Ti、C、N在Fe基中合金化效应的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁是地球上含量最多的元素之一,但纯铁因强度、硬度、延展性较差而通常无法直接使用于工程中。然而,在铁中添加微量的合金元素就会对其力学性能和物理、化学性能产生很大的影响。因此各种类的合金钢被广泛的使用。由于TiC和TiN具有高硬度、低摩擦系数和化学稳定性好等优良性能,目前关于Ti,C,N合金元素对Fe基体性能的影响已经被广泛的研究。但Ti,C,N在Fe基中的微观强化机理和微观迁移机理尚不清楚,因此本文从原子、分子层次上研究了Ti,C,N在Fe基中的微观作用机理。
     首先,本文基于第一性原理赝势平面波方法研究了合金元素Ti,C,N对α-Fe基电子结构及键合性质的影响,计算了含Ti,C,N的Fe基固溶体的总能量、结合能和力学性能,分析了态密度、电荷聚居数、交叠聚居数和电荷密度,从理论上解释了在Fe基中固溶Ti,C,N后其性能改善的原因。结果表明:随着Fe基固溶体中Ti(0-12.5at%),C(0-11.11at%),N(0-11.11at%)含量增加,结合能略有增加;Ti,C,N的固溶使各Fe基固溶体在费米能级处强烈成键,结合能力增强,并且在费米能级附近出现赝能隙,表明固溶体中金属键与共价键共存。随着Ti,C,N含量的增加,C,N分别与Ti,Fe之间的共价键结合强度加强,部分C,N原子会与Ti原子结合形成TiC, TiN颗粒,起到沉积相颗粒强韧化作用。
     其次,本文通过采用CASTEP模块的LST/QST搜索过渡态方法,分别以Fe16(2×2×2)和Fe24(2×2×3)超胞作为Fe基体,计算了C和N原子在纯Fe和固溶Ti后Fe基中的迁移能垒。结果表明:当N和C原子占位相同时,N原子的迁移能垒小于C原子的迁移能垒。C,N原子与Ti原子间距越小,迁移能垒越大;C,N原子与Ti间距越大,迁移能垒越小。当Ti含量较小时,C,N原子的迁移能垒减小,当Ti含量较大时,C,N原子的迁移能垒增大。
     再次,本文通过搭建含有Ti,C,N合金元素的Fe(100)表面,并对其进行结构优化,系统研究了Ti,C,N在Fe(100)表面中的迁移情况,并通过分析电子结构阐述了Ti,C,N合金元素对Fe(100)表面的强化机理。结果表明,当Ti,C或者N原子单独向Fe(100)表面迁移时,其存在于表面第一层时结构稳定性最好;当Ti和C同时向Fe(100)表面迁移时,Ti和C同时占据第一层时结构稳定性最好;当Ti和N同时向Fe(100)表面迁移时,Ti和N同时占据第一层时结构稳定性最好。
     最后,本文搭建了具有4层Fe和4层TiC(N)的界面模型Fe/TiC和Fe/TiN,通过计算界面模型的总能量和结合能,分析态密度、交叠聚居数和电荷密度,从理论研究了Fe/TiC和Fe/TiN界面之间的结合强度、电子结构和键合作用。计算结果表明:在Fe/TiC和Fe/TiN界面中当Fe原子与C或者N原子直接结合时,Fe与C,N原子形成强的共价键;当Fe原子与Ti原子直接结合时,形成金属键,即Fe/TiC和Fe/TiN界面的结合强度主要由界面中的Fe-C和Fe-N共价键贡献。
Iron is one of the most abundant elements on earth, but the pure iron can not be directly used in engineering for its low strength, low hardness and low scalability. Adding small amounts elements will have a huge impact on mechanical, chemical and physical properties of iron. So a variety of alloy steels are widely used. Currently, TiC and TiN have characteristic of high hardness, low friction coefficient, and good chemical stability, etc. So, the effect of Ti, C and N in bulk Fe have been extensively researched. But its microscopic strengthening mechanisms and microcosmic migration principle are unclear. So, the studies of microscopic mechanism from its atomic and molecule level are studied particularly important. The results are summarized as follows:
     First, the electronic structures and bond characters of bulk α-Fe with Ti, C, N additions were studied using the first-principle pseudopotential plane-wave method. The total energy, cohesive energy and mechanical property were calculated, the mulliken population, overlap population, density of states and charge density were also analyzed, which could give a microscopic reason why the mechanical property was improved after the infiltration of Ti, C, N in bulk Fe. The calculated results show that as the alloying elements Ti(0-12.5at%), C(0-11.11at%), N(0-11.11at%) content increasing, the cohesive energy of alloy increases slowly and the structures keep stable. The addition of Ti, C, N in the alloys enhanced reciprocal hybridization in Fermi energy level, the binding ability of Ti, C, N, Fe becomes stronger. The pseudo-gap near the Fermi energy level means coexistence of covalent and metallic bonds in alloy. With the content of alloying elements increasing, the covalent bonding between C, N and Ti, Fe becomes stronger, part of C and N atoms will binding with Ti atoms and form TiC, TiN particle, the dispersion strengthening will be effected.
