ZnO基稀磁半导体的制备与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,基于对电子自旋态的产生、输运、控制等的研究,导致了一门新的学科——自旋电子学的诞生。由于自旋电子器件能同时利用电子的电荷属性和自旋属性,它有可能成为电子科学与技术的新革命。稀磁半导体作为自旋电子学的重要基础,目前引起了科学界的广泛关注。
     稀磁半导体(DMS)是目前国际上研究的热门课题,研究最为广泛的是过渡族金属掺杂的ZnO所制成的DMS。尽管理论和实验上已经取得了可喜的结果,但是到目前为止,虽然人们对磁性半导体的微结构、磁性、电子输运、磁电阻、光学、磁光等性质都作了一些研究,然而来自不同研究小组的结果很不一致,甚至互相矛盾。其中氧化物磁性半导体的磁性起源是争论的焦点。研究者认为磁性可能来源于载流子诱导的交换作用、双交换作用等内禀的机制,也有可能是由于过渡元素在半导体中的溶解渡偏低而形成的铁磁性杂质相而引起的。因此还有许多问题有待于更进一步的研究。本文主要在ZnO基DMS方面开展了一些研究工作。
     ①利用溶液腐蚀法制备了Mn2+离子掺杂的ZnO基稀磁半导体。XRD表明掺杂后的ZnO仍然保持单一的纤锌矿结构,没有任何杂质相产生。XPS表明Mn离子以+2价的形式存在于样品中。从紫外-可见光反射谱中,我们发现吸收边发生了红移。掺杂后样品的室温PL谱除了紫外发射峰外,在蓝光区域还出现了两个新的位于424nm和443nm的发射峰。室温磁滞回线显示样品有明显的铁磁性,剩余磁化强度为0.3902×10-3 emu/cm3,矫顽力为47Oe。我们分析室温铁磁性来源于缺陷调制的Mn2+-Mn2+长程铁磁交换相互作用。
     ②利用溶液腐蚀法制备了不同浓度的Ni2+离子掺杂的ZnO基稀磁半导体。通过改变反应时间控制掺入的Ni2+离子的浓度。XRD发现,随着掺杂浓度的增大,样品中出现了NiO杂质相,证实了Ni在ZnO中的溶解度低于5%。XPS证明Ni离子以Ni2+的形式掺入ZnO的晶格。室温下的PL谱的紫外发射峰随着掺杂量的增加,峰强减弱,并出现了红移。当样品中掺入过多的Ni后,由于Ni离子会与ZnO中的部分氧离子形成NiO杂质,相应在ZnO中会出现氧空位,因此在该样品中还观察到了由于氧空位引起的绿光发射峰。不同浓度的样品都观察到了室温铁磁性,对应Ni的浓度分别为2.38,4.35和5.54 at%,剩余磁化强度分别为0.454,0.605和0.526emu/cm3。
     ③用溶液腐蚀法制备了Fe掺杂的ZnO纳米棒阵列。通过调节反应时间控制掺入Fe元素的含量。XRD测试发现随着掺入的Fe增多,有ZnFe2O4杂质产生。XPS分析发现样品中Fe都以接近+3价存在。研究了掺杂对样品光学性质的影响,室温PL谱发现掺杂后紫外发射峰出现了红移,并且随着掺杂量的增多峰强在减弱。掺杂后由于有锌间隙缺陷的形成,三个样品都在蓝光区域产生了发射峰。同时对于有ZnFe2O4杂质产生的样品在绿光区域出现了一个发射峰。对样品进行了磁性的研究,掺杂前的ZnO在室温下表现出顺磁性,掺杂后,M-H曲线表现出明显的磁滞行为,证明Fe的掺杂使ZnO具有了室温铁磁性。三个样品的剩余磁化强度分别为0.372,0.613和0.557 emu/cm3,矫顽力分别为99.33,117.3和24.4 Oe。
     ④由于Cu是非磁性离子,因此研究Cu离子掺杂是否引起铁磁性可以用来证明DMS中的铁磁性是否是材料本征的关键。因此,我们用溶液腐蚀法制备了Cu掺杂的ZnO。研究了掺杂对样品光学性质的影响,室温PL谱测试发现掺杂后紫外发射峰出现了红移。同时,Cu离子进入ZnO晶格引入了如锌间隙以及氧空位等缺陷造成PL谱在蓝光区域和绿光区域出现了发射峰。对样品进行了磁性的研究,掺杂前的ZnO在室温下表现出顺磁性,掺杂后,M-H曲线表现出明显的磁滞行为,证明Cu的掺杂使ZnO具有了室温铁磁性。由于Cu是非磁性离子,因此由于Cu离子的掺杂而引起的室温铁磁性证实了样品的磁性是材料本征的。
In recent years, based on the research of produce, transportation and manipulation of electron spin, a new subject called“Spintronics”emerges. Due to the possibility of controlling both the spin and charge of electron, spintronics might bring a new revolution in the field of trasitional electronics. Meanwhile, as the footstone of designing spin-based devices, diluted magnetic semiconductors have now draun dramatic attentions.
