Fe-Al金属间化合物基摩擦材料制备与摩擦磨损机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着汽车工业的发展,特别是汽车向高速化和重载化发展的趋势,对摩擦材料提出了越来越高的要求。多年来,国内外对摩擦材料进行了广泛的研究,主要形成了有机合成摩擦材料、粉末冶金摩擦材料和碳/碳复合摩擦材料为主的体系。本文针对已有体系中的材料在使用中的某些缺陷,查阅、分析了大量国内外相关文献,考虑到Fe_3Al金属间化合物密度低,制造成本低,有良好的导热性能,特别是受Fe—Al金属间化合物特有的多键态结构带来的耐高温、抗氧化和耐腐蚀性能的启发,在国内首次选用Fe_3Al作为基体材料研制开发了Fe_3Al基复合摩擦材料,并获得初步成功。论文涉及材料学、热力学、摩擦学等诸多方面,研究内容富有创新性。
     本文针对以下几个方面进行了研究:一、用球磨机械合金化工艺制备了Fe_3Al粉体材料,并对Fe_3Al的形成过程和机理进行了研究。也对粉体的制备工艺和随后的热处理过程的必要性,进行了研究,并借用XRD、TEM、SEM、DSC等现代化的测试手段,对Fe_3Al形成过程的组织结构演变及Fe_3Al粉体的形貌进行了表征和测试。二、在系统分析欲制备的摩擦材料结构和性能的基础上,优化选择了合适的摩擦阻元和润滑组元作为摩擦性能调节剂。分析计算了组元间的相容性,根据物理和化学相容原理,初步设计了新型摩擦材料配方,对它们进行混料。随后对其烧结工艺进行了优化,对其烧结原理进行了探讨。三、对制备的材料的性能和结构进行了研究,分析了烧结材料的相组成和界面结合方式。四、对制备的Fe_3Al摩擦材料进行了力学性能测试,着重测试其不同工况条件和不同组元含量下材料的摩擦性能和磨损机理。五、对制备的Fe_3Al基复合摩擦材料和传统的铁基摩擦材料进行摩擦性能对比试验,分析它们不同的磨损机制。并测试它们的抗氧化和耐腐蚀性能,研究了Fe_3Al基复合材料的抗氧化原理。六。对研制的Fe_3Al基复合材料进行了模拟制动试验,考察了其制动性能和摩擦磨损性能。
     针对以上研究过程,得出如下的主要研究结论:
     一、通过球磨机械合金化工艺,能够使Al、Fe元素粉末在球磨过程中使Al原子逐渐溶于Fe中形成无序α—Fe(Al)过饱和固溶体,通过随后在750℃
With the rapid development of automobile industry, especially the trend towards higher speed and heavier load for the automobiles, there is an increasingly high standard for friction materials. Careful research on friction materials has been done around the word for many years and the present system include materials mainly consist of polymer matrix, powder metallurgy friction materials and C/C friction materials. In order to overcome the defects of the traditional materials, correlative literature both domestic and overseas was consulted and analyzed. With its structure of much bond, lower cost, much lower density, better thermal conductivity and what' s more important, its performance of resistance to high temperature, oxidation and corrosion brought by its unique structure, Fe_3Al intermetallics was chosen as the basic materials. This thesis has for the first time in China put forward a theory that friction materials were made by developing a new matrix named Fe_3Al-base. The composite has been made successfully. The study covers areas such as material science, thermodynamics, tribology and some other disciplines and the research is creative as well as systematical.The following has been systematically and emphatically investigated. First, Fe_3Al powder was prepared by milling mechanical alloying technology. Relevant studies were conducted on its formation process and mechanism, its technology process and the necessity to apply annealing treatment. The structural evolution of Fe-Al elemental during mechanical alloying process, and the shape of Fe_3Al particle have been investigated and tested by means of XRD, TEM, SEM and DSC. Second, based on systematic analysis of the structure and performance of materials to prepare, appropriate friction components and lubrication components were optimized as the added ingredient. Further analysis and calculation were done on the
    physical and chemical compatibility between them. A new friction material formula was then developed and these components were mixed. Subsequently sintering technology was optimized and sintering theory was explored. Third, the structure and performance of friction materials prepared were studied, and bond and structure of interface were studied in detail. Forth, mechanics performance of friction materials prepared was tested, and on the condition of different testing condition and changing content of components, friction capability and wear mechanism of material were studied. Fifth, comparative experiments on friction capacity of FeaAl and Fe-base friction materials were carried out and their wear mechanism was studied. Studies was also done on their capacity of resistance to oxidation and corrosion and the mechanism of resistance to oxidation of FesAl was discussed. Sixth, its simulating braking test was made, and its braking characteristic and friction wear capability were studied too.The major conclusions drawn from the research are as follows. Depending on milling mechanical alloying technology, with the increase in milling time, Al atom can dissolve crystal lattice of Fe, and form disordered a - Fe solid solution. During annealing at 750°C .through Al atom order rearrangement and removing of APS domains, the lower B2 ordered and higher ordered structure were obtained. Making use of the technology, relatively inexpensive Fe and Al powder were made into FeijAl-base to prepare Fe3Al-base composite.During the experiment, the raw material components, such as Cu powder, AI2O3, graphite, MoS2 etc, manifested good physical and chemical compatibility. Therefore, they can be mixed altogether and sintered. The result proved that Cu powder played an important role in strengthening sintering capacity. Having taken into account most factors of sintering process, an optimized Fe3Al base friction material technology of sintering composite came into being: sintering pressure of l(M5MPa, sintering