     Second, in this paper, the energy barrier for C and N atoms migration in pure Fe and bulk Fe with Ti atom have been studied using the LST/QST method of CASTEP module, when the Fei6(2x2x2) and Fe24(2x2x3) super cell models were used as bulk Fe, respectively. The results show that when the N and C atoms occupy the same position, the energy barriers for N atom migration in bulk Fe are less than C atom. When the distance of C atom and Ti atom or N atom and Ti atom is shorter, the energy barriers for migration is greater; on the contrary, When the distance of C atom and Ti atom or N atom and Ti atom is greater, the energy barriers for migration is less. When the content of Ti is low in bulk Fe, the energy barriers for C, N atoms migration in bulk Fe are decreased; Otherwise, when the content of Ti is large, the energy barriers for C, N atoms migration in bulk Fe are increased.
     Third, the migration of the Fe(100) planes with Ti, C and N also have been systematically studied through optimizing the crystal structures of the Fe(100) planes with Ti, C and N in this paper. The strengthening mechanisms of Fe(100) planes with Ti, C and N were analyzed from the electronic structures. The structure of Ti, C or N alone occupied first player is best stability. The structure of two Ti and C simultaneously occupied the first player is best stability. The structure of Ti and N simultaneously occupied the first player is best stability.
     Last, the interface models of Fe/TiC and Fe/TiN which respectively contents four layers of Fe and TiC(N) were also builded in this paper. The total energy and cohesive energy of the interface models were calculated, the density of states, overlap population and charge density were also analyzed, which can theoretically explained the adhesion, electronic structure, and bond characters of Fe/TiC and Fe/TiN interfaces. The calculated results show that Fe atoms form strong covalent bond with the C(N) atoms and form metallic bond with Ti atoms in the interfaces. So the strong interface adhesion of Fe/TiC and Fe/TiN interfaces are contributed by the strong covalent bond of Fe-C and Fe-N.
引文
[1]徐恒钧.材料科学基础[M].北京:北京工业大学出版社,2003:123-128,169-170,364-365.
    [2]张曙,谭惠民.钛合金加工的现状与展望[J].金属加工,2011,17,2-5.
    [3]Ye X. S., Lu X. G., Li C. H., et al. Preparation of TieFe based hydrogen storage alloy by SOM method[J]. International journal of hydrogen energy,2011,36:4573-4579.
    [4]Katarzyna N. L., Krzysztof Z., Micha K. Phase structure of the Fe-Ti layers produced by the IPD method[J]. Vacuum,2005,78:423-426.
    [5]Louzguine D. V., Kato H., Inoue A. High strength and ductile binary Ti-Fe composite alloy[J]. Journal of Alloys and Compounds,2004,384:L1-L3.
    [6]Yamane T., Hisayuki K., Nakao R., et al. Partial Fe-Ti Alloy Phase Diagrams at High Pressure[J]. Metallurgical and Materials Transactions A.1999,30A:3009-3024.
