过渡金属掺杂氧化物的磁性和交换偏置效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过渡金属掺杂氧化物的磁性和交换偏置研究是当前自旋电子学领域的热门课题。其中,对其磁性和交换偏置的调控研究显得尤为重要,它将为研制新一代自旋电子器件奠定物理基础。本论文中选择铁磁金属(Ni, Fe)与非磁性金属(Cu)掺杂反铁磁(CuO,NiO)基体和La0.4Sr0.6TiO3-δ稀磁氧化物,研究金属离子掺杂对铁氧体嵌入反铁磁基体复合材料体系交换偏置效应和La0.4Sr0.6TiO3-δ稀磁氧化物室温磁性的影响,为进一步研究宏观调控这两类材料的磁性和交换偏置效应提供实验数据和理论指导。主要研究内容和结果包括以下几个方面:
     1.为了更好的研究掺杂对铁磁/反铁磁系统交换偏置效应的影响,我们用化学共沉淀法和溶胶凝胶法制备了Cu1-xFexO纳米颗粒复合样品。研究不同制备方法对复合颗粒体系的磁性和交换偏置效应的影响,从而为以后的工作探索合适的制备工艺。XRD结果表明,对于x=0.05的样品,化学共沉淀法制备的样品中,没有发现有CuFe2O4相,而溶胶凝胶法制备的样品则发现有CuFe2O4旧和其它杂相的存在。磁性的测量显示,溶胶凝胶法制备的样品中由于产生了CuFe2O4阳并主导了样品中的磁性质,即其磁性强于共沉淀法制备的样品。对于同一种方法制备的样品,不同掺杂浓度对样品的磁性影响也很显著。如用化学沉淀法制备的样品,随着Fe掺杂量的增多,样品的磁化强度增加,x>0.05时,Ms急剧增加,说明这时候样品中出现了第二相CuFe2O4颗粒。两种方法对复合体系交换偏置效应的影响不同,与溶胶凝胶法相比,化学共沉淀法有利于获得相对较大的交换偏置场。
     2.在上一工作的基础上,我们选择共沉淀法结合相偏析的原理制备了NiFe2O4/Ni1-xCuxO(0≤X≤0.1)块材复合材料,并对其磁性和交换偏置效应进行了研究。结果显示,Cu掺杂NiO纳米复合材料的交换偏置场和矫顽力随着掺杂量的增加而减小,说明在体系中,Cu掺杂并没有增加材料的交换偏置效应,反而减弱了。这说明非磁性离子Cu尽管掺杂到了NiO基体中,但是没有形成磁畴,并没有增加表面的未补偿自旋数目。同时非磁性离子也造成了反铁磁自旋钉扎能力的减弱,所以交换偏置场随着Cu掺杂量的增多而逐渐减小。
     3.采用非均相沉淀法并结合相偏析的原理制备了MFe2O4(M=Cu, Ni)/ Cu1-xNixO(x= 0,0.03,0.06 and 0.1)纳米复合样品。微观结构和磁性测量结果表明,掺入的磁性离子Ni在样品中有两种存在形式,即多数掺入到了CuO的晶格中取代了Cu的位置,少数与Fe反应形成了NiFe2O4颗粒,并主导了样品中的磁行为。研究发现,随着Ni掺杂量的增加,样品的交换偏置场逐渐增加大,表明由于Ni的掺杂在反铁磁CuO形成了畴态,增加了表面的未补偿自旋,同时增加了反铁磁对铁磁自旋的钉扎能力,因此交换偏置场增加。样品x=0.1的交换偏置急剧增加的原因则与样品中出现了较大各向异性能的NiO相有关。同时,矫顽力随着掺杂量的变化趋势也说明了这一点。
     4.采用溶胶凝胶法结合后期的热处理制备了金属Ni掺杂氧化物半导体La0.4Sr0.6Ti1-xNixO3-δ(x=0.01,0.02,0.04和0.08)的块材体系。XRD结果表明,当x≥0.04时,样品中出现了NiO和一些Ti—Ni化合物,而x<0.04时,样品中没有发现任何杂相。我们选定固定组分x=0.02,重点研究了掺杂前后样品的室温磁性比较,以及烧结气氛和温度对于样品的磁性的影响。研究结果表明,掺杂Ni的样品在室温下表现出良好的铁磁性,没有掺杂的样品则没有磁性。对于同一温度烧结的样品,在氩气中烧结的样品的室温饱和强度是在空气中烧结样品的近20倍。对于在氩气中烧结的样品,随着烧结温度的升高,样品的磁性先增加而后减弱,说明烧结温度对样品的室温磁性有重要的影响。对样品室温铁磁性的起因,我们运用束缚极化子理论进行了解释,认为是由于样品中的氧空位诱导的室温磁性。
The magnetic properties and exchange bias in oxides doped by thansition metals are hot project of current spintronics. The studies on the regulation of exchange bias effect and magnetism in oxides become particularly important, for which lay the foundations for developing practical applications of spintronic devices. In the thesis, our studies focus on the ferromagnetic metal (Ni, Cu) and non-magnetic metal (Cu) doped in antiferromagnetic base (CuO, NiO) and La0.4Sr0.6TiO3-δdiluted magnetic oxides (DMOs). The effects of transition metal doping on the exchange bias effect in composites system which composed of ferrites embedded in antiferromagnetic base and the room-temperature magnetism in La0.4Sr0.6TiO3-δdiluted magnetic oxides (DMOs) are studied. The studies provide experimental and theoretic basis for the further research of regulation of the room-temperature magnetism and exchange bias in these two types of materials. The main contents of this thesis can be summarized as follows:
     1. To better study the effects of the doping on the exchange bias in the FM/AFM system, the Cu1-xFexO nano-particle composites were synthesized by chemical co-precipitation and gol-gel method. The effects of different methods on the magnetism and exchange bias in compound particle system have been studied, and the right preparation processes for the future works have been explored. The XRD results indicate that the CuFe2O4 and other phases are detected in the sample synthesized by sol-gel method, while there is no the second phase in the sample synthesized by chemical co-precipitation method for the composition of x=0.05.The magnetic measurement results imply that the magnetism in samples by sol-gel method is larger than that by co-precipitation method due to the emergence of CuFe2O4 which dominate the magnetism in the sample. For the samples by the same method, the effect of different doping content on magnetism is much notable. For the samples propared by co-precipitation method, with the increase of Fe doping content, the magnetization increases, and when x>0.05, the Ms increase sharply because of the emergence of CuFe2O4 particles. These two methods have different impacts on the exchange bias of the composites. The chemical co-precipitation method is in favor of producing large exchange bias field.