    temperature of 10504100°C and holding time 30min .The investigations into the bond component and the structure of interface of Fe3Al-base friction materials revealed the following. 1. Fe3Al-base composite sintered consist of a majority of B2 and a few DO, structure form. 2. In the process of sintering composite, many A12O3 particles were produced. Furthermore, Cu functions as mucilage glue and felted components together. Cu dissociated with other components. 3. The composite sintered presented favorable interface in the course of components and no obvious reaction products emerged. The integration of graphite with other components in the interface was weaker and therefore it was common that micro-crackle came into being here and extended. As result of it, the material was destroyed. However in the experiment, graphite atom diffused into base in the interface and this can improve feebleness bonding strength between graphite and components.The size of Fe^Al particles affected friction capability of composite, but too small particles produced much crystal particle boundary, and more defects, which went against the improvement of friction capacity.Depending on various reinforcing mechanism, such as solid solution, precipitation hardening, etc, Cu can reinforce Fe3Al base friction materials in the course of friction experiment. Because of physical and chemical action, Cu shifted from dissociating state to the surface and formed friction layer, which changed wear mechanism and improved friction capacity. The addition of Cu not only changed the composite wear mechanism, but also transformed the composite from particle abrasion brought by brittleness rupture to a mixed abrasion of particle abrasion brought by plasticity fluxion and slight adhesion abrasion. A high Cu content made the composite exhibit heavy adhesion abrasion while appropriate Cu content can reduce wear rate on the condition of high-speed sliding test.Because of its unfavorable interface bonding with other bond,
    Graphite decreased mechanics capacity. In the course of friction test, graphite mixed a little Cu can shift into lubricating layer with a low graphite content, composite exhibited slight adhesion abrasion; while with a high graphite content, because of much boundary limitation, mechanics capacity declined sharply. When graphite slice cracked because of cutting to form much graphite particle, wear performance is transformed to heavier particle abrasion with brittle split of materials. Due to better compatibility between MoS2 and mental particles, appropriate MoS2 content improved impact strength of composite. With too much MoS2, conglomeration of MoS2 declined mechanics capacity and friction wear performance, and to be specific, it resulted in severe adhesion abrasion. The research also proved that appropriate hole density can detain worn scraps and decrease wear rate. In the experiment, the friction coefficient of Fe3Al-based friction materials is 0. 5 or so and the average wear rate is 0.45-0. 1X10"5 mm'NV.Fe3Al-base friction materials manifested excellent resistance to heat impact and high temperature oxidation. In a relatively wide range of temperature, it had no micro crackle and no oxidation layer warping. Compared with Fe-based friction, Fe3Al-base friction materials exhibited excellent resistance to oxidation between 800°C and 1000°C. This could be attributed to the formation and protection of dense and continuous A12O3 film on the surface Fe3Al-base particulate. For FesAl-base friction materials, in the process of friction test, oxidation phenomena mainly happened on the surface of composite, and it became more and more unconspicuous from outside to inside. The main reason for the great enhancement of its resistance to oxidation lies in the formation, accumulation and film formation particles during the oxidation.The simulation brake test showed that Fe3Al-base friction braking sample braked with good stability, relatively invariable friction
    coefficient and lower wear rate. Friction test manifested it had no obvious friction coefficient decline due to temperature variation. It was also found that, in the process of friction, a layer came into being that consisted of graphite and Cu, the same as the result of M-2000 test. Braking test also proved that wear mechanism of braking sample of composite was particle abrasion, oxidation abrasion and adhesion abrasion, and that coincided with the preceding tests, too.Braking test showed that Fe^l-base friction materials had no conglutination and scrape with the counterpart and the composite can avoid the adhesion to cast iron material.To sum up, the thesis developed Fe3Al-base friction materials, and testified the feasibility of the formula. The experiment tested its mechanics capacity and probed its wear mechanism. The experiment not only explored the effects of other components its friction capacity, but also tested and simulated its friction capacity in complicated working conditions. It is testified that its capability of anti-oxidation and anti - corroding excelled one of Fe-base friction material. Braking test found that the material exhibited excellent braking performance, and possessed great potential in its development as a new friction braking material.