    [7]Jonsson S. Assessment of the Fe-Ti System[J]. Metallurgical and Materials Transactions B,1998,29:361-370.
    [8]Dumitrescu L. F. S., Hillert M., Saunders N. Comparison of Fe-Ti Assessments[J]. Journal of Phase Equilibria,1998,19:441-448.
    [9]Dumitrescu F. S., Hillertm M. Reassessmentof the Solubility of TiC and TiN in Fe[J]. Iron Steel Inst Jpn,1999,29:84-90.
    [10]Raghavan V. C-Fe-Ti (Carbon-Iron-Titanium)[J]. Journal of Phase Equilibria,2003,24: 62-66.
    [11]Bijelovic S., Rasander M., Wilhelmsson O., et al. Wear-resistant magnetic thin film material based on a Til-xFexCl-y nanocomposite alloy [J]. Physical Review B,2010, 81:014405-(1-9).
    [12]Wang H., Huang J., Zhu J., et al. Microstructure of cermet coating prepared by plasma spraying of Fe-Ti-C powder using sucrose as carbonaceous precursor. Journal of Alloys and Compounds[J].2009,472:L1-L5.
    [13]Musil J., Polakova H., Suna J., et al. Effect of ion bombardment on properties of hard reactively sputteredTi(Fe)Nx films[J]. Surface and Coatings Technology,2004, 177-178:289-298.
    [14]Wang J., Wang Y. S., Ding Y. C. Production of (Ti, V) C reinforced Fe matrix composites[J]. Materials Science and Engineering A,2007,454-455:75-79.
    [15]Hirvonen J. P., Nastasi M., Jervis T. R., et al. Ion beam processing, microstructure and tribology of Fe-Ti-C layers[J]. Materials Chemistry and Physics,1996,46:123-131.
    [16]Wang J., Wang Y. S., Ding Y. C. Reaction synthesis of Fe-(Ti, V)C composites[J]. Journal of Materials Processing Technology,2008,197:54-58.
    [17]Jonsson S. Assessment of the Fe-Ti-C System, Calculation of the Fe-Ti-N System, and Prediction of the Solubility Limit of Ti(C, N) in Liquid Fe[J]. Metallurgical and Materials Transactions B,1996,29B:371-384.
    [18]Liang H., Ma F. R., Wang X. Y., et al. Structure and corrosion behavior of (Ti, Fe, C) films co-deposited by three metal vapor vacuum arc beams[J]. Surface and Coatings Technology,2000,128-129:209-212.
    [19]H.K.Kim, Jung W.S., B.J.Lee. Modified embedded-atom method interatomic potentials for the Fe-Ti-C and Fe-Ti-N ternary systems[J]. Acta Materialia,2009,57: 3140-3147.
    [20]Zhan Q., Yu R., He L.L., et al. Microstructural characterization of Fe-N thin films[J]. Thin Solid Films,2002,411:225-228.
    [21]Zhang M. X., Hu Q. D., Huang B., et al. Study of formation behavior of TiC in the Fe-Ti-C system during combustion synthesis[J]. International Journal of Refractory Metals and Hard Materials,2011,29:359-360.
    [22]刘燕萍,徐晋勇,隗晓云等.等离子辉光TiN复合渗镀层结构与性能的研究[J].材料热处理学报,2005,26:109-112.
    [23]隗晓云,王建中,刘燕萍等.等离子合成TiN渗镀层组织结构及耐腐蚀性研究[J].腐蚀科学与防护技术,2006,18:12-15.
    [24]刘燕萍,邢飞,谷海霞.等离子复合渗镀陶瓷层腐蚀磨损性能的研究[J].中国表面工程,2007,20:19-26.
    [25]高原,王成磊,刘燕萍等.双层辉光等离子制备TiN渗镀层的耐蚀性能[J].材料热处理学报,2011,32:143-147.
    [26]Liu Y. P., Xue J. X., Han P. D. Electrochemical Corrosion Behaviors Using Double Glow Forming TiN Multi-permeation Layer[J]. Materials Science Forum,2010, 654-656:1968-1971.