     The research on diluted magnetic semiconductors is one o f the frontiers of modern physics. As one of the most promising DMS candidates, transition metals doped ZnO has been receiving great attention very recently. Although there have been many inspiring results in both theoretic and experimental fields, some questions are still to be further solved. The researchers have done some research on the micro-structure、magnetic、electronic transport、magnetic resestance、optical、magneto-optical and other properties of magnetic semiconductors, the results are inconsistent even contradictory. The origin of ferromagnetic is the focus of debate of oxide magnetic semiconductor. Researchers believed the magnetic come from the carrier induced exchange interaction, double exchange et al intrinsic mechanisms. Also, it may be due to the low dissolve of the transition elements in semiconductor which lead to the ferromagnetic impurity phase. Therefore, there are many issues to be solved further. In this paper, we mainly focus on the ZnO-based DMS to do some research.
     ①We have investigated the properties of Mn-doped ZnO nanocrystalline film grown on zinc foil by corrosion-based strategy. The X-ray photoelectron spectroscopy show the manganese doped in ZnO exists as Mn2+. UV-vis spectra exhibit a decrease in the band gap after being doped with Mn. The photoluminescence spectrum of the Mn-doped ZnO film shows the two strong new peaks, blue emission peaks centered at 424 nm and 443 nm, except the UV emission peak owing to the band gap of ZnO semiconductor. The magnetic property of the Mn-doped ZnO exhibits a room temperature ferromagnetic characteristic with a saturation magnetization (Ms) of 0.3902×10-3 emu/cm2 and a coercive field of 47 Oe.
     ②Ni-doped ZnO rod arrays have grown on zinc foils by corrosion-based strategy. The doping Ni content could be controlled by varying the reaction time. The X-ray diffraction and X-ray photoelectron spectroscopy indicated that the Ni ions are incorporated into the ZnO lattices as Ni2+ ions. However, NiO forms when the Ni content is more than 5 at %. Photoluminescence peak of the rod arrays shifts to a little longer wavelength and its intensity decreases with the increase of Ni content. The green light emission as a result of oxygen vacancies was observed when excessive Ni ions were doped in ZnO. The rod arrays have exhibited room-temperature ferromagnetic behavior with the remanence of 0.454, 0.605 and 0.526 emu/cm3 for the Ni concentration of 2.38, 4.35 and 5.54 at%, respectively.
     ③Fe-doped ZnO rod arrays have grown on zinc foils by corrosion-based strategy. The doping Fe content could be controlled by varying the reaction time. The X-ray diffraction and X-ray photoelectron spectroscopy indicated that the Fe ions are incorporated into the ZnO lattices as Fe3+ ions. However, ZnFe2O4 forms when more Fe ions incorporated into the ZnO. Photoluminescence peak of the rod arrays shifts to a little longer wavelength and its intensity decreases with the increase of Fe content. Blue emission peak can be found in these three sampls. The green light emission as a result of oxygen vacancies was observed when excessive Fe ions were doped in ZnO. The rod arrays have exhibited room-temperature ferromagnetic behavior with the remanence of 0.372, 0.613, 0.557 emu/cm3 and the coercivity are 99.33, 117.3, 24.4 Oe respectively.
     ④Because the Cu is non-magnetic ions, to study the Cu doping could give rise to ferromagnetism or not is very important. Cu-doped ZnO rod arrays have grown on zinc foils by corrosion-based strategy. PL spectra exhibit a red shift for the UV emission peak after being doped with Cu. There are two emission peaks in blue and green region for the interstitial zinc defects and oxygen vacancy defects caused by Cu ions incorporation. The magnetic property of the Cu-doped ZnO exhibits a room temperature ferromagnetic. The Cu is nonmagnetic ions. The room temperature ferromagnetic caused by Cu ions’incorporation is a strong evidence for the ferromagnetic is intrinsic of the samples.
引文
[1]焦正宽,曹光旱.磁电子学[M].浙江:浙江大学出版社,2005.
    [2] M. N. Baibich, J. M. Broto, A. Fert, et al. Giant Magnetoresistance of (001) Fe/(001)Cr Magnetic Superlattices[J],Phys. Rev. Lett. 1988, 61:2472-2475.
    [3] Imamoglu, D. D. Awschalom, G. Byrkard, et al. Quantum Information Processing Using Quantum Dot Spins and Cavity QED[J].Phys. Rev Lett. 1999, 83:4204-4207.
    [4] D. P. Divincenzo, Quantum Computation[J]. Science, 1995, 270:255-261.
    [5] B. E. Kane, A silicon-based nuclear spin quantum computer[J].Nature, 1998, 393:133-138.
    [6] G. A. Prinz, Magnetoelectronics[J]. Science, 1998, 282(5395):1660-1663.
    [7] Y. Ohno,D. K. Young, B. Beschoten, F. Matsukura, H. Ohno, D. D. Awschalom, Electrical spin injection in a ferromagnetic semiconductor heterostructure[J]. Nature,1999,402:790-792.
    [8] R. M. Stroud, A. T. Hanbicki, Y. D. Park, G. Kioseoglou, A. G. Petukhov, B. T. Jonker, G. Itskos, A. Petrou, Reduction of Spin Injection Efficiency by Interface Defect Spin Scattering in ZnMnSe/AlGaAs-GaAs Spin-Polarized Light-Emitting Diodes[J].Phys.Rev.Lett.,2002,89 (16):166602.
    [9] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors[J]. Science,2000,287(11): 1019-1022.
    [10] M. H. F. Sluiter, Y. Kawazoe, Parmanand Sharma, A. Inoue, A. R. Raju, C. Rout, U. V. Waghmare, First Principles Based Design and Experimental Evidence for a ZnO-Based Ferromagnet at Room Temperature[J].Phys.Rev.Lett.,2004,94(18):187204.
    [11] S. J. Pearton, C. R. Abernathy, D. P. Norton, A. F. Hebard, Y. D. Park, L. A. Boatner, J. D. Budai, Advances in wide bandgap materials for semiconductor spintronics[J]. Materials Science and Engineering R, 2003, 40:137-168.
    [12] Y. Shapira, N. F. Oliveira, High-field magnetization steps and the nearest-neighbor exchange constant in Cd1-xMnxS, Cd1-xMnxTe, and Zn1-xMnxSe[J]. Phys. Rev. B, 1987,35:6888-6893.
    [13] S. Foner, Y. Shapira, D. Heiman et al, Magnetization steps in dilute magnetic semiconductors to 55-T Mn2+ pair saturation in Cd1-xMnxTe and steps in Zn1-xMnxSe, Zn1-xMnxTe, and Cd1-xMnxSe[J]. Phys. Rev. B, 1989, 39:11793-11799.
    [14] Mauger, M. Escorne, Transport-properties and spin disorder in the degenerate freeo-spin-glass Sn1-xMnxTe[J]. Phys. Rev. B., 1987, 35:1902-1909.
    [15] S. J. E. A. Eltink, H. J. M. Swagten, N. M. J. Stoffels , W. J. M. De Jonge. Correlationbetween electronic and magnetic properties in theⅣ-Ⅵgroup diluted magnetic semiconductor SnMnTe[J]. J. Magn. Magn. Mat,1990,83: 483-484.
    [16] C. J. M. Denissen, H. Nishihara, J C. Vangool, et al., Magnetic-behavior of the semimagnetic semiconductor (Cd1-xMnx)3As2[J]. Phys. Rev: B, 1986, 33:7637-7646.
    [17] H. Munekata, H. Ohno, S. Vonmolnar, et al., Diluted magneticⅢ-Ⅴsemiconductors[J]. Phys. Rev. Lett., 1989, 63:1849-1852.
    [18] H. Ohno, Making Nonmagnetic Semiconductors Ferromagnetic[J]. Science, 1998,281:951-955.
    [19] J. Spalek, A. Lewicki, Z. Tarnawski, Magnetic susceptibility of semimagnetic semiconductors: high-temperature regime and the role of superexchange, Phys. Rev. B[J]. 1986,33:4137-4154.
    [20] B. E. Larson, K. C. Hass, H. Ehrenriech, Theory of exchange interactions and chemical trends n diluted magnetic semiconductors,Phys.Rev.B [J].1988,37:4137-4154.
    [21]戴道生;铁昆明.铁磁学(第1版)[M].北京:科学出版社.1987.209.
    [22] P. W. Anderson, Generalizatons of the Weiss Molecular Field Theory of Antiferromagnetism [J]. Phys. Rev.,1950,79:705-710.
    [23] P. W. Anderson, Antiferromagnetism Theory of Superexchange Interaction, Phys. Rev.[J].1950,79:350-356.
    [24] M. Ruderman,C. Kittel, Indirect Exehange CouPling of Nuclear Magnetie Moments by Conduetion Electrons, Phys. Rev.[J].1954,96:99-102.
    [25] T. Dietl, A. Haury, Y. Merle, Free carrier-induced ferromagnetism in structures of diluted magnetic semiconductors, Phys Rev B.[J].1997,55:R3347-3350.
    [26]姜寿亭,李卫,凝聚态磁性物理(第一版)北京:科学出版社[J].2003.146-159.
    [27] C. Zener, Interaction between the d shells in the transition metals, Phys.Rev[J].1951,81:440-446.
    [28] P. W. Anderson, H. Hasegawa, Phys. Rev., 1995,100:675.
    [29] M. Bcrciu, R. N. Bhatt, Effects of Disorder on Ferromagnetism in Diluted Magnetic Semiconductors[J]. Phys. Rev. Lett, 2001, 87: 107203.
    [30] Kaminski, S. Das Sarma, Polaron Percolation in Diluted Magnetic Semiconductors[J]. Phys. Rev. Lett. 2002, 88: 247202.
    [31] T. Dietl, F. Matsukura, H. Ohno, Ferromagnetism of magnetic semiconductors: Zhang-Rice imit[J]. Phys. Rev. B, 2002, 66: 033203/1-4.
    [32] S. D. Sarma, E. H. Hwang, A. Kaminski, Temperature-dependent magnetization in diluted magnetic semiconductors[J]. Phys. Rev. B, 2003, 67: 155201.
    [33] J. M. D. Coey, A. P. Douvalis, C. B. Fitzgerald, Ferromagnetism in Fe-doped SnO2 thin films [J]. Appl. Phys. Lett, 2004,84:1332.
    [34] T. Kasuya, Mobility of the antiferromagnetic large polaron[J]. Solid State Commun, 1970,8:1635.
    [35]李国栋.当代磁学[M].北京:中国科学技术出版社,1999.
    [36] Y. M. Kim, M. Yoon, I. W. Park, Y. J. Park, H. Jong, Lyou, Synthesis and magnetic properties of Zn1-xMnxO films prepared by the sol-gel method[J]. Solid State Commun., 2004, 129:175-178.
    [37] T.Yamamoto, Codoping for the fabrication of p-type ZnO[J]. Thin solid films, 2002, 420-421:100-106.
    [38] H. Ohno,A. Shen, F. Matsukura, A. Oiwa, Z. Endo, S. Katsumoto, Y.Iye, (Ga,Mn)As:A new diluted magnetic semiconductor based on GaAs[J].Appl. Phys. Lett., 1996, 69:363-365.
    [39] J. K. Furdyna,Diluted magnetic semiconductors-an interface of semiconductor physics and magnetism[J].J. Appl. Phys., 1982, 53:7644-7648.
    [40] D. P. Norton, Y. W. Heo, M. P. Ivill, K. Ip, S. J. Pearton, M. F. Chisholm, T. Steiner, ZnO: growth, doping and processing[J]. Mater. Taday., 2004 :34-40.
    [41]刘诩纶.基础元素化学[M].北京:高等教育出版社,1992.
    [42] K. Sato, H. Katayama-Yoshida, Material design for transparent ferromagnets with ZnO-based magnetic semiconductors[J]. Jpn. J. Appl. Phys., 2000,93:7876-7878.
    [43] K. Sato, H. Katayama-Yoshida, Ferromagnetism in a transition metal atom doped ZnO[J]. Physica E, 2001,10:251-255.
    [44] P. Sharma, A. Gupta, K. V. Rao, F. J. Owens, R. Sharma, R. Ahuja, J. M. Osorio Guillen, B. Johansson, and G. A. Gehring, Ferromagnetism above room temperature in bulk and transparent hin films of Mn-doped ZnO[J]. Nat. Mater., 2003,2:673-677.
    [45] J. B. Wang, G. J. Huang, X. L. Zhong, L. Z. Sun, Y. C. Zhou, E. H. Liu, Raman scattering and high temperature ferromagnetism of Mn-doped ZnO nanoparticles[J]. Appl. Phys. Lett., 2006, 88: 252502.
    [46] S. Ramachandran, J. Narayan, J. T. Prater, Effect of oxygen annealing on Mn doped ZnO diluted magnetic semiconductors[J]. Appl. Phys. Lett., 2006, 88 : 242503.
    [47] R. K. Zheng, H. Liu, X. X. Zhang, V. A. L. Roy, A. B. Djurisia, Exchange bias and the origin of magnetism in Mn-doped ZnO tetrapods[J]. Appl. Phys. Lett., 2004, 85 :2589-2591.
    [48] S.Kolesnika, B. Dabrowski, Absence of room temperature ferromagnetism in bulk Mn-doped ZnO[J]. J. Appl. Phys., 2004, 96 : 5379-5381.
    [49] G. Lawes, A. S. Risbud, A. P. Ramirez, Ram Seshadri, Absence of ferromagnetism in Co andMn substituted polycrystalline ZnO[J]. Phys. Rev. B., 2005, 71: 045201.
    [50] S.Senthilkumaar, K. Rajendran, S.Banerjee, T. K. Chini, V. Sengodan, Influence of Mn doping on the microstructrue and optical property of ZnO[J]. Materials Science in Semiconductor Processing, 2008, 11: 6-12.
    [51] B. S. Venkataprasad, F. L. Deepak, Tuning the band gap of ZnO by substitution with Mn2+, Co2+ and Ni2+[J]. Solid State Commun., 2005, 135:345–347.
    [52] R. Viswanatha, S. Sapra, S. S. Gupta, B. Satpati, P. V. Satyam, B. N. Dev and D. D. Sarma, Synthesis and Chracterization of Mn-Doped ZnO Nanocrystals[J]. J. Phys. Chem. B, 2004, 108:6303-6310.
    [53] S. Lim, M. Jeong, M. Ham and J. Myoung, Hole-Mediated Ferromagnetic Properties in Zn1-xMnxO thin films[J]. Jpn. J. Appl. Phys. 2004,43,2B: L280-L283.
    [54] X. T. Zhang, Y. C. Liu, J. Y. Zhang, D. Z. Shen, X. W. Fan, Structure and Photoluminescence of Mn-passivated nanocrystalline ZnO thin film[J]. J. Cryst. Growth.,2003, 254: 80-85.
    [55] K. Sato, H. K. Yoshida, First principles materials design for semiconductor spintronics[J]. Semicond. Sci. Technol., 2002, 17: 367-376.
    [56] T.Wakano, N. Fujimura, Y. Morinaga, N. Abe, A. Ashida, T. Ito, Magnetic and magneto-transport properties of ZnO: Ni films[J]. Physica E., 2001, 10:260-264.
    [57] Z. W. Jin, T. Fukumura, M. Kawasaki, et al., High throughput fabrication of transition-metal-doped epitaxial ZnO thin films: A series of oxide-diluted magnetic semiconductors and their properties[J]. Appl. Phys. Lett. 2001, 78:3824-3826.
    [58] P. V. Radovanovic, D. R. Gamelin, High-Temperature Ferromagnetism in Ni2+-Doped ZnO Aggregates Prepared from Colloidal Diluted Magnetic Semiconductor Quantum Dots[J]. Phys. Rev. Lett., 2003, 91(15):157202.
    [59] D. A. Schwartz, K. R. Kittilstved, D. R. Gamelin, Above-room-temperature ferromagnetic Ni2+-doped ZnO thin films prepared from colloidal diluted magnetic semiconductor quantum dots[J]. Appl. Phys. Lett., 2004, 85(13):1395-1397.
    [60] K. Sato, H. Katayama-Yoshida, Electronic structure and ferromagnetism of transition-metal- impurity-doped zinc oxide[J]. Physica B, 2001, 308-310: 904-907.
    [61] X. X. Liu, F. T. Lin, L. L. Sun, W. J. Cheng, X. M. Ma, and W. Z. Shi, Doping concentration dependence of room-temperature ferromagnetism for Ni-doped ZnO thin films prepared by pulsed-laser deposition[J]. Appl. Phys. Lett., 2006, 88:06250869.
    [62] D. J. Qiu, H. Z. Wu, A. M. Feng, Y. F. Lao, N. B. Chen, T. N. Xu, Annealing effects on the microstructure and photoluminescence properties of Ni-doped ZnO films[J]. Appl. Surf. Sci., 2004, 222: 263-268.
    [63] D. W. Wu, M. Yang, Z. B. Huang, G. F. Yin, X. M. Liao, Y. Q. Kang, X. F. Chen, H. Wang, Preparation and properties of Ni-doped ZnO rod arrays from aqueous solution[J]. J. Colloid Interface Sci., 2009, 330: 380-385.
    [64] S. J. Han, J. W. Song, C. H. Yang, S. H. Park, J. H. Park, Y. H. Jeong, A key to room- temperature ferromagnetism in Fe-doped ZnO:Cu[J]. Appl. Phys. Lett., 2002, 81: 4212-4214.
    [65] S. T. Jun and G. M. Choi, J. Am. Chem. Soc. 81, 695 (1998).
    [66] X. L. Chen, Z. W. Zhou, K. Wang, X. M. Fan, S. C. Hu, Y. Wang, Y. Huang, Ferromagnetism in Fe-doped trtra-needle like ZnO whiskers[J]. Mater. Res. Bull. 2009, 44: 799-802.
    [67] X.C.Wang, W.B.Ni, D.F.Kuang, Microstructure, magnetic and optical properties of sputtered polycrystalline ZnO films with Fe addition[J]. Appl. Surf. Sci. 2010, 256: 1930-1935.
    [68] S. H. Baed, J. J. Song, S. W. Lim, Improvement of the optical properties of ZnO nanorods by Fe doping[J]. Physica B., 2007, 399:101-104.
    [69] J. Chen, X. M. Wu, Z. D. Sha, L. J. Zhuge, Y. D. Meng, Structrue and photoluminescence properties of Fe-doped ZnO thin films[J]. J. Phys. D: Appl. Phys., 2006, 39: 4762-4765.
    [70] K.Srivastava, M. Deepa, N. Bahadur, M. S. Goyat, Influence of Fe doping on nanostructures and photoluminescence of sol-gel derived ZnO[J]. Mater. Chem. Phys., 2009, 114:194-198.
    [71] M. S. Park, B. I. Min, Ferromagnetism in ZnO codoped with transition metals: Zn1-x(FeCo)xO and Zn1-x(FeCu)xO[J]. Phys. Rev. B., 2003, 68: 224436.
    [72] H. Chien, S. H. Chiou, G. Y. Gao, et al., Electronic structure and magnetic moments of 3d transition metal-doped ZnO[J]. J. Magn. Mat., 2004, 282:275-8.
    [73] P.K. Sharma, R. K. Dutta, A. C. Pandey, Doping dependent room-temperature ferromagnetism and structural properties of dilute magnetic semiconductor ZnO:Cu2+ nanorods[J]. J. Magn. Magn. Mater., 2009, 321:4001-4005.
    [74] J. Qi, D. Q. Gao, L. Zhang, Y. H. Yang, Room-temperature ferromagnetism of the amorphous Cu-doped ZnO thin films[J]. Appl. Surf. Scie., 2010, 256:2507-2508.
    [75] X. P. Peng, J. Z. Xu, H. Zang, B. Y. Wang, Z. G. Wang,Structural and PL properties of Cu-doped ZnO films[J]. J. Lumin., 2008, 128:297-300.
    [76] X.B. Wang, C. Song, K. W. Geng, F. Zeng, F. Pan, Photoluminescence and Raman scattering of Cu-doped ZnO films prepared by magnetron sputtering[J]. Appl. Surf. Sci., 2007, 253:6905-6909.
    [77] S. Hayamizu, H. Tabata, H. Tanaka, Preparation of crystallized zinc oxide films on amorphous glass substrates by pulsed laser deposition[J]. J.Appl.Phys., 1996, 80:787–789.
    [78] K. Wu,G. S. Kamath,W. A. Radford, Chemical doping of HgCdTe by molecular-beam epitaxy[J]. J. Vac. Sci. Technol., 1990, A8:1034-1038.
    [79] Q. H. Yang,C. Li,S. D. Yuan, Epoxidation of Styrene on a Novel Titanium–Silica Catalyst Prepared by Ion Beam Implantation[J]. J. Catal., 1999, 183:128–130.
    [80] R. Gorla, N. W. Emanetoglu,S. Liang, Structure,Optical,and surface acoustic wave properties of epitaxial ZnO films grown on (0112) sapphire by metalorganic chemical vapor deposition[J]. J. Appl. Phys., 1998, 85:2595–2597.
    [81] H. Bao, H. S. Gu, A. X. Kuang, Sol-gel-derived c-axis oriented ZnO thin films[J]. Thin Solid Films., 1998, 312:37-39.
    [82] R. Li, D. L. Qu, W. X. Zhao, Y. X. Tong, Electrochem. Commun., 2007, 9: 1661.
    [83]李玲,向航.纳米技术和功能材料[M].化学工业出版社,(2002).
    [84] Kaneko, S. Oguchi, S. Hara, R. Matsuda, T. Okada, H. Ogawa, Y. Nakamura, Atomic force microscope coupled with optical microscope[J]. Ultramicroscopy, 1992, 42:1542-1548.
    [85]沈学础.半导体光谱和光学性质[M].科学出版社,2002,125.
    [86] T.. Fukumura, Z. Jin, M. Kawasaki, T. Shono, T. Hasegawa, S. Koshihara, and H. Koinuma Magnetic properties of Mn-doped ZnO[J]. Appl. Phys. Lett., 2001, 78:958-960.
    [87] J.. Luo, J. K. Liang, Q. L. Liu, F. S. Liu, Y. Zhang, B. J. Sun, and G. H. Rao, Structure and magnetic properties of Mn-doped ZnO nanoparticles[J]. J. Appl. Phys., 2005, 97:086106.
    [88] X.. M. Cheng, and C. L. Chien, Magnetic properties of epitaxial Mn-doped ZnO thin films[J]. J. Appl. Phys., 2003, 93:7876-7878.
    [89] A.Tiwari, C. Jin, A. Kvit, D. Kumar, J. F. Muth, and J. Narayan, Structural, optical and magnetic properties of diluted magnetic semiconducting Zn1-xMnxO films[J]. Solid State commun., 2002,121:371-374.
    [90] N. S. Norberg, K. R. Kittilstved, J. E. Amonette, R. K. Kukkadapu, D. A. Schwartz, and D. R. