgCNi3. Physica C.2006,440(1-2):6-9
    [196]Klimczuk T, Avdeev M, Jorgensen J D, et al. Effect of 11B substitution on the superconductivity of MgCNi3. Phys. Rev. B.2005,71:184512
    [197]周波,王汝菊,张友林,等. MgCNi3超导体在静水压下的弹性性质.高压物理学报.2003,17(2):157-160
    [198]张友林,李凤英,陈良辰.等. MgCNi3超导体高压原位结构.科学通报.2003,48(16):1746-1748
    [199]Kumara Ravhi S, Corneliusa A L, Shen Yong Rong, et al. Structural behavior of non-oxide perovskite superconductor MgCNi3 at pressures up to 32 GPa. Physica B. 2005,363:190-195
    [200]Joseph P Jiji Thomas and Singh Prabhakar P. A first-principles comparison of the electronic properties of MgCyNi3 and ZnCyNi3 alloys. J. Phys.:Condens. Matter. 2006,18:5333-5347
    [201]Joseph P Jiji Thomas and Singh Prabhakar P. Compositional disorder and its influence on the structural, electronic, and magnetic properties of MgC(Ni1-xCox)3 alloys from first principles. Phys. Rev. B.2005,72:214206
    [202]Vaitheeswaran G, Kanchana V, Svane A, et al. Elastic properties of MgCNi3-a superconducting perovskite. J. Phys.:Condens. Matter.2007,19:326214
    [203]Zhang W, Chen X R, Cai L C, et al. Elastic and electronic properties of perovskite type superconductor MgCNi3 under pressure. J. Phys.:Condens. Matter. 2008,20:325228
    [204]Shein I R, Bannikov V V, Ivanovskii A L. Structural, elastic and electronic properties of superconducting anti-perovskites MgCNi3, ZnCNi3 and CdCNi3 from first principles. Physica C.2008,468:1-6
    [205]Kaura Nupinderjeet, Mohanb Rajneesh, Gaurb N K. et al. The elastic and thermodynamic properties of antiperovskites:MCNi3. J. Alloys Compounds.2010,491: 284-290
    [206]Zimmer B I, Jeitschko W, Albering J H, et al. The rare earth transition metal phosphide oxides LnFePO, LnRuPO and LnCoPO with ZrCuSiAs type structure. J Alloys Compd.1995,229(2):238-242
    [207]Quebe P, Terbuchte L J, Jeitschko W. Quaternary rare earth transition metal arsenide oxides RTAsO(T=Fe, Ru, Co)with ZrCuSiAs type structure. J Alloys Compd. 2000,302(1-2):70-74
    [208]Kamihara Y, Hiramatsu H, Hirano M, et al. Iron-based layered superconductor: LaOFeP. J Am Chem Soc.2006,128(31):10012-10013
    [209]Watanabe T, Yanagi H, Kamiya T, et al. Nickel-based oxyphosphide superconductor with a layered crystal structure, LaNiOP. Inorg Chem.2007,46(19): 7719-7721
    [210]Ren Z A, Yang J, Lu W, et al. Superconductivity in the iron-based F-doped layered quaternary compound NdO1-xFxFeAs. EPL,2008,82:57002
    [211]Fang Ai-Hua, Huang F Q, Xie X M, et al. Low-temperature rapid synthesis and superconductivity of Fe-based oxypnictide superconductors. J. Am. Chem. Soc.2010, 132(10):3296-3297
    [212]Gao Z S, Wang L, Qi Y P, et al. Preparation of LaFeAsO0.9F0.1 wires by the powder-in-tube method. Supercond. Sci. Technol.2008,21:105024
    [213]Gao Z S, Wang L, Qi Y P, et al. Superconducting properties of granular SmFeAsO1-xFx wires with Tc= 52 K prepared by the powder-in-tube method. Supercond. Sci. Technol.2008,21:112001
    [214]Chen Y L, Cuil Y J, Yang Y, et al. Peak effect and superconducting properties of SmFeAsO0.8F0.2 wires. Supercond. Sci. Technol.2008,21:115014
    [215]Hidenori Hiramatsu, Takayoshi Katase, Toshio Kamiya, et al., Heteroepitaxial growth and optoelectronic properties of layered iron oxyarsenide, LaFeAsO. Appl. Phys. Letts.2008,93:162504
    [216]Kidszun M, Haindl S, Reich E, et al. Epitaxial LaFeAsO1-xFx thin films grown by pulsed laser deposition. Supercond. Sci. Technol.2010,23:022002
    [217]Choi Eun-Mi, Jung Soon-Gil, Lee Nam Hoon, et al. In situ fabrication of cobalt-doped SrFe2As2 thin films by using pulsed laser deposition with excimer laser. Appl. Phys. Letts.2009,95:062507
    [218]Lee S, Jiang J, Zhang Y. et al. Template engineering of Co-doped BaFe2As2 single-crystal thin films. Nature Materials.2010,9(5):397-402
    [219]Jia Y, Cheng P, Fang L, et al. Critical fields and anisotropy of NdFeAsO0.82F0.18 single crystals. Appl. Phys. Letts.2008,93:032503
    [220]Wang X F, Wu T, Wu G, et al. Anisotropy in the Electrical Resistivity and Susceptibility of Superconducting BaFe2As2 Single Crystals. Phys. Rev. Lett.2009, 102:117005
    [221]Song Yoo Jang, Ghim Jin Soo, Min Byeong Hun, et al. Synthesis, anisotropy, and superconducting properties of LiFeAs single crystal. Appl. Phys. Letts.2010,96: 212508
    [222]Zhang S B, Sun Y P, Zhu X D, et al. Crystal growth and superconductivity of FeSex, Supercond. Sci. Technol.2009,22:015020
    [223]Zhou S M, Li S, Wang P, et al. Confined growth of superconducting F-doped SmFeAsO nanocables using ZnO nanotubes. Supercond. Sci. Technol.2008,21: 125007
    [224]Chen G F, Fang Z, Wang N L, et al. Competing Orders and Spin-Density-Wave Instability in LaO1-xFxFeAs. Europhys. Lett.2008,83:27006
    [225]de la Cruz C, Huang Q, Lynn J W, et al. Magnetic Order versus superconductivity in the Iron-based layered La(O1-xFx)FeAs systems. Nature.2008, 453(7197):899-890
    [226]Si Q M and Abrahams Elihu. Strong Correlations and Magnetic Frustration in the High Tc Iron Pnictides. Phys. Rev. Letts.2008,101:076401
    [227]Yuan H Q, Singleton J, Balakirev F F. Nearly isotropic superconductivity in (Ba,K)Fe2As2. Nature.2009,457:565-568
    [228]Liu R H, Wu T, Wu G, et al. A large iron isotope effect in SmFeAsO1-xFx and Ba1-xKxFe2As2. Nature.2009,459:64-67
    [229]Hiroki Takahashi, Kazumi Igawa, Kazunobu Arii. Superconductivity at 43 K in an iron-based layered compound LaO1-xFxFeAs. Nature,2008,453:376-378
    [230]Patricia L Alireza, Y T Chris Ko, Jack Gillett, et al. Superconductivity up to 29 K in SrFe2As2 and BaFe2As2 at high pressures. J. Phys.:Condens. Matter.2009,21: 012208
    [231]Yoshikazu Mizuguchi, Fumiaki Tomioka, Shunsuke Tsuda, et al. Superconductivity at 27K in tetragonal FeSe under high pressure, Appl. Phys. Lett. 2008,93:152505
    [232]Sefat A S, Huq A, McGuire M A, et al. Superconductivity in LaFe1-xCoxAsO. Phys Rev B.2008,78(10):104505
    [233]Wang C, Jiang S, Tao Q, et al. Superconductivity in LaFeAs1-xPxO:effect of chemical pressure and bond covalency. Europhys. Letts.2009,86(4):47002
    [234]Leithe-Jasper A, Schnelle W, Geibel C, et al. Superconducting State in SrFe2-xCoxAs2 by Internal Doping of the Iron Arsenide Layers. Phys Rev Lett.2008, 101(20):207004
    [235]Sefat A S, Jin R Y, McGuire M A, et al. Superconductivity at 22 K in Co-doped BaFe2As2 crystals. Phys Rev Lett.2008,101(11):117004
    [236]Ren Z, Tao Q, Jiang S, et al. Superconductivity Induced by Phosphorus Doping and Its Coexistence with Ferromagnetism in EuFe2(Aso.7Po.3)2-Phys. Rev. Lett.2009, 102:137002
    [237]Fang M H, Pham H M, Qian B, et al. Superconductivity close to magnetic instability in Fe(Se1-xTex)0.82. Phys Rev B.2008,78(22):224503
    [238]Yeh K W, Huang T W, Huang Y L, et al. Tellurium substitution effect on superconductivity of the a-phase iron selenide. Europhys. Lett.2008,84(3):37002
    [239]Mizuguchi Y, Tomioka F, Tsuda S, et al. Superconductivity in S-substituted FeTe. Appl Phys Lett.2009,94(1):012503
    [240]Mizuguchi Y, Tomioka F, Tsuda S, et al. Substitution effects on FeSe superconductor. J. Phys. Soc. Japan.2009,78:074712
    [241]Garbarino G, Toulemonde P, Alvarez-Murga M, et al. Correlated pressure effects on the structure and superconductivity of LaFeAsO0.9F0.1, Phys. Rev. B.2008,78: 100507(R)
    [242]Martinelli A, Ferretti M, Palenzona A, et al. The bulk modulus of SmFeAs-O0.93F0.07. Physica C.2009,469:782-784
    [243]J(?)rgensen J E, Staun Olsen J, Gerward L. On the compressibility of BaFe2As2. Solid State Commun.2009,149:1161-1163
    [244]Shein I R and Ivanovskii A L. Elastic properties of quaternary oxyarsenide LaOFeAs and LaOFeP as basic phases for new 26-52K superconducting materials from first principles. Scripta Materialia.2008,59:1099-1102
    [245]Shein I R and Ivanovskii A L. Elastic properties and chemical bonding in ternary arsenide SrFe2As2 and quaternary oxyarsenide LaFeAsO-basic phases for new 38-55K superconductors from first principles. Physica C.2009,469:15-19
    [246]Wang Y L, Ding Y, Ni J. First-principles study of pressure effects on CaFe2As2 and BaFe2As2. Solid State Commun.2009,149:2125-2129
    [247]Jin C Q, Zhang Y L, Liu Z X, et al. Thermodynamic properties of MgCNi3 superconductor. Physica C.2003,388-389:561-562.
    [248]Bean C P. Magnetization of high-field superconductors. Rev. Mod. Phys.1964, 36:31-36
    [249]Cheng C and Zhao Y. Enhancement of critical current density of MgB2 by doping Ho2O3. Appl. Phys. Letts.2006,89:252501
    [250]Ma Y M, Tse J S, Cui T, et al. First-principles study of electron-phonon coupling in hole-and electron-doped diamonds in the virtual crystal approximation. Phys. Rev. B.2005,72:014306
    [251]De la Pena-Seaman O, de Coss R, Heid R, et al. First-principles study of phonons and superconductivity of Nb1-xMox within the virtual-crystal approximation. J. Phys. Cond. Matter.2007,19(47):476216
    [252]Singh D J. Electronic structure and doping in BaFe2As2 and LiFeAs:Density functional calculations. Phys. Rev. B.2008,78:094511
    [253]De la Pena-Seaman O, de Coss R, Heid R, et al. Effects of Al and C doping on the electronic structure and phonon renormalization in MgB2. Phys. Rev. B.2009,79: 134523
    [254]马荣,张家宏,杜锦丽,等.新超导体MgCNi3的虚晶掺杂研究.物理学报.2006,55(12):6580-6584
    [255]谢希德,陆栋.固体能带理论,上海:复旦大学出版社,1998.1-18
    [256]冯端,金国钧.凝聚态物理学(上卷).北京:高等教育出版社,2003.347-383
    [257]Martin Richard M. Electronic Structure-Basic Theory and Practical Methods. Cambridge:Cambridge University Press,2004
    [258]Hill R. The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. London A.1952,65:349-355
    [259]Anderson O L. A simplified method for calculating the Debye temperature from elastic constants. J Phys Chem Solids.1963,24(7):909-917
    [260]Liu K, Zhou X L, Chen X R, et al. Structural and elastic properties of AlB2 compound via first-principles calculations. Physica B.2007,388:213-218
    [261]Anderson P W. The resonating valence bond state in La2CuO4 and superconductivity. Science.1987,235(4793):1196-1198
    [262]Millis A J, Monien H and Pines D. Phenomenological model of nuclear relaxation in the normal state of YBa2Cu3O7. Phys. Rev. B,1990,42(1):167-178
    [263]Zhang S C. A unified theory based on SO(5) symmetry of superconductivity and anti-ferromagnetism. Science,1997,275(5303):1089-1096
    [264]Lanzara A, Bogdanov P V, Zhou X J, et al. Evidence for ubiquitous strong electron-phonon coupling in high temperature superconductors. Nature.2001,412 (6846):510-514
    [265]Meng J Q, Liu G D, Zhang W T, et al. Coexistence of Fermi arcs and Fermi pockets in a high-Tc copper oxide superconductor. Nature.2009,462:335-337
    [266]金钦汉,戴树珊,黄卡玛.微波化学,北京:科学出版社,1999
    [267]刘韩星.无机材料微波固相合成方法与原理.北京:科学出版社,2006
    [268]罗述东.微波加热技术在金属材料制备中的应用研究—微波烧结与焊接工艺:[博士后研究工作报告].长沙:中南大学,2008
    [269]Rybakov K I, Semenov V E, Egorov S V, et al. Microwave heating of conductive powder materials J. Appl. Phys.2006,99:023506
    [270]Tinga W R, Voss W A G. Microwave power engineering. New York:Academic Press,1968
    [271]Berteaud A J, Badot J C. High temperature microwave heating in refractory materials. J. Microwave Power.1976,11(4):116
    [272]Sutton W H. Microwave processing of ceramic materials. Ceram. Bull.,1989, 68(2):376
    [273]唐新文,易健宏,罗述东,等.微波烧结技术的进展及展望.粉末冶金材料科学与工程.2002,7(4):295-299
    [274]Wang H, Xu J Z, Zhu J J, et al. Preparation of CuO nano-particles by microwave irradiation. J. Cryst Growth.2002,244:88-92
    [275]Roy R, Agrawal D, Cheng J, et al. Full sintering of powder-metal bodies in a microwave field. Nature,1999,399 (17):668-669
    [276]Gedevanishvili S, Agrawal D, Roy R. Microwave combustion synthesis and sintering of intermetallics and Alloys. J. Mater. Sci. Letts.1999,18:665-667
    [277]Landry C C, Lockwood J and Barron A R. Synthesis of chalcopyrite semiconductors and their solid solutions by microwave irradiation, Chem. Mater.1995, 7:699-703
    [278]Baghurst D R, Chippindale A M and Mingos D M P. Microwave syntheses for superconducting ceramics. Nature.1988,332:311
    [279]Binner J and Dawery I. Microwave melt texturing of bulk YBCO superconductors Supercond. Sci. Technol.1998,11:1230-1234
    [280]Grossin D, Harnois C, Marinel S, et al. YBCO bulk superconductor prepared by top-seed floating zone under microwave heating. J. Euro. Ceram. Soc.2005,25: 2939-2945
    [281]Hohenberg P and Kohn W. Inhomogeneous Electron Gas. Phys. Rev. B.1964, 136:864-871
    [282]Kohn W and Sham L J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. A.1965,140:1133-1139
    [283]Ceperley C M and Alder B J. Ground State of the Electron Gas by a Statistic Method. Phys. Rev. Lett.1980,45:566-569
    [284]Perdew J P and Zunger A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B.1981,23:5048-5079
    [285]Perdew J P and Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B.1992,45:13244-13249
    [286]Perdew J P, Chevary J A, Vosko S H, et al. Atoms, molecules, solids, and surfaces:Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B.1992,46:6671-6676
    [287]Perdew J P, Burke K and Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett.1996,77:3865-3868
    [288]Louie S G, Chelikowsky J R, Cohen M L. Ionicity and the theory of Schottky barriers. Phys. Rev. B.1977,15:2154-2162
    [289]Hamann D R, Schluter M, Chiang C. Norm-Conserving Pseudopotentials. Phys. Rev. Lett.1979,43:1494-1497
    [290]Vanderbilt D. Soft self-consistent pseudopotentials in generalized eigenvalues formalism. Phys. Rev. B.1990,41:7892-7895
    [291]Kresse G and Joubert D. From ultrasoft pseudopotentials to projector augumented-wave method. Phys. Rev. B.1999,59:1758-1775
    [292]Segall M D, Lindan P J D, Probert M J, et al. First-principles simulation:ideas, illustrations and the CASTEP code. J Phys.:Condens Matter.2002,14(11):2717-2744
    [293]中国金属学会,中国有色金属学会编.金属材料物理性能手册(第一册).北京:冶金工业出版社,1987
    [294]方俊鑫,陆栋.固体物理学(上册).上海:上海科学技术出版社,1980.87-95
    [295]M.玻恩,黄昆.晶格动力学理论.北京:北京大学出版社,1989
    [296]Liu Z K, Schlom D G, Li Q, et al. Thermodynamics of the Mg-B system: Implications for the deposition of MgB2 thin films. Appl. Phys. Lett.2001,78: 3678-3680
    [297]Zhang Y, Xu X, Zhao Y, et al. Significant improvement of Jc in MgB2 bulk superconductor using ball-milled high-purity crystalline boron. Supercond. Sci. Technol.2008,21:115004
    [298]门高夫. Sr2FeMoO6及其复合体系的制备和电磁特性研究:[硕士学位论文].长沙:中南大学,2007
    [299]Payne M C, Teter M P, and Allan D C. Iterative minimization techniques for ab initio total-energy calculations:molecular dynamics and conjugate gradients. Rev. Mod. Phys.1992,64:1045-1050
    [300]Ceperley D M, Alder B J. Ground State of the Electron Gas by a Stochastic Method. Phys. Rev. Lett.1980,45:566-569.
    [301]Perdew J P, Zunger A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B.1981,23:5048-5079
    [302]Vanderblilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B.1990,41:7892-7895
    [303]Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations. Phys. Rev. B.1976,13:5188-5192
    [304]Fisher T H, Almlof J. General methods for geometry and wave-function optimization. J. Phys. Chem.1992,96:9768-9774
    [305]郑蕾,蒋成保,尚家香,等.立方结构Fe基磁性材料弹性系数第一性原理计算.物理学报.2007,56(03):1532-1537
    [306]Hao X F, Xu Y H, Wu Z J, et al. Low-compressibility and hard materials ReB2 and WB2:Prediction from first-principles study. Phys. Rev. B.2006,74:224112
    [307]Wu S Q, Hou Z F, Zhu Z Z. Elastic properties and electronic structures of CdCNi3:A comparative study with MgCNi3. Solid State Sci.2009,11(1):251-258
    [308]Kazakov S M, Puzniak R, Rogacki K, et al. Carbon substitution in MgB2 single crystals:Structural and superconducting properties. Phys. Rev. B.2005,71:024533
    [309]Abd-Shukor R. Calculated elastic properties of MgB2 at the superconducting transition. Solid State Commun.2002,122:503-505880±30K
    [310]Cooley L D, Song X, Jiang J, et al. Core pinning by intragranular nanoprecipitates in polycrystalline MgCNi3. Phys. Rev. B.2002,65:214518
    [311]Rogachev A and Bezryadin A. Superconducting properties of polycrystalline Nb nanowires templated by carbon nanotubes. Appl. Phys. Letts.2003,83:512-514
    [312]Geng H X, Che G C, Huang W W, et al. Structural, morphological, C content and Tc changes of the NbC superconductor prepared by Nb powder and carbon nanotubes. Supercond. Sci. Technol.2007,20:211-214
    [313]Xia Q L, Yi J H, Huang J W, et al. Hybrid microwave synthesis of MgCNi3 superconductor. Supercond. Sci. Technol.2006,19:1282-1284
    [314]Artini C, Costa G A, Magnone E, et al. Synthesis and characterization of superconducting MgCNi3. Int. J. Mod. Phys. B.2003,17:819-823
    [315]Mollah S. The physics of the non-oxide perovskite superconductor MgCNi3. J. Phys.:Conden. Matter.2004,16(43):R1237-R1276
    [316]Wei B Q, Vajtai R and Ajayan P M. Reliability and current carrying capacity of carbon nanotubes. Appl. Phys. Letts.2001,79:1172-1174
    [317]Kim P, Shi L, Majumdar A, et al. Thermal Transport Measurements of Individual Multiwalled Nanotubes. Phys. Rev. Letts.2001,87:215502
    [318]徐刚,戴希,方忠.第一原理计算在铁(镍)基超导体中的应用.物理2009,38(9):651-659
    [319]Wang G T, Qian Y M, Xu G, et al. Gutzwiller Density Functional Studies of FeAs-Based Superconductors:Structure Optimization and Evidence for a Three-Dimensional Fermi Surface. Phys. Rev. Lett.2010,104:047002
    [320]Mu G, Zhu X Y, Fang L, et al. Nodal Gap in Fe-Based Layered Superconductor LaO0.9F0.1-δFeAs Probed by Specific Heat Measurements. Chin. Phys. Lett.2008,25(6): 2221-2224
    [321]Rotter M, Pangerl M, Tegel M, et al. Superconductivity and Crystal Structures of (Ba1-xKx)Fe2As2 (x=0-1). Angew. Chem. Int. Ed.2008,47:7949-7952
    [322]Rotter M, Tegel M, Schellenberg I, et al. Competition of magnetism and superconductivity in underdoped (Ba1-xKx)Fe2As2. New J. Physics.2009,11:025014
    [323]Dong J K, Ding L, Wang H, et al. Thermodynamic properties of Ba1-xKxFe2As2 and Ca1-xNaxFe2As2. New J. Physics.2008,10:123031

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700