    [27]刘燕萍,徐晋勇,高原等.辉光等离子体形成TiN/Ti复合渗镀层的研究[J].材料导报,2005,19:112-114.
    [28]Liu Y. P., Xu J. Y., Kui X. Y., et al. Ceramic alloying with Ti-N deposition and diffusion ofmulti-layers by plasma surface alloying technique[J]. Trans. Nonferrous Met. Soc. China,2005,15:415-419.
    [29]Cardinal S., Malchere A., Gamier V., et al. Microstructure and mechanical properties of TiC-iN based cermets for tools application[J]. Int. Journal of Refractory Metals & Hard Materials,2009,27:521-527.
    [30]贾庆莲,周兰英,周焕雷.TiN涂层高速钢刀具耐热性的研究[J].工具技术,2003,37:23-25.
    [31]陈文琳,刘宁,晁晟等.超细晶粒Ti(C,N)基金属陶瓷刀具切削性能[J].材料热处理学报,2008,29:80-84.
    [32]肖寿仁,邓晓春.刀具涂层材料的现状与发展趋势[J].煤矿机械,2006,27:4-5.
    [33]Dudiy S. V., Lundqvist B. I. Wetting of TiC and TiN by metals[J]. Physical Review B, 2004,29:125421-(1-16).
    [34]Liu N., Yin W. H., Zhu L. W. Effect of TiC/TiN powder size on microstructure and properties of Ti(C, N)-based cermets[J]. Materials Science and Engineering A,2007, 445-446:707-716.
    [35]Yu Z. M., Inagawa K., Jin Z. J. Tribological properties of TiN and TIC films in vacuum at high temperature[J]. Thin Solid Films,1995,264:52-58.
    [36]Music D., Riley D. P., Schneider J. M. Energetics of point defects in TiC[J]. Journal of the European Ceramic Society,2009,29:773-777.
    [37]Maiya P. S., Erck R. A., Moon B. M. Failure and corrosion resistance of TiN and TiC coatings deposited on graphite by chemical vapor deposition[J]. Surface and Coatings Technology,1998,102:218-222.
    [38]Yang Y., Lu H., Yu C, et al. First-principles calculations of mechanical properties of TiC and TiN[J]. Journal of Alloys and Compounds,2009,485:542-547.
    [39]Yamasaki T., Zheng Y. J., Ogino Y., et al. Formation of metal-TiN/TiC nanocomposite powders by mechanical alloying and their consolidation[J]. Materials Science and Engineering A,2003,350:168-172.
    [40]Ahuja R., Eriksson O. Structural, elastic, and high-pressure properties of cubic TiC, TiN, and TiO[J]. Physical Review B,1996,53:3072-3079.
    [41]张铭,申江,何家文.TiN晶体弹性常数的第一性原理计算[J].兵器材料科学与工程,2000,23:8-12.
    [42]刘迎娣,汪家升,汪三五.TiN材料电子结构的模拟计算[J].中国科技信息,2008, 13:40-41.
    [43]Fang L. H., Wang L., Gong J. H., et al First-principles study of bulk and (001) surface of TiC[J]. Trans. Nonferrous Met. Soc. China,2010,20:857-862.
    [44]Wang L., Fang L. H., Gong. J. H. First-principles study of TiC(110) surface[J]. Trans. Nonferrous Met. Soc. China,2012,22:170-174.
    [45]Dudiy S.V. Effects of Comagnetism on Co/TiC(001) interface adhesion:a first-principles study[J]. Surface Science,2002,497:171-182.
    [46]Lee J. H., Shishidou T., Zhao Y. J., et al. Strong interface adhesion in Fe/TiC[J]. Philosophical Magazine,2005,85:3683-3697.
    [47]Arya A., Emily A. Carter Structure, bonding, and adhesion at the ZrC(100)/Fe(110) interface from first principles[J]. Surface Science,2004,560:103-120.
    [48]Arya A., Emily C. A. Structure, bonding, and adhesion at the TiC(100)/Fe(110) interface from first principles[J]. Journal of Chemical Physics,2003,118:8982-8996.
    [49]古向阳.Cr、V在Ti-Al系合金中合金化效应及扩散理论研究[D].太原:太原理工大学,2011.
    [50]刘林飞,周上祺,黄玉堂等.C、N、O在a-Fe中扩散激活能的计算[J].材料导报,2008,22:120-122.
    [51]Zhu Y. A., Dai Y. C, Chen D., et al. First-principles study of carbon diffusion in bulk nickel during the growth of fishbone-type carbon nanofibers[J]. Carbon,45:21-27.
    [52]Sorescu D. C. First principles calculations of the adsorption and diffusion of hydrogen on Fe(100) surface and in the bulk[J]. Catalysis Today,2005,105:44-65.
    [53]周惦武,彭平,胡艳军等.Mg-Ce化合物相结构稳定性的赝势平面波方法研究[J],稀有金属材料与工程,2006,35:871-875.
    [54]张彩丽,李晋敏,韩培德等.Cr对Ni3Al合金化效应的赝势平面波方法[J].稀有金属材料与工程,2008,37:1705-1709.
    [55]黄志伟,赵宇宏,侯华等.V掺杂Ni3A1点缺陷结构及合金化效应的第一性原理研究[J].稀有金属材料与工程,2011,12:2136-2141.
    [56]赵宇宏,黄志伟,李爱红等.Nb在Ni3Al中取代行为及合金化效应的第一性原理研究[J].物理学报,2011,047103-(1-7).
    [57]夏伶勤.430不琇钢表面氧化皮组成与界面结合强度的研究[D].太原:太原理工大学,2010.
    [58]Sanyala S., Waghmareb U. V., Hanlonc T., et al. Ni/boride interfaces and environmental embrittlement in Ni-based superalloys:A first-principles study[J]. Materials Science and Engineering A,2011,530:373-377.
    [59]Han Y. F., Dai Y. B., Wang J., et al. First-principles calculations on A1/A1B2 interfaces[J]. Applied Surface Science,2011,257:7831-7836.
    [60]王笑天.金属材料学[M].北京:机械工业出版社,1987,8.
    [61]Wu Z. J., Zhao E. J., Xiang H. P., et al. Meng J. Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles[J]. Physical Review B, 2007,76:054115-(1-15).
    [62]Umemoto M., Liu Z. G., Masuyama K., et al. Influence of alloy additions on production and propreties of bulk cementite[J]. Scripta Mater,2001,45:391-397.
    [63]Wang J., Wang Y. In-situ production of Fe-TiC composite[J]. Materials Letters,2007, 61:4393-4395.
    [64]Peng D. L., Sumiyama k., Suzuki K. Effect of heat treatment on structure and magnetic properties of the Fe-N and Fe-Ti-N alloy films[J]. Journal of Alloys and Compounds, 1997,259:1-6.
    [65]Gorbachev I. I., Popov V. V., Analysis of the solubility of carbides, nitrides, and carbonitrides in steels using methods of computer thermodynamics:III. Solubility of carbides, nitrides, and carbonitrides in the Fe-Ti-C, Fe-Ti-N, and Fe-Ti-C-N systems [J]. The Physics of Metals and Metallography,2009,108:484-495.
    [66]Clark S. J., Segall M. D., Pockard C. J., et al. First principles methods using CASTEP[J]. Z. fkrist,2005,220:567-570.
    [67]Segall M. D., Lindan P. J. D., Prober M. J., et al. First-principles simulation:ideas, illustrations and the CASTEP code[J]. J. Phys.:Condens. Matter,2002,14:2717-2744.
    [68]Chamati H., Papanicolaou N. I., Mishin Y., et al. Embedded-atom potential for Fe and its application to self-diffusion on Fe(100)[J]. Surface Science,2006,600:1793-1804.
    [69]郑蕾,蒋成保,尚家香等.立方结构Fe基磁性材料弹性系数第一性原理计算[J].物理学报,2007,56:1532-1537.
    [70]Wang Y., Curtarolo S., Jiang C, et al. Ab initio lattice stability in comparison with CALPHAD lattice stability[J]. Calphad,2004,28:79-90.
    [71]Zotov N., Ludwig A. First-principles calculations of the elastic constants of FeePt alloys[J]. Intermetallics,2008,16:113-118.
    [72]Chen Y., Shang J. X., Zhang Y. Effects of alloying element Ti on a-Nb5Si3 and Nb3Al from first principles[J]. J. Phys:Condens Matter,2007,19:016215(8pp)
    [73]Hu Q. M, Yang R., Xu D. S., et al. Energetics and electronic structure of grain boundaries and surfaces of B-and H-doped Ni3Al[J]. Phys. Rev. B,2003, 054102-(1-9).
    [74]尚家香,赵栋梁,王崇愚.Ti在bccFe晶界中的作用[J].金属学报,2001,37:893-896.
    [75]尚家香,喻显杨.3d过渡金属在NiAl中的占位及对键合性质的影响[J].物理学报,2008,57:2380-2385.
    [76]尚家香,于谭波.NiAl和Cr材料中H原子间隙的第一性原理计算[J].物理学报,2009,58:1179-1184.
    [77]陶敏龙,谭晓超.碳吸附于Fe(100)表面的第一性原理研究[J].原子与分子物理学报,2009,26:349-356.
    [78]Sorescu D. C, Thompson D. L., Hurley M. M., et al. First-principles calculations of the adsorption, diffusion, and dissociation of a CO molecule on the Fe(100) surface[J],2002, 66:035416-(1-13).
    [79]Han Y.F., Dai Y.B., Wang J., Shu D., et al First-principles calculations on A1/A1B2 interfaces [J]. Applied Surface Science,2011,257:7831-7836.
    [80]Aravindh A. S., Jaya M. S., Valsakumar M. C, et al. First principles studies of Fe/Co superlattices and multilayers with bcc (001) and (110) orientations[J]. Superlattices and Microstructures,2011.
    [81]Ravan A. B., Shokri A. A., Yazdani A. Spin-dependent tunneling characteristics in Fe/MgO/Fe trilayers:First-principles calculations[J]. Solid State Communications, 2010,150:214-218.
    [82]Gong X. F., Yang G. X., Fu Y. H., et al. First-principles study of Ni/Ni3Al interface strengthening by alloying elements[J]. Computational Materials Science,2009,47: 320-325.
    [83]Marri I., Ossicini S. Oxygen vacancy effects on the Schottky barrier height at the Au/TiO2(110) interface:A first principle study[J]. Solid State Communications,2008, 147:205-207.
    [84]Broqvist P., Binder J. F., Pasquarello A. First principles study of electronic and structural properties of the Ge/GeO2 interface[J]. Physica B,2011.
    [85]Liu C. H., Li W. Z., Li H. D. Structure and hardness enhancement of Fe/Tic multilayered films[J]. Physics Research B,1995,95:323-326.
    [86]Jones T. E., Sauer M. A., Eberhart M. E. First-principles study of the mode-1 fracture of Fe-TiX interfaces (X=C, N)[J]. Physical Review B,2008,78:092104-(1-4).
    [87]Li Y. F., Gao Y. M., Xiao B., et al. Theoretical calculations on the adhesion, stability, electronic structure, and bonding of Fe/WC interface[J]. Applied Surface Science,2011, 257:5671-5678.
    [88]Zhou Y. C, Wang X. H., Sun Z. M., et al. Electronic and structural properties of the layered ternary carbide Ti3AlC2[J]. J. Mater. Chem,2001,2335-2339.
    [89]Hasegawa M., Yagi T. Systematic study of formation and crystal structure of 3d-transition metal nitrides synthesized in a supercritical nitrogen fluid under 10 GPa and 1800K using diamond anvil cell and YAG laser heating[J]. Journal of Alloys and Compounds,2005,403:131-142.
    [90]Nakanishi R., Sueoka K., Shia S., et al. First principles calculation of stable structure and adhesive strength of plated Ni/Fe(100) or Cu/Fe(100) interfaces[J]. Trans. Nonferrous Met. Soc. China,2009,19:988-991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700