引文
1、王涛,朱文坚等著.摩擦制动器—原理、结构与设计,广州:华南理工大学出版社,1992
    2、费多尔钦科 N M 等著.徐润泽等译.现代摩擦材料,北京:冶金工业出版社,1983
    3、R C E S K.摩阻材料的结构与性能.上海交通大学应用化学系,1998
    4、谭康.目前我国摩擦材料行业的五大变化.中国摩擦密封材料协会
    5、杨永连.烧结金属摩擦材料.机械工程材料,19(6):1995,18~21
    6、M. Eriksson, S. Jacobson. Tribological surfaces of organic brake pads. Tribology international, 2000, 33: 817-8278
    7、刘苏.高PV车用摩擦材料的研究.中国公路学报,2001,14(增):123-126
    8、Lamarche P E, Mich U. Friction engaging drives with ceramic materials. United States Patent: 4, 533, 032. 1985
    9、Kettell. Friction element for clutch. United States Patent: 4, 846, 329. 1989
    10、N. S. Stoloff. Iron aluminides: present status and future prospects. Materials Science and engineering A258, 1998: 1-14
    11、龚红宇.纳微米Fe_3Al/Al_2O_3复合材料的制备与研究.山东大学博士论文,2002
    12、Su-Ming Zhu, Makoto Tamura, Kazushi Sakamoto. Characterization of Fe_3Al-base intermetallic alloys fabricated by mechanical alloying and HIP consolidation. Materials Science and Engineering A, 2000, 292: 83-89
    13、范润华,孙康宁,尹衍升等.Fe_3Al金属间化合物的机械合金化.机械工程学报,2000,36(8):55-60
    14、山口正治.丁树森译.金属间化合物.北京:科学出版社 1991
    15、陈国良,林均品.有序金属间化合物结构材料,北京:冶金工业出版社,1999
    16、MaMpin H E wilson R D, Hawk J A. wear, 1992, 159: 241
    17、孙扬善,余新泉,薛峰等.材料导报.2000,14(8):65
    18、Kim Y—S, Song, J—H, Chang Y w. Ser Mater, 1997, 36: 829
    19、徐润泽等编著.粉末冶金结构材料学,长沙:中南工业大学出版社,2002
    20、杨永连.烧结金属摩擦材料.机械工程材料,vol.19 No.6 1995 12
    21、黄瑞芬,刘淑英.烧结金属摩擦材料及其工艺研究的发展.兵器材料科学与工程,1999,22(1):65—66
    22、周继承,黄伯云.列车制动摩擦材料研究进展.材料科学与工程,1999,17(2):91-9328
    23、邓海金,白新桂,徐石安等.金属陶瓷汽车离合器摩擦片的研制及应用.机械工程材料,1997,21(3):30-33
    24、刘志强,杨建华,沈永秋.汽车用HFPM系列金属陶瓷摩擦材料.机械工程材料,1995,19(3):46-48
    25、王秀飞,李东升.航空用铁基金属陶瓷摩擦材料.材料工程,1998,8:27-29
    26、李良福编译.金属陶瓷材料在机车车辆摩擦部件中的应用前景.金属材料研究,2001,27(4):49-55
    27、姚萍屏,熊翔,黄伯云.粉末冶金航空刹车材料的应用现状与发展.粉末冶金工业,2000,10(6):34-38
    28、石宗利,李重庵,杜心康等.高速列车粉末冶金制动闸片材料研究.机械工程学报,2002,38(6):119-122
    29、沈容,周芸.粉末冶金汽车制动摩擦材料.昆明理工大学学报,1997,22(1):124-128
    30、K. D. Locier. Friction materials-on overview. Powder metallurgy, 1992, 35(4): 253-255
    31、鲁乃光.烧结金属摩擦材料现状与发展动态.粉末冶金技术,Vol.20,No.5Oct.2002
    32、杜心康,石宗利,叶明惠等.高速列车烧结闸片材料的摩擦磨损性能研究.摩擦学学报,2001,21(4):256-259
    33、李东升,王秀飞,钟志钢等.飞机摩擦副摩擦学特性研究.材料工程,1997,3:3-6
    34、李云堂.干式制动片摩擦材料的研制和性能试验.机械研究与应用,1999,12(1):51-53