     2. On the basis of previous works, a series of NiFe2O4/Ni1-xCuxO (0≤x≤0.1) bulk composites were synthesized by the chemical co-precipitation method to study the magnetic property and exchange bias. In the Cu doping nanocomposites, the exchange bias field and coercivity decrease with the increase of Cu doping implying the Cu doping did not increase exchange bias effect in this system. It indicates that although the non-magnetic Cu ions are doped in NiO matrix, the number of uncompensated spins is not enhanced at the interface due to the absence of domain state. Meanwhile, the pinned action force of the antiferromagnetic material is weakened by the non-magnetic Cu ions, thus the exchange bias field decreases.
     3. The MFe2O4(M=Cu, Ni)/Cu1-xNixO(x=0,0.03,0.06 and 0.1)nanocomposites were synthesized by the non-equal precipitation method. The results of microstructure and magnetic measurement show that there are two existed forms for the doping magnetic ions in the samples, most of which are doped in CuO matrix substituting for Cu ions, a few react with Fe to form into NiFe2O4 particles dominating the magnetic actions in the samples. With the increase of Ni doping content the exchange bias field increases gradually, implying that the domain state is formed in AFM, the uncompensated spins are increased, simultaneously the pinned action force of the antiferromagnetic material is enhanced too. The origin of the sharply increase of exchange bias field in the sample with x=0.10 is related to the multiphase such as NiO. Furthermore, the movement trend of coercivity dependent of the doping content also prove the phenomena.
     4. A series of La0.4Sr0.6Ti1-xNixO3-δ(x=0.01,0.02,0.04, and 0.08) bulk samples were synthesized by the sol-gel method. The XRD results indicate that there are NiO and Ti-Ni compounds in the samples with x>0.04 in contrast with no any other phase in samples with x<0.04. For the sample with x=0.02,the comparison of room-temperature magnetism in undoped and doped samples was especially studied while the effect of sintering ambience and sintering temperature on the magnetism was also studied. The results show that, the samples doped Ni exhibit good ferromagnetism and the others exhibit no ferromagnetism at room-temperature. The magnetization of the samples sintered in argon ambience is a factor of twenty larger than the samples sintered in air for the same sintering temperature. For the samples sintered in argon, with the increase of sintering temperature the magnetism first increases, then decreases, implying that the sintering temperature has an large impact on the magnetism of the samples. As to the origin of room-temperature ferromagnetism, in the framework of bound magnetic polaron theory, the oxygen defects in the samples induce the ferromagnetism.
引文
[1]Grunberg P,Schreiber R, Pang Y, et al. Layered magnetic structures:Evidence for antiferromagnetic coupling of Fe layers across Cr interlayers, Phys. Rev. Lett. 1986,57:2442-2445.
