机械合金化制备Fe-Al和Fe-Si-Al合金的工艺和微观结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Fe基纳米晶磁性材料具有优异的软磁性能,是一种极具开发潜力的金属功能材料。机械合金化技术有望成为制备纳米晶Fe基磁性材料的有效途径。本文主要对制备Fe-6.5wt%Si合金微粉、制备FeAl合金微粉和制备FeSiAl合金微粉的工艺和微观结构进行了研究。通过X射线衍射(XRD),扫描电子显微镜(SEM),X射线能谱分析(EDS)和差热分
     析(DTA)等多种测试手段,详细研究了振动球磨制备Fe-6.5wt%Si合金微粉的影响因素,研究了不同球磨条件下产物的结构、形貌和相变;详细研究了纳米晶Fe-Al合金薄膜和纳米晶Fe-Si-Al合金薄膜在高能球磨条件下不同球磨时间产物的结构、组织、形貌和元素分布变化情况。研究表明:
     制备Fe-wt6.5%Si合金微粉,延长球磨时间,增加球料比和减小进料粒度,都可以提高出粉率。Fe-Si(Si wt%=6.5)合金在氩气气氛保护下在振动球磨过程中物相较为稳定,球磨产物为具有亚微米结构的过饱和固溶体。本论文的最佳实验条件为:球磨时间为12h,球料比为10/1,进料粒度为~1mm。
     Fe_((100-x))Al_x(x=4, 8, 12wt%)混合粉末,球磨20h可以生成具有bcc结构的纳米晶α-Fe (Al)固溶体,颗粒粒径约为1~30μm。粉末组织包含有纳米级的亚结构,形成具有典型层状结构的复合粉末,也形成了具有Fe核的包覆型粉末;继续球磨,合金的粉末和晶粒不断细化,各元素成分分布逐渐均匀化,球磨30h后的晶格畸变达到0.54%;在全成分范围内,Fe-Al系机械合金化无非晶相生成。本论文实验条件下,Al含量越高,粉末粘结得越厉害。
     (FeSi)_((100-x))Al_x(x=15,20,25at%)混合粉末,球磨10h可以生成具有bcc结构的纳米晶α-Fe (Al,Si)固溶体,颗粒粒径约为1~20μm。粉末组织包含有纳米级的亚结构;继续球磨,合金的粉末和晶粒不断细化,球磨15h后,晶粒度可达30nm。(FeSi)_((100-x))Al_x(x=15, 20,25at%)混合粉末在高能球磨过程中,形成具有典型层状结构的复合粉末包覆薄膜,包覆层各种元素组分分布均匀;随着球磨的继续进行,颗粒表面越来越圆润,颗粒越来越接近球形。在合金化过程中没有非晶相的生成。
Fe based nanocrystalline is a kind of attractive functional material, owing to excellent soft magnetic properties. Mechanical alloying (MA) is expected to produce Fe based nanocrystalline with high performance. The mechanical alloying process and microstructure of Fe-6.5wt%Si alloy powder,Fe-Al alloy powder and FeSiAl alloy powder are studied in this paper.
     The phases, microstructures, morphologies, cross-sections of mechanical alloying powders were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy spectrometer (EDS) analysisrespectively. The main results are as follows:
     Prolonging milling time, increasing CR and decreasing initial particle size can improve producing Fe-wt6.5%Si alloy powder efficiency. Fe-Si alloy has a stable composition, uperstaturated solid solution with the sub-micron structure, during vibrate ball milling in argon. he optimum method in this paper is milling time for 12h,CR for 10/1 and original partical size for~1mm.
     Nanocrystallineα-Fe (Al) solid solution has created after Fe_((100-x))Al_x(x=4,8,12wt%)mixture powder ball milling for 20h, with the structure of b.c.c , particle size from 1μm to 30μm and nanocrystalline sub-micron structure . Two kinds of Fe-Al powders are obtained in the process, one is a composite powder with a typical laminar structure, and the other is a powder with iron as the inner core.With the more time of ball milling, alloy partical size and grain size becames smaller and smaller and two kind elements of Fe and Al distribute well-proportioned gradually.After ball milling for 30h the distortion of lattice is up to 0.54%. No amorphous phase forms during the mechanical alloying process.Under condition of this paper the more content of Al, the more felt is.
     Nanocrystallineα-Fe (Si,Al) solid solution has created after(FeSi)_((100-x))Al_x(x=15,20, 25at%) mixture powder ball milling for 10h, with the structure of b.c.c , particle size from 1μm to 20μm and nanocrystalline sub-micron structure . After ball milling for 15h grain size is up to 30nm. Mixture powder is a composite powder with a typical laminar structure.With the more time of ball milling, alloy partical size and grain size became smaller and smaller , every element distribute well-proportioned gradually and the surface of particle becomes smooth ,the shape of particle becomes spheric shape. No amorphous phase forms during the mechanical alloying process.