    35、姚萍屏,熊翔,黄伯云等.Cu含量对Fe基粉末冶金航空刹车材料摩擦磨损性能的影响.非金属矿,2001,24(4):52-54
    36、N. M. Talijan, D. S. Trifunovic, D. D. Trifunovic. The influence of different iron powders on the friction properties of sintered friction materials based on iron. Materials letters, 2000, 46: 255-260
    37、Louis B Newman著,张元民,汤希译.摩擦材料最近进展.北京:中国建筑工业出版社,1986
    38、Shmagin L. M, Simananion I. L. Effect of certain sulfides on friction properties of copper-based sintered matria poroshk. Metall, 1978, 2: 16-18
    39、叶世学.铁铜基湿式烧结摩擦材料.粉末冶金技术,1995,13(4):282-284
    40、袁国洲,张兆森.铁-铜基干式摩擦材料研制.非金属矿,1999,22(2):47-49
    41、袁国洲,张兆森.重负荷机械制动铁铜基摩擦材料的研制.粉末冶金技术,1999,17(3):205-208
    42、S. U. Chinang. Unlubricated friction and wear in dispersion-hardened copper systems. Diss Abstr. Int. B, 1983, 44(1): 275
    43、日本专利.No 7791716,1977
    44、日本专利.No 8120137,1981
    45、日本专利.No 02159334,1980
    46、日本专利.No 63109131,1988
    47、Tsukamoto Yuji, Tatsuhisa. Friction and wear properties of copper-based sintered materials containing various intermetallic compounds. Fuuta. Oyobi Funmartsu Vakin, 1984, 31(8): 290-297
    48、王零森,杨兵,樊毅等.基体成分对铜基摩擦材料性能的影响.中南工业大学学报,1996,27(2):194-198
    49、费多尔钦科 N M 等著.徐润泽等译.现代摩擦材料,北京:冶金工业出版社,1983
    50、Frank Philip, Bowden, David Tabour Friction. An Introduction to Tribology
    51、刘伯威,樊毅,张金生等.SiO_2和SiC对Cu-Fe基烧结摩擦材料性能的影响.中国有色金属学报,2001,11(1):110-113
    52、姚萍屏,李世鹏,熊翔.Fe和SiO_2对铜基摩擦材料摩擦学行为的对比研究.湖南有色金属,2003,19(5):31-35
    53、袁国洲,彭剑昕,姚萍屏.硼铁含量和粒度对铁铜基摩擦材料性能的影响.矿冶工程,2001,21(4):89-91
    54、樊毅,张金生,刘伯威等.一种高性能烧结摩擦材料摩擦剂的选择.中南工业大学学报,2001,32(4):386-389
    55、张治民.BC_4在Fe基摩擦材料中的作用及机理.中南工业大学学报,1997,28(4):359-362
    56、樊毅,张金生,王零森等.铁含量对Cu-Fe基摩擦材料性能的影响.摩擦学学报,1999,19(3):204-208
    57、滕映淮,吕秉义.Y7飞机铁基刹车材料的研制.粉末冶金技术,Vol12 No1 1994.2:30~33
    58、Gopinath K. The influence of graphite content on the properties of sintered copper graphite materials. Tran. Powder Metall. Assoc., 1978, 5: 43-48
    59、日本专利.No 6210232,1987
    60、肖新华.汽车刹车材料的配方优化-正交试验在材料筛选中的应用.粉末冶金技术,1989,7(2):88-94
    61、陈洁,姚萍屏,熊翔.MoS_2在铁基摩擦材料烧结过程中的行为研究.非金属矿,2003,26(4):51-53
    62、李世鹏,熊翔,姚萍屏.石墨、SiO_2在铜基摩擦材料基体中的摩擦学行为研究.非金属矿,2003,26(6):51-53
    63、张兆森.固体润滑组元对铜基离合材料性能的影响.湖南有色金属,1996,12(3):37-39