    [2]Baibich M N, Broto J M, Fert A, et al. Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices, Phys.Rev. Lett.1988,61:2472-2475.
    [3]White R L. Giant magnetoresistance:a primer. IEEE Transactions on magnetics.1992,28 (5):2482-2487.
    [4]Dieny B, Sperio su V S,Park in S S P, et al. Giant magneto resistance in soft ferromagnetic mut lilayers. Phys. Rev. B 1991;43 (1):1297-1300.
    [5]Julliere M. Tunneling between ferromagnetic films. Phys.Lett. A 1975,54 (3):225-226.
    [6]Xiao John Q,Samuel Jiang J, Cien C L. Giantmagneto resistance in the granular Co-Ag system. Phys. Rev. B 1992,46:9266-9268.
    [7]Jonner G H, Van Santen JH. Low temperature magnetoresistance and the magnetic phase diagram of La1-xCaxMnO3, Physica.1950,16,3:337-339.
    [8]von Helmolt R, Wecker J, Holzapfel B, et al. Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnOx ferromagnetic films. Phys. Rev. Lett.1993,71: 2331-2335.
    [9]Kobayashi K I, Kimura T, Sawada H, et al. Room-temperature magnetoresistance in an oxide material with an ordered double-perovskire structure. Nature,1998, 395:677-680.
    [10]Zeng Z, Greenblatt M, Subramanian M A, et al. Large low-field magnetoresistance in perovskite-type CaCu3Mn4O12 without double exchange. Phys. Rev. Lett.1999, 82 (15):3164-3167.
    [11]Shim J H, Hwang T, Jeong Y H. Origin of ferromagnetism in Fe-and Cu-codoped ZnO. Appl. Phys. Lett.2005,86:082503-082506.
    [12]Zheng R K, Liu H, Zhang X X, et al. Exchange bias and the origin of magnetism in Mn-doped ZnO tetrapods. Appl. Phys. Lett.2004,85:2589-2591.
    [13]Huang J C A, Hsu H S, Hu Y M, et al. Origin of ferromagnetism in ZnO/CoFe multilayers:Diluted magnetic semiconductor or clustering effect. Appl. Phys. Lett. 2004,85:3815-3817.
    [14]Quesada A, Garcia M A, Andres M, et al. Ferromagnetism in bulk Co-Zn-O. J. Appl. Phys.2006,100:113909-113913.
    [15]Martin-Gonzalez M S, Fernandez J F, Rubio-Marcos F, et al. Insights into the oom temperature magnetism of ZnO/Co3O4 mixtures. J. Appl. Phys.2008,103: 083905-183908.
    [16]Potzger K, Zhou S Q, Reuther H, et al. Fe implanted ferromagnetic ZnO. Appl. Phys. Lett.2006,88:052508-052510.
    [17]Raghava P.Panguluri, B.Nadgorny, T. Wojtowicz, et al. Inelastic scattering and spin polarization in dilute magnetic semiconductor (Ga, Mn)Sb.Appl.Phys.Lett. 2007,91:252502-252504.
    [18]Benjamin B, Kristian K, Gerhard H, et al. A new diluted magnetic semiconductor: The half-metallic ferromagnet CoTi1-xFexSb. J. Appl. Phys.2008,103:07D115-07D118.
    [19]Coey J M D, Venkatesan M, Fitzgerald C B. Donor impurity band exchange in dilute ferromagntic oxide. Nat. Mater,2005,4:173-179.
    [20]Philip J, Punnoose A, Kim B I, et al. Carrier-controlled ferromagnetism in transparent oxide semiconductors. Nat. Mater,2007,5:298-304.
    [21]Tomasz Dietl.Origin and control of ferromagnetism in dilute magnetic semiconductors and oxides (invited). J. Appl. Phys.2008,103:07D111-07D114.
    [22]Ruderman M, kittel C. Indirect Exchange Coupling of Nuclear Magnetic Moments by Conduction Electrons. Phys. Rev.1954,96:99-102.
    [23]Furdyna J K. Diluted magnetic semiconductors. J. Appl. Phys.1988,64:R29-R64.
    [24]Zener C.Interaction Between the d Shells in the Transition Metals. Phys. Rev. 1951,81:440-444.
    [25]Dietl T, Ohno H, Mat sukura F, et al. Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors. Science.2000,287:1019-1022.
    [26]Awschalom D D, Halbout J M, Molnar S von. Dynamic Spin Organization in Dilute Magnetic Systems. Phys. Rev. Lett.1985,55:1128-1131.
    [27]Tian Z M, Yuan S L, Yin SY, et al. Synthesis and magnetic properties of vanadium doped anatase TiO2 nanoparticles J.Magn. Magn.Mate.2008,320:L5-L9.
    [28]Awschalom D D,Flatte M E,Samarth N. Spintronics. Scientific American,2002, 286(6):66-73.
    [29]Jansen R. The Spin-Valve Transistor:Fabrication,Characterization,and Physics. J.Appl.Phys,2001,89:7431-7433.
    [30]Meiklejohn W H, Bean C P. New magnetic anisotropy. Phys. Rev,1957,105(3): 904-913.
    [31]Nogues J, Schuller I K. Exchange Bias. J. Magn.Magn.Mater.,1999,192:203-232.
    [32]Nogues J, Sort J, Langlais V,et al. Exchange bias in nanostructures. Physics Reports 2005,422:65-117.
    [33]Leighton C, Fitzsimmons M R, Hoffmann A, et al. Thickness-dependent coercive mechanisms in exchange-biased bilayers. Phys. Rev. B 2002,65:064403-064408.
    [34]Sort J,Dieny B, Fraune M. Perpendicular exchange bias in antiferromagnetic-ferromagnetic Nanostructures. Appl. Phys. Lett,2004,84:3696-3698.
    [35]Ildico L. Guhr, Olav Hellwig, Christoph Brombacher, et al. Observation of perpendicular exchange bias in [Pd/Co]-CoO nanostructures:Dependence on size, cooling field, and training. Phys.Rev. B 2007,76:064434-064439.
    [36]Dijken S V, Crofton M, Coey J M D. Perpendicular exchange bias in nickel/ antiferromagnetic bilayers. J. Magn.Magn.Mater.2005,290:1290-1293
    [37]Passamani EC, Larica C, Marques C, et al. Large vertical loop shifts in mechanically synthesized (Mn,Fe)2O3 nanograins. J. Magn. Magn.Mater.2007,314: 21-29.
    [38]Nogues J, Lederman D, Moran T J, et al. Positive Exchange Bias in FeF2-Fe Bilayers. Phys.Rev.Lett.1999,24:4624-4627.
    [39]Deng D S, Jin X F, Tao R B.Exchange bias in ferromagnetic/compensated antiferromagnetic bilayers. Phys.Rev.B 2002,65:172402-172405.
    [40]Mangin S, Montaigne F, Sehuhl A. Interface domain wall and exchange bias phenomena in ferrimagnetic/ferrimagnetic bilayers. Phys. Rev. B 2003,68:140404-140407.
    [41]Canet F, Bellouard C, Manginetal S.Eur. Phys. J. B 2003,34:381-385.
    [42]Skymryev V, Stoyanov S,Zhang Y, et al. Beating the superparamagnetic limit with exchang bias. Nature,2003,423:850-852.
    [43]Binasch G, Grunberg P, Zinn W, et al. Enhanced magnetoresistance in layerd magnetic structures with antiferromagnetic interplayer exchange. Phys. Rev.B 1989,39:4828-4831.
    [44]Comstock R L. Modern magnetic materials in data storage. J. Mater. Sci. Mater. Electron.2002,13:509-513.
    [45]Kodama R H, Berkowitz A E. Atomic-scale magnetic modeling of oxide nanoparticles. Phys. Rev. B 1999,59(9):6321-6336.
    [46]Martinez B, Obradors X, Balcells L, et al. Low Temperature Surface Spin-Glass Transition in y-Fe2O3 Nanoparticles. Phys. Rev. Lett.1998,80(1):181-184.
    [47]Bobo J F, Gabillet L, Bibes M. Recent advances in nanomagnetism and spin electronics. J. Phys.:Condens Matter 2004,16:S471-S496.
    [48]Jungblut R, Coehoorn R,Johnson MT, et al. Orientational dependence of the exchange biasing in molecular-beam-epitaxy-grown Ni80Fe20/Fe50Mn50 bilayers. J. Appl. Phys.1994,75:6659-6662.
    [49]Schulthess T, Butler W. Consequences of Spin-Flop Coupling in Exchange Biased Films. Phys Rev Lett,1998,81(20):4516-4519.
    [50]Yi J B, Ding J, Zhao Z L, et al. High coercivity and exchange coupling of Ni/NiO nanocomposite film, J.Appl. Phys,2005,97(10):10K306-10K308.
    [51]Gredig T, Krivorotov I N, Eames P, et al. Unidirectional coercivity enhancement in exchange-biased Co/CoO.Appl. Phys. Lett.2002,81:1270-1272.
    [52]Thakur M, Patra M, Majumdar S, Giri S.Influence of cooling field on the magnetic properties of Ni/NiO nanostructure. J. Alloys. Compd.2009,480: 193-197.
    [53]Zheng R K, Liu H, Wang X X. Cr2O3 surface layer and exchange bias in an acicular CrO2 particle. Appl.Phys. Lett.2004,84:702-704.