引文
[1]都有为.磁性材料进展[J].物理,2000,9(6):323~332.
    [2]王新林.非晶和纳米晶软磁合金从研究到产业化(一)[J].金属功能材料,1996,3(5):161~169.
    [3]Y.Yoshizawa,S.Oguma,K.Yamanchi. New Fe-based soft magnetic alloys composed of uitrafine grain structure [J].Appl.Phys,1988,64(10):6044~6047
    [4] Y.Yoshizawa,K.Yamanchi,T.Yamane,H.Sugihara.Common mode choke cores using the new Fe-based alloys composed of ultrafine grain structure[J].Appl.Phys,1988,64(10):6047~6049.
    [5]都有为.纳米磁性材料及其应用[J].材料导报,2001,15(7):6~8.
    [6]吴承建,陈国良,强文江.金属材料学[M].北京:冶金工业出版社,2000.
    [7]王新林,孙桂琴.金属功能材料发展概况[J].金属功能材料,1999,6(4):145~155.
    [8]M.ManivelRaja , K.Chattopadhyay , B.Majumdar et al.Structure and soft magnetic properties of Finement alloys [J]. Alloys and Compounds,2000.297:199~210.
    [9]杨国斌.超微晶软磁合金的磁性和结构[J].物理,1994,24(2):65~70.
    [10]王新林.非晶和纳米晶软磁合金从研究到产业化(二)[J].金属功能材料,1996,3(6):205~210.
    [11]董学智.高技术磁性材料的现状与展望[J].金属功能材料,1996,3(4):121~129.
    [12]郭可信.金相学史话(4):合金钢的早期发展史.材料科学与工程,2001,19(3):2~9.
    [13]K.I.Arai,K.Ohmori,H.miura.N.Tsuya.Effect of order-disorder transition on magnetic properties of high silicon-iron single crystals [J] .Appl.Phys,1985,57(2):460~464.
    [14]M.Namikanwa,H.Ninomiya,Y.Tanaka,Y.Takada.Magnetic properties of 6.5%silicon steel sheets under PWN voltage excitation[J].IEEE Transaction Magnetics,1988,34(4):1193~1185.
    [15]Y.Tanaka,Y.Takanda,M.A.Masuda. Magnetic properties of 6.5%Si-Fe sheet and its application[J]. Appl.Phys.,1900,83(1):375~376.
    [16]Y.TTakada,M.Abe,S.Masuda,J.Inagaki.Commercial scale production of sheet and its magnetic properties[J].Appl.Phys,1988,64(10):5367~5369.
    [17]G.E.Fish,C.F.Chang,R.Bye.Frequency dependence of core loss in rapidly quenched Fe-6.5%wt%Si[J].Appl.Phys,1988,64(10):5370~5372.
    [18] Mckameycg, Devanjh, Tortorellipe et al. Characterization of Field-Exposed Aluminide Hot Gas Filters[J] .Mater Res,1991,6:1779.
    [19].R.Darolia,.J.Lewandowski,.C.T.Liu et al. Solute Partitioning and Interfacial Segregation in TiAl-Based Alloys[J] .Structural intermetallics,1993:299.
    [20]王燕文,张永昌译.超细晶粒金属[M].北京:国防工业出版社,1982.
    [21]陈国良,林均品.有序金属间化合物结构材料[M].北京:冶金工业出版社,1999
    [22]D.Turnbull.Weak itinerant-electron ferronmagnetism in amorphous Fe-Ti [J] .Metall Trans., 1981: 695~708.
    [23]张永刚,韩雅芳.金属间化合物结构材料[M].北京:国防工业出版社,2001.
    [24] .S. Gedevanishvili,S.C. Deevi. Processing of iron aluminides by pressureless sintering through Fe-Al elemental route[J]. Materials Science and Engineering A.2002,325(1/2): 163~176.
    [25]王兴庆,吕海波. 粉末冶金法制取Fe-Al金属间化合物的研究[J].上海大学学报(自然科学版),2000,4(4):511.
    [26]王景唐,沈同德. 机械合金化研究与进展[J].物理,1993,22(8):456.
    [27] K.S.Chan,D.S. Shih.Fundamental Aspects of Fatigue and Fracture in a TiAl Sheet Alloy[J] . Acta Mater,1997, 45:145.
    [28]G.Martin, P Bellon. Solid State Phys.,1997,50:189~331.
    [29]程抱昌.机械合金化法制备超细TiC颗粒及其增强铜基复合材料的研究[D].昆明理工大学,2001.
    [30] C.Suryanarayana. Mechanical alloying and milling [J]. Progress in Materials Science, 2001,46:1~184.
    [31] A W Weeber,H Bakker,F R Boer. Extension of the glass-forming range of Ni-Zr by mechanical alloying[J]. Phys.,1998,18(7):1359~1369.
    [32]杨朝聪,朱心昆等.自蔓延高温合成法(SHS)的研究与发展[J].昆明理工大学学报,1998,23(5):125.
    [33]曹茂盛等.纳米材料导论[M].哈尔滨:哈尔滨工业大学出版所,2001.
    [34]光明.电气制钢,2003,74(4):275和241.
    [35]邵元智,顾守仁,陈南平.微合金化后 Sendust 合金薄带的动态磁性[J].钢铁研究学报,1991,3(2):43~46.
    [36]王成国,吴军,刘玉先等.Fe-C-Ti 合金化粉末的电子显微镜试样制备及分析[J] .粉末冶金技术,1998,16(1):52~56.
    [37]严红革,陈振华.反应球磨技术原理及其在材料制备中的应用[J].功能材料,1997,28(1):15~18.
    [38]孙桂琴.日本非晶、超微晶合金的开发与应用[J] .金属功能材料,1994,10(6): 7~10.
    [39]邵元智,顾守仁,陈南平. Fe-Si-Al 细晶薄带的脆性及磁性研究[J].清华大学学报自然科学版),1989, 29(5): 25~31.
    [40]J.S.Benjamin.The Mechanism of Mechanical Alloying[J] .Metallurgical Transaction,1970, 1:2943~2951.
    [41]姚永强,王成国.Fe-C-Ti 混合粉末的机械合金化[J] .铁道学报,1997,19(4):132~136.
    [42]C.C.Koch,O.B.Cavin,C.G..Mckamey et al. Preparation of “amorphous”Ni60Nb40 by mechanical alloying [J] .Appl.Phys. Lett., 1983,43(17):1017~1019.
    [43]Xin Xu,Toshiyuki Nishimuta,Naoto Hirosaki.Fabrication of β-sialon nanoceramics by high-energy mechanical milling and spark plasma sintering[J] .Nanotechnology,2005, 16(9):1569~1573.
    [44]薛飞,刘江南,严文.Fe3Al 金属间化合物研究现状与发展. 西安工业学院学报,2000,20(1):67~71.
    [45]M. Birsan, B. Fultz, and L. Anthony.Magnetic properties of bcc Fe-Pd extended solid solutions[J].Physical Revivew B,1997,55(17):11502~11506.
    [46]周兰章,郭建亭等.NiAl/TiC 纳米材料机械合金化合成机理[J],金属学报,1997,33(11):1222.
    [47]沈同德,全明秀等.机械合金化合成的新材料(一)──非晶,准晶及纳米晶亚稳态材料[J].材料科学与工程.1993,11(2),21~26.
    [48]黄维清.MA 法制备 Al-Cu-Fe 纳米非晶合金和行星球磨理论分析的研究[D],湖南:湖南大学硕士论文,2000.
    [49]宋维锡.金属学(第 2 版)[M],北京:冶金工业出版社,1988.
    [50]G. LE CA?R.High-Energy Ball-Milling of Alloys and Compounds[J] .Hyperfine Interactions,2002, 142: 63~72.
    [51]齐民,杨大智,朱敏.机械合金化过程中的固态相变[J].功能材料,1995,26(5):472~476.
    [52]黄胜涛.固体X射线[M].北京:高等教育出版社,1985.
    [53]杨君友,张同俊. Fe-Si 合金系的机械合金化研究[J].粉末冶金技术,1997,15(3):165~169.
    [54] P. R. Maarleveld, P. B. Kaars,A. W. Weeber et al.Application of the embedded atom method to the calculation of formation enthalpies and lattice parameters of Pd-Ni alloys [J] . Physica,1986,14(3):328~331.
    [55].R.B.Schwarz , R.R.Petrich.XRD patterns measured at room temperature for the mechanical alloying[J] . Less-Comm. Met.,1988,140:171.
    [56].F.Cardellini, F.Cleri, G.Mazzone.Phase stability of Ni-Al solid solutions[J] .Acta Mater, 1993 ,2504.
    [57].H.J.Fecht,G.han,Z.Fu,W.L.Johnson. Advances in powder Metallurgy[M] .NanJing:Metal Powder Industries Federation Princcton,1990.
    [58].R.B.Schwarz,R.R.Petrich,C.K.Saw.Strain Rate Induced Crystallization in Bulk Metallic Glass-Forming Liquid [J].Non-Cryst.Solids,1985,76: 281.
    [59]Liu Z.Metastable phases synthesized by ion beams and thermodynamic interpretation in binary metal systems [J].Materials Science and Engineering,1994:179-180 .
    [60]周文政.Fe-Al基合金的机械合金化研究[D] .广西大学硕士学位论文,2002.
    [61]王成国,吴军,刘玉先等.过程控制剂对Fe-C-Ti粉末机械合金化的影响[J],粉末冶金技术,1997,15(4):258~261.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700