    64、樊毅,张金生,高游等.石墨粒度对Cu-Fe基摩擦材料性能的影响.摩擦学学报,2000,20(6):475-477
    65、郭奇亮.滑动摩擦下氮化硼与几种常用固体润滑剂添加效果的比较.贵州工业大学学报,1997,26(6):41-46
    66、陈晓虎.固态润滑剂六方氮化硼在陶瓷摩擦材料中的应用研究.陶瓷学报,1999,20(3):127-130
    67、费多尔钦科 N·M 著,徐润泽译.现代摩擦材料.北京:冶金工业出版社,1983:97~99
    68、天津市工业展览馆二硫化铝组.二硫化钼.天津:天津人民出版社,1972:20~25
    69、Spalvins. T. ASLE Proceedings 3rd International Conference Solid Lubrication. New York: Machanical Engineering Publications, 1984: 204~207
    70、张文钲.发掘中的二硫化钼新用途.中国钼业.1997,21(2,3):130~131
    71、徐润泽等编著.粉末冶金结构材料学,长沙:中南工业大学出版社,2002
    72、费多尔钦科 N M 等著.徐润泽等译.现代摩擦材料,北京:冶金工业出版社,1983
    73、北京粉末冶金研究所编.粉末冶金摩擦材料,北京:机械工业出版社,1977
    74、徐润泽等编著.粉末冶金结构材料学,长沙:中南工业大学出版社,2002
    75、姚萍屏,熊翔,黄伯云.粉末冶金航空刹车材料的应用现状与发展.粉末冶金工业,2000,10(6):34-38
    76、徐泽润,黄国伟,李金鹏译.现代摩擦材料,北京:冶金出版社,1983
    77、鲁乃光.烧结金属摩擦材料现状与发展动态.粉末冶金技术,Vol.20,No.5 Oct.2002
    78、上冈信夫.摩擦材无压接着法及使用为接着剂.日本专利,昭 62-9641.1987-03-022
    79、德国专利,2949040
    80、德国专利,2256676
    81、德国专利,3005513
    82、德国专利,1126623
    82、矢岛郁夫,佐藤正.烧结摩擦材料.日本专利,昭 46-9527,1971-03-10
    83、Nobuo. Kamioka. Sintered Alloy forFriction Materials. 美国专利 4350530.1982—09—21
    84、矢岛郁夫,佐藤正.烧结摩擦材料.日本专利,昭 46-21813,1976-06-21
    85、矢岛郁夫,佐藤正.烧结摩擦材料.日本专利,昭 47-14606 1972-05-01
    86、
    87、前苏联专利,731833.1980
    88. GerloffGunter, MertlKlaus, VolkerUlrich. FrictionMaterialoftheSinteredBronzeTyp e.美国专利,3833344.1974-09-03
    89、前苏联专利,954487.1982
    90、德国专利,2113037
    91、DunlopHoldingsLtd., FrictionMaterials. 英国专利,1339742.1973-10-24
    92、德鲁兹达.湿式和干式摩擦材料的工作原理.杭州:杭州齿轮箱厂,1985
    93、日本专利,60—121250,公布,28,05,85
    94、Mathy等.高级铝合金的发展.Metall,1992,46(6):586~595
    95、尹衍升,施忠良,刘俊友.铁铝金属间化合物—合金化与成分设计.上海:上海交通大学出版社,1996.
    96、曾汉民.高技术新材料要览.北京:中国科学技术出版社,1993.129.
    97、孙扬善.Fe_3Al基金属间化合物的性能和应用前景.机械科学技术,1997,26(4):33-35.
    98、McKameyCG, DeVanJH, TortorelliPE, etal. Areviewofrecent development Fe_3Al-base alloys. Mater Res,, 1991, 6: 1779-1781.
    99、万晓景,朱家红,黄胜标.Fe_3Al与水汽及氢气的表面反应.金属学报,1997,32(7):707-709
    100、郦定强,孙保德.FeAl金属间化合物的高温形变性能.材料工程,1998,10:12-14
    101、Prakash U BuckleyRA, Jones High-temperature In-termetallic Alloys Pittsburgh PA: Mterial Research Spciety, 1991, 213: 393-396
    102、倪瑞澄,孙震.金属间化合物及其粉末冶金材料.粉末冶金技术,1989,7(4):253-256.
    103、范润华,刘英才,尹衍升.Fe_3Al金属间化合物强韧化研究进展.材料科学与工程,1997,15(4):47-49.
    104、张得志,肖记美.温度对Fe_3Al抗拉性能影响的研究.材料科学与工艺,1997,15(3):51-54
    105、张玉军,范润华,潭训彦,等.金属间化合物-一种新型的陶瓷增韧材料.现代技术陶瓷,1998,(增):438-440
    106、刘毅,郦定强,林栋梁.金属间化合物FeAl超塑性变形中的位错特征.金属学报,1996,32(3):225-231
    107、万晓景,朱家红,黄胜标.Fe_3Al与水汽及氢气的表面反应.金属学报,1955,31(4):181-185
    108、余瑞璜.固体与分子经验电子理论.科学通报,1978,23(3):217-224
    109、C. G. McKamey, J. A. Horton, C. T. Liu. Effect of Chromium on Properties of Fe_3Al. J. Mater. Res., 1989, 4: 1156-1163
    110、U. Prakash, R. A. Buckley, H. Jones, In: L. A. Johnson, D. P. Pope, J. O. Stiegler eds. High temperature Ordered Intermetallic Alloys. Pittsburgh, P A: Material Research Society. 1991, 213: 393-399
    111、余兴泉,孙扬善,黄海波.轧制加工对Fe_3Al基合金组织及性能的影响.金属学报,1995,31(8):B368-372
    112、倪瑞澄,孙震.金属间化合物及其粉末冶金材料.粉末冶金技术,1989,7(4):253-260
    113、C. G. McKamey, J. H. DeVan, P. E. Tortorelli, and V. K. Sikka. A review of recent developments in Fe_3Al-based alloys. J. Mater. Res., 1991, 6: 1779-1783
    114、孙扬善.Fe_3Al基金属间化合物的性能和应用前景.机械科学与技术,1997,26(4):33-39
    115、C. G. Mckamey, C. T. Liu, S. A. David, J. A. Horton, O. H. Pierce and J. J. campbell. Development of iron aluminides for coal conveysion system, ORNLITM-10793 (oak Ridge Nationel laboratory, oak Ridge, TN, July 1988)
    116、刘毅,郦定强,林栋梁.金属间化合物FeAl超塑性变形中的位错特征.金属学报,1996,32(3):225-231
    117、万晓景,朱家红,黄胜标.Fe_3Al与水汽及氢气的表面反应.金属学报,1955,31(4):181~185
    118、余瑞璜.固体与分子经验电子理论.科学通报,1978,23(3):217-224
    119、C. G. McKamey, J. A. Horton, C. T. Liu. Effect of Chromium on Properties of Fe_3Al. J. Mater. Res., 1989, 4: 1156-1163
    120、U. Prakash, R. A. Buckley, H. Jones, In: L. A. Johnson, D. P. Pope, J. O. Stiegler eds. High temperature Ordered Intermetallic Alloys. Pittsburgh, P A: Material Research Society. 1991, 213: 393-399
    121、余兴泉,孙扬善,黄海波。轧制加工对Fe_3Al基合金组织及性能的影响.金属学报,1995,31(8):B368-372
    122、倪瑞澄,孙震.金属间化合物及其粉末冶金材料.粉末冶金技术,1989,7(4);253-260
    123、C. G. McKamey, J. H. DeVan, P. E. Tortorelli, and V. K. Sikka. A review of recent developments in Fe_3Al-based alloys. J. Mater. Res., 1991, 6: 1779-1783
    124、孙扬善.Fe_3Al基金属间化合物的性能和应用前景.机械科学与技术,1997,26(4):33-39
    125、C. G. Mckamey, C. T. Liu, S. A. David, J. A. Horton, O. H. Pierce and J. J. campbell. Development of iron aluminides for coal conveysion system, ORNLITM-10793 (oak Ridge Nationel laboratory, oak Ridge, TN, July 1988)
    126、O. Ikeda, I. Ohnuma, R. Kainuma. Phase equilibria and stability of ordered BCC phases in the Fe-rich portion of the Fe-Al system. Intermatallics, 2001, 9: 755-761
    127、尹衍升,施忠良,刘俊友.铁铝金属间化合物-合金化与成分设计,上海:上海交通大学出版社,1996
    128、A. Rudajevova, V. Stma. Thermal properties of the Fe_3Al-5AT. %Cr intermetallic compound and thermal diffusivity anomaly in DO_3 phase. Materials Research Bulletin, 1997, 32(4): 441-449
    129、J. H. Schneibel, C. A. Carmichael, E. D. Specht, R. Subramanian. Liquid-phase sintered iron aluminide-ceramic composites. Intermetallic, 1997, 5: 61-67
    130、薛群基,杨军,喇培清等.金属间化合物摩擦学研究进展.材料导报,2001,15(7):12-14
    131、孙扬善,余新泉,薛烽等.材料导报,2000,14(8):66
    132、尹衍升,张景德,李嘉.Fe_3Al/Al_2O_3复合材料梯度涂层德摩擦磨损行为.摩擦学学报,2003,23(5):376-379
    133、Zhu Zi-xin, Du Ze-yu, Xu Bin-shi, et al. Influence of heat treatment on microstructure and sliding wear behavior of Fe-Al/WC composite coatings. Transactions of Tianjin University, 9(2): 93-97
    134、涂江平,孟亮,刘茂森.有序态Fe_3Al合金在水环境中的磨粒磨损行为.摩擦学学报,1998,18(3):215-220
    135、J. P. Tu, L. Meng, M. S. Liu. Friction and wear behavior of Cu-Fe_3Al powder metallurgical composites in dry sliding, wear 220(1998): 72-79
    136、H. E. Maupin, R. D. Wilson, J. A. Hawk. An abrasive wear study of ordered Fe_3Al. Wear, 1992, 159: 241-247
    137、H. E. Maupin, R. D. Wilson, J. A. Hawk. Wear deformation of ordered Fe-Al intermetallic alloys. Wear, 1993, 162: 432-440
    138、Yong-Suk Kim, Yong-Hwan Kim. Sliding wear behavior of Fe_3Al-based alloys. Materials science and engineering A, 1998, 258: 319-324
    139、D. E. Alman, J. A. Hawk, J. H. Tylczak, et al. Wear of iron-aluminide intermetallic-based alloys and composites by hard particles. Wear, 2001, 251: 875-884
    140、J. A. Hawk, D. E. Alman. Abrasive wear of intermetallic-based alloys and composites. Materials science and engineering A, 1997, 239: 899-906
    141、J. A. Hawk, D. E. Alman. Abrasive wear behavior of NiAl and NiAl-TiB_2 composites. wear, 1999
    142、Su-Ming Zhu, Xing-Sheng Guan, Koji Shibata, et al. Microstructure and mechanical and tribological properties of high carbon Fe_3Al and FeAl intermetallic alloys. Materials transactions, 2002, 43(1): 36~41
    143、Xing-Sheng Guan, Su-Ming Zhu, Koji Shibata, et al. Effect of carbon on tensile properties and wear behavior of P/M FeAl alloy. Materials transactions, 2002, 43(6): 1325~1331
    144、Xingsheng Guan, Kunihiko Iwasaki, Katsuhiro Kishi, et al. Dry sliding wear behavior of Fe-28Al and Fe-28Al-10Ti alloys. Materials science and engineering A, 2004, 366: 127-134
    145、Jun Yang, Peiqing La, Weimin Liu, Qunji Xue. Tribological properties of FeAl intermetallics under dry sliding. Wear, 2004
    146、N. Ziegles. ALME. Trans. 100, 267(1932)
    147、ApinanizE, GaritaonandiaJS, PlazaolaF. JNon crystSolids, 2001, 287: 302.
    148、BenjaminJS. [J]. MetallTrans, 1970, 1: 2943.
    149、C. Suryanarayana. Mechanical alloying and milling. Progress in Materials Science, 2001, 46: 1-184
    150、P. S. Gilman, J. S. Benjamin. Mechanical alloying. Ann. Rev. Mater. Sci., 1983, 13: 279-284
    151、王笑天.机械合金化与新材料开发.兵器材料科学与工程,1990,9:13-17
    152、杨君友.材料制备新技术-机械合金化.材料导报,1994,2:11-15
    153、师昌绪.新型材料与材料科学,北京:科学出版社,1988
    154、Anil Saigal, Weiguo Yang. Analysis of milling of iron aluminides. Journal of materials processing technology, 2003, 132: 149-156
    155、B. L. Huang, R. J. Perez, E. J. Lavernia. Formation of supersaturated solid solutions by mechanical alloying. Nanostruct. Mater., 1996, 7(1): 67-79
    156、N. S. Stoloff. Iron aluminides: Present status and future prospects. Mater. Sci. Eng, 1998, A258: 1-14
    157、范润华.Fe_3Al金属间化合物材料的强韧化机制研究.山东工业大学博士学位论文,1998
    158、李嘉.铁铝金属间化合物-四方氧化锆陶瓷基复合材料的研究.山东大学博士学位论文, 2003
    159、周春华.纳米Fe_3Al金属间化合物吸波性能的研究.山东大学博士论文,2004
    160、A. R, Yavati. Disording kinetics and magnetic properties of mechanically disordered nanocrystalline Li12-type Ni_3Al+Fe alloys. Acta Metall., 1993, 41: 1391-1396.
    161、F. Cardelline, V. Contini, G. Mazzone. Ordering kinetics of disordered Ni_3Al synthesized by mechanical alloying. Scripta. Metall. Mater., 1995, 32: 641-646.
    162、S. Gialanella, R. Delorenzo, M. Guella. Dilatometry of Ni_3Al powder disordered by ball-milling. Intermetallics, 1995, 3: 1-8.
    163、O. Ikeda, I. Ohnuma, R. Kainuma. Phase equilibria and stability of ordered BCC phases in the Fe-rich portion of the Fe-28Al system. Intermatallics, 2001, 9: 755-761
    164、B. H. Rabin, R. N. Weright. Synthesis of iron aluminides from elemental powders: reaction mechanisms and densification behavior. Metall. Trans., 1991, A22 (2): 277-284
    165、S. Sarkar, C. Bansal. Atomic disorder-order phase transformation in nanocrystalline Fe-28Al. J. Alloys. Compounds, 2002, 334: 135-142.
    166、孙康宁.Fe_3Al/Al_2O_3复合材料的制备与组织性能研究.哈尔滨工业大学博士学位论文,1999
    167、尹衍升,李嘉,孙康宁.Fe-Al/Al_2O_3陶瓷基复合材料.材料导报,2003,17(2):73-75
    168、林肇琦.有色金属材料学,沈阳:东北工学院出版社,1986
    169、师昌绪.材料大辞典,北京:化工出版社,1990
    170、拉宾诺维奇 B.A.主编,尹承烈等译.简明化学手册,北京:化工出版社,1983
    171、司为民,郑灵仪,李鹏兴,吴人洁.金属间化合物基复合材料的界面反应—热力学计算预测.复合材料学报,1995,12(1):68-74
    172、S. V. Radicliffe, B. L. Averbach, M. Cohen. Relative thermodynamic properties of solid iron-aluminum alloys. Acta Metall., 1961, 9: 169-175
    173、魏寿崑.活度在冶金物理化学中的应用,北京:中国工业出版社,1964
    174、虞觉奇等编译.二元合金状态图集,上海:上海科学技术出版社,1987
    175、范润华,尹衍升,边秀房.Fe-Al基复合材料化学相容性热力学分析.复合材料学报,1998,15(1):30-33
    176、Rabin B H, Wright R N. Synthesis of iron aluminide from element powders: reaction mechanisms and densification behavior. Metall Trans., 1991, 22A(2): 277
    177、王盘鑫.粉末冶金学,北京:冶金工业出版社,1997
    178、果世驹.粉末烧结理论,北京:冶金工业出版社,1997
    179、施剑林.固相烧结Ⅱ——粗化与致密化关系及物质传输途径.硅酸盐学报,1997,25(6):657-667
    180、高瑞平,李晓光,施剑林,周玉等.先进陶瓷物理与化学原理及技术,北京:科学出版社,2001
    181、P. Murray. Ceramic fabrication process, Ed. W. D. Kingery, Wiley, New York, 1958
    182、F. F. Lange, B. J. Kellte. Thermodynamics of densification—part Ⅱ grain growth in porous compacts and relation to densification. J. Am. Ceram. Soc., 1989, 72(5): 735-742
    183、张国定.金属基复合材料界面问题.材料研究学报,1997,11(6):649-657
    184、K. K. Chawla. Interfaces in metal matrix composites. Comp. Interf., 1996, 4(5): 287-298
    185、S. G. Warrier, B. S. Majumdar, D. B. Miracle. Interface effects on crack deflection and bridging during fatigue crack growth of titanium matrix composites. Acta Mater., 1997, 45(12): 4969-4980
    186、McKamey, C. G., Liu C T. Chromium addition and environmental embrittlement in Fe_3Al[J]. Scr Metall et Mater, 1990, 24: 2219.
    187、McKamey, C .G., Deven J H. Tortorelli P F. etal. Effect of additions of molybdenum or niobium on creep-rupture properties of Fe_3Al[J]. J Mater Res. 1992, 7(8): 2089.
    188、朱子新,徐滨士,马世宁,等.铁铝金属间化合物基涂层的高温滑动磨损性能研究.中国机械工程,2004,(9):28-30
    189、田保红,刘平,徐滨士.热喷涂合成Fe_3Al基涂层的高温摩擦学特性.中国有色金属学报,2003,(8):32-33
    190、陈锐,李平,陆玉峻.固体润滑材料—石墨的应用.炭素材料,1996
    191、方宁象,序润泽.孔隙在粉末冶金铁基材料磨损中的作用.粉末冶金技术,1996,14(3):124
    192、梁英教,车荫昌.无机物热力学数据手册,沈阳:东北大学出版社,1993
    193、叶大伦,胡建华.实用无机物热力学数据手册,北京:冶金工业出版社,2002
    194、李云堂,徐正林,贺少怀,等.汽车刹车片的研制和性能试验.太原理工业大学报,1996,1:20-22
    195、MaMpin H E wilson R D, Hawk J A. wear, 1992, 159: 241
    196、Tomaszewicz P. and Wallwork G. R. Rev. High. Tem. Mater, 1987, 4: 75

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700