    [54]Liu X W, Cui W B, Liu W, et al. Exchange bias in antiferromagnetic coupled Fe3O4+Cr2O3 nanocomposites. J.Phys.D:Appl.Phys.2008,41:105005-105009.
    [55]Kumar P K, Mandal K, Exchange bias in Co-Cr2O3 nanocomposites. J. Appl.Phys.2007,101:113906-113909.
    [56]He J H, Yuan S L, Yin S Y, et al. Exchange bias and the origin of room-temperature ferromagnetism in Fe-doped NiO bulk samples. J. Appl. Phys. 2008,103:023906-023909.
    [57]Liu K L, Yuan S L, Duan H N, et al. A comparative study on the magnetic properties of Fe-doped CuO nanopowders prepared by sol-gel and co-precipitation method. Mater.Lett.2010,64:192-194.
    [58]Malozemff A P. Random-field model of exchange anisotropy at rough ferromagnetic-antiferromagnetic interfaces. Phys. Rev. B,1987, 35(7):3679-3682.
    [59]Jagodic M, Jaglicic Z, Jelen A, et al.Surface-spin magnetism of antiferromagnetic NiO in nanoparticle and bulk morphology. J. Phys.:Condens. Matter.2009,21: 21530-215305.
    [60]Makhloufa S A, Al-Attara H, Kodamab R H.Particle size and temperature dependence of exchange bias in NiO nanoparticles. Solid State Communications. 2008,145:1-4.
    [61]Mauri D, Kay E, Scholl D, Howard J K. Novel method for determining the anisotropy constant of MnFe in a NiFe/MnFe sandwich, J.Appl. Phys.1987, 62:2929-2932.
    [62]Jungblut R, Coehoorn R, Johnson M T, et al. Orientational dependence of the exchange biasing in molecular-beam-epitaxy-grown Ni80Fe20/Fe50Mn50 bilayers, J.Appl.Phys,1994,75(10):6659-6664.
    [63]Burkett S L, Kora S, Lusth J C, et al. Annealing of spin valves with high exchange pinning fields. IEEE Transaction on Magnetics,1997,33(5):3544-3546
    [64]Moran T J, Gallego J M, Schuller I K. Increased exchange anisotropy due to disorder at permalloy/CoO interfaces. J. Appl. Phys.1995,78:1887-1891.
    [65]Shen J X, Kief M T. Exchange coupling between NiO and NiFe thin films. J. Appl. Phys.1996,79 (8):5008-5010.
    [66]Han D H, Zhu J G, Judy J H, et al. Texture and surface/interface topological effects on the exchange and coercive fields of NiFe/NiO bilayers. J. Appl. Phys. 1997,81:340-343.
    [67]Soeya S,Fuyama M,Tadokoro S, et al. NiO structure-exchange anisotropy relation in the Ni81Fel9/NiO films and thermal stability of its NiO film. J. Appl. Phys.1996,79(3):1604-1610.
    [68]Tang L, Laughlin D E, Gangopadhyay S.Microstructural study of ion-beam deposited giant magnetoresistive spin valves. J. Appl. Phys.1997,81:4906-4909.
    [69]Takano K, Kodama R H,Berkowitz A E, et al. Interfacial Uncompensated Antiferromagnetic Spins:Role in Unidirectional Anisotropy in Polycrystalline Ni81Fe19/CoO Bilayers. Phys. Rev. Lett.1997,79(6):1130-1133.
    [70]Pang W, Stamps R L, Malkinski L,et al. Exchange bias systems of Fe/KFeF3. J.Appl.Phys.2004,95:7309-7311.
    [71]Neel L. Ferro-Antiferromanetic coupling in thin layers. Ann.Phys.1967,2:61-63.
    [72]Mauri D,Siegmann H C, Bagus P S, et al. Simple model for thin ferromagnetic films exchange coupled to an antiferromagnetic substrate. J. Appl. Phys.1987,62: 3047-3050.
    [73]Malozemoff A P. Random-field model of exchange anisot ropy at rough ferromagnetic-antiferromagnetic interfaces.Phys Rev B,1987,35(7):3679-3682.
    [74]Malozemoff A P.Mechanisms of exchange anisot ropy. J Appl Phys,1988, 63:3874-3879.
    [75]Nowak U, Usadel K D, Keller J, et al. Domain state model for exchange bias. I. Theory. Phys. Rev. B 2002,66:014430-014436.
    [76]Morales R, Li Z P,Olamit J, et al. Role of the antiferromagnetic buld spin structure on exchange bias. Phys. Rev.Lett.2009,102:097201-097203.
    [77]Shi H T, Ledemran D, et al, Exchange bias in FexZn1-xF2/Co bilayers. J. Appl. Phys.2002.91:7763-7765.
    [78]Fecioru-Morariu M, Ali S R, Papusoi C. Effects of Cu Dilution in IrMn on the Exchange Bias of CoFe/IrMn Bilayers.Phys.Rev.Lett.2007,99:097206-097209.
    [79]Hayamizu S, Tabata H, Tanaka H, et al. Preparation of crystallized zinc oxide films on amorphous glass substrates by pulsed laser deposition. J. Appl. Phys. 1996,80:787-789.
    [80]Wu O K,Kamath G S,Radford W A, et al.Chemical doping of HgCdTe by molecular-beam epitaxy. J. Vac. Sci. Technol.1990,8:1034-1038.
    [81]Yang Q H,Li C,Yuan S D, et al. Epoxidation of Styrene on a Novel Titanium-Silica Catalyst Prepared by Ion Beam Implantation. J. Catal.1999,183: 128-130.
    [82]Rykov A I, Nomura K, Sakuma J, et al. Dilution and clustering of Fe in the rutile phases of TiO2 and SnO2. Phys. Rev B 2008,77(1):014302-014309.
    [83]De Toro J A, Andres J P, Gonzalez J A, et al. Exchange bias and nanoparticle magnetic stability in Co-CoO composites, Phys Rev B.2006,73(9): 094449-094454.
    [84]Sun X C, Dong X L. Magnetic properties and microstructure of carbon encapsulated Ni nanoparticles and pure Ni nanoparticles coated with NiO layer. Mate. Res. Bull.2002,37:991-1004
    [85]Shendruk T N, Desautels R D, Southern B W, et al. The effect of surface spin disorder on the magnetism of γ-Fe2O3 nanoparticle dispersions, Nanotechnology. 2007,18:455704-455709.
    [86]Zheng R K, Wen G H, Fung K K, Zhang X X. Giant exchange bias and the vertical shifts of hysteresis loops in γ-Fe2O3-coated Fe nanoparticles. J. Appl. Phys, 2004,95(9):5244-5246
    [87]He J H, Yuan S L, Yin S Y, et al. Exchange bias and the origin of room-ferromagnetism in Fe doped NiO bulk samples. J. Appl. Phys.2008,102: 023906-023909.
    [88]Tian Z M, Yuan S L, Liu L, et al. Synthesis and exchange bias effect of CuFe2O4/ NiO nanocomposites. Smart Mater. Struct.2009,18:015018-015021.
    [89]Meneses C T, Duque J G S, Vivas LG, Knobel N. Synthesis and characterization of TM-doped CuO (TM= Fe, Ni). J.non-crystal. Solids.2008,354:4830-4832.
    [90]Borzi R A, Stewart S J, Punte G, Mercader R C. Effect of ion doping on CuO magnetism. J. Appl. Phys.2000,87:4870-4872.
    [91]Stewart S J, Borzi R A, Punte G, et al. Phase stability and magnetic behavior of Fe-doped CuO powders.Phys.Rev. B 1998,57:4983-4988.
    [92]Park Y R, Kim K J, Choi S L,et al. Ferromagnetism in Fe-doped cupric oxide. Phys.Stat. sol. (b) 2007,244:4578-4581.
    [93]Zhao F, Qiu H M, Pan L Q, Ferromagnetism analysis of Mn-doped CuO thin films. J. Phys.:Condens. Matter.2008,20:425208-425211.
    [94]Zhu H, Zhao F, Pan L, et al. Structural and magnetic properties of Mn-doped CuO thin films. J.Appl. Phys.2007,101:09H111-09H113.
    [95]Punnoose A, Magnone H, Seehra M S. Bulk to nanoscale magnetism and exchange bias in CuO nanoparticles. Phys.Rev B 2001,64:174420-174427.
    [96]Mishra S R, Dubenko I, Khan M, et al. Exchange-Coupled FeNi-X (X=CuO, NiO, and CoO) Nanocomposites Prepared Via Ball Milling. IEEE Trans Magn, 2006;42:2808-2811.
    [97]Lund M S, Macedo W A, Liu K, et al. Effect of anisotropy on the critical antiferromagnet thickness in exchange-biased bilayers. Phys.Rev.B 2002,66: 054422-054428.
    [98]Thakur M,Del K, Giri S, et al. Interparticle interaction and size effect in polymer coated magnetite nanoparticles. J.Phys.:Condens. Matter 2006,18:9093-9104
    [99]Oscar I, Xavier B, Amilcar L.Particle size and cooling field dependence of exchange bias in core/shell magnetic nanoparticles. J.Phys. D:Appl. Phys.2008, 41:134010-134014
    [100]Mewes T, Lopusnik R, Fassbender J, et al. Suppression of exchange bias by ion irradiation. Appl. Phys. Lett.2000,76:1057-1059.
    [101]Junk I H, Titus L, David S, et al. Enhancing Exchange Bias with Diluted Antiferromagnets. Phys. Rev. Lett,2006,96(11):117204-117207.
    [102]Shams N N, Rahman M T, Lai C H. Defect mediated tuning of exchange bias in IrMn/CoFe nanostructure J.Appl. Phys.2009,105:07D722-07D725.
    [103]Rahman M T, Shams N N, Wu Y C. Magnetic multilayers on porous anodized alumina for percolated perpendicular media. Appl. Phys. Lett.2007,91: 132505-132507.
    [104]Seo J W,Fullerton E E, Nolting F,et al. Antiferromagnetic LaFeO3 thin films and their effect on exchange bias. J.Phys.:Condens. Matter 2008,20:264014-264023.
    [105]Summerfelt S R, Carter C B. Kinetics of NiFe2O4 precipitation in NiO, J Am Cera Soc,1992,75(8):2244-2250.
    [106]Domingo N, Fiorani D, Testa A M, et al. Exchange bias in a superspin glass system of Co particles in Mn matrix. J. Phys. D:Appl. Phys 2008,41,134009-134013.
    [107]Elena LS, Rumplecker A,Freddy K, et al. Exchange Anisotropy in Nanocasted CO3O4 Nanowires. Nano. Letters.2006,6:2977-2981.
    [108]Maaz K, Karim S, Mumtaz A, et al. Synthesis and magnetic characterization of nickel ferrite nanoparticles prepared by co-precipitation route. J.Magn.Mater. Magn.2009,321:1838-1842.
    [109]Karmakar S, Taran S, Bose E, et al. Evidence of intrinsic exchange bias and its origin in spin-glass-like disordered L0.5Sr0.5MnO3 manganites. Phys.Rev. B 2008,77:144409-144418.
    [110]Liu X X, Lin F T, Sun L L, et al. Doping concentration dependence of room-temperature ferromagnetism for Ni-doped ZnO thin films prepared by pulsed-laser deposition. Appl. Phys. Lett.2006,88(6):062508-062510.
    [111]Matsumoto Y, Murakami M, Shono T, et al. Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science,2001,291:854-856.
    [112]Ogale S B, Choudhary R J, Buban J P, et al. High Temperature Ferromagnetism with a Giant Magnetic Moment in Transparent Co-doped SnO2-6.Phys. Rev. Lett. 2003,91(7):077205-077208.
    [113]Wen Q Y, Zhang H W, Song Y Q, et al. Room-temperature ferromagnetism in Co doped La2O3. J. Appl.Lett.2008,103:07D120-07D124.
    [114]Coey J M D, Venkatesan M, Stamenov P, et al. Magnetism in hafnium dioxide. Phys. Rev. B 2005,72:024450-024456.
    [115]Fernandes V, Klein J J, Mattoso N, et al. Room temperature ferromagnetism in Co-doped CeO2 films on Si(001). Phys. Rev. B 2007,75:121304-121307.
    [116]Vodungbo B, Zheng Y, Vida F, et al. Room temperature ferromagnetism of Co doped CeCO2-δ diluted magnetic oxide:Effect of oxygen and anisotropy. Appl.Phys. Lett.2007,90:062510-062512.
    [117]Song Y Q, Zhang H W, Wen Q Y, et al. Co doping effect on the magnetic properties of CeO2 films on Si(111) substrates. J. Appl.Phys.2007,102: 043912-043915.
    [118]Wen Q Y, Zhang H W, Song Y Q, et al. Room-temperature ferromagnetism in pure and Co doped CeO2 powders. J. Phys.:Condens. Matter,2007,19: 246205-246211.
    [119]Coey J M D, Douvalis A P, Fitzgerald C B, et al. Ferromagnetism in Fe-doped SnO2 thin films. Appl. Phys. Lett.2004,84:1332-1334.
    [120]Wongsaprom K, Swatsitang E,Maensiri S, et al. Room temperature ferromagnetism in Co-doped La0.5Sr0.5sTiO3 nanoparticles. Appl.Phys.Lett.2007, 90:162506-162508.
    [121]Maensiri S, Wongsaprom K, Swatsitang E, et al. Fe-doped La0.5Sr0.5TiO3 nanoparticles:A diluted magnetic oxide system. J. Appl. Phys.2007,102:076110-076114.
    [122]Fukumura T, Jin Z W, Ohtomo A, et al. An oxide-diluted magnetic semiconductor: Mn-doped ZnO. Appl. Phys. Lett.1999,75:3366-3368.
    [123]Qiao P T, Zhao Z H,Zhao Y G, et al. Structural, electrical transport and magnetic properties of the Co-doped La0.5Sr0.5TiO3 at high temperatures. Thin. Solid. Films. 2004,468:8-11.
    [124]Herranz G, Ranchal R, Bibes M, et al. Co-Doped (La,Sr)TiO3:A High Curie Temperature Diluted Magnetic System with Large Spin Polarization. Phys. Rev. Lett.2006,96:027207-027210.
    [125]Georgea M, Mary John A, Naira S S, et al. Finite size effects on the structural and magnetic properties of sol-gel synthesized NiFe2O4 powders. J. Magn. Magn. Mater.2006,302:190-195.
    [126]Akira S, Kasai H, Tonomura A, et al. Domain Walls in the (Ga,Mn)As Diluted Magnetic Semiconductor. Phys.Rev.Lett.2008,100:047202-047205.
    [127]Sugata R, Priya M, Suman M, High temperature ferromagnetism in single crystalline dilute Fe-doped BaTiO3.Phys. Rev.B 2008,77:104416-104420.
    [128]Spalet J, Lewichki A, Tarnawski Z, et al. Exchange energy, magnetization, and Raman scattering of (Cd, Mn)Se.Phys. Rev. B 1984,29:5634-5640.
    [129]Luo L B, Zhao Y G, Tian H F, et al. Room-temperature ferromagnetism in the Co-doped Ba0.5Sr0.5TiO3 thin films. Appl. Phys. Lett.2008,92:232507-232509.
    [130]Takano K, Kodama R H, Berkowitz A E, et al. Interfacial Uncompensated Antiferromagnetic Spins:Role in Unidirectional Anisotropy in Polycrystalline Ni81Fe19/CoO Bilayers. Phys. Rev. Lett.1997,79:1130-1133.
    [131]Fernandez G V, Fernandez-Outon L E, O'Grady K. Antiferromagnetic grain volume effects inmetallic polycrystalline exchange biassystems. J. Phys. D:Appl. Phys.2008,41:112001-112004.
    [132]Manginas G, Chatzichristidi M, Speliotis T, Exchange bias in ferromagnetic/ antiferromagnetic submicron structures. Microelectronic Engineering 2007,84: 1536-1539
    [133]Bianco L D, Fiorani D, Alberto M, Field-cooling dependence of exchange bias in a granular system of Fe nanoparticles embedded in an Fe oxide matrix. Phys.Rev. B 2004,70:052401-052403.
    [134]Miltenyi P, Gierlings M, Bamming M, et al. Tuning exchange bias. Appl.Phys. Lett.1999,75:2304-2306.
    [135]Keller J, Miltenyi P, Beschoten B, et al. Domain state model for exchange bias.Ⅱ. Experiments. Phys. Rev. B 2002 66:014431-014441.
    [136]Miltenyi P, Gierlings M, Keller J, et al. Diluted Antiferromagnets in Exchange Bias:Proof of the Domain State Model. Phys.Rev.Lett.2000,84:4224-4227.
    [137]Beschoten B, Keller J, Miltenyi P, et al. Domain state model for exchange bias: thickness dependence of diluted antiferromagnetic Co1-yO on exchange bias in Co/CoO.J.Magn. Magn.Mater.2002,240:248-250.
    [138]Ghadimi M R, Beschoten B, Giintherodt G. Role of structural defects on exchange bias in the epitaxial CoO/Co system. Appl. Phys.Lett.2005,87:261903-261905.
    [139]Cui W B, Hu W J, Zhang Y J, et al. Cooling-field dependence of exchange bias in Mg-diluted Ni1-xMgxO/Ni granular systems. J. Magn. Magn. Mater.2009,321: 1943-1946.
    [140]Huang X H, Ding J F, Zhang G Q, et al. Size-dependent exchange bias in La0.25Ca0.75Mn03 nanoparticles. Phys. Rev. B 2008,78:224408-224411.
    [141]Tang Y K, Sun Y, Cheng Z H, Magnetic aging above the freezing temperature in La0.82Sr0.18Co03. J.Phys:Condens Matter.2008,20:095208-095211.
    [142]Freitas R S, Ghivelder L, Damay F, et al. Magnetic relaxation phenomena and cluster glass properties of La0.7-xYxCa0.3MnO3 manganites.Phys. Rev. B 2001,64: 144404-144409.
    [143]Niebieskikwiat D, Salamon M B. Intrinsic interface exchange coupling of ferromagnetic nanodomains in a charge ordered manganite.Phys. Rev. B 2005,72: 174422-174427.
    [144]Morariu M F, Ali S R, Papusoi C, et al. Effects of Cu Dilution in IrMn on the Exchange Bias of CoFe/IrMn Bilayers.Phys. Rev. Lett.2007,99:097206-097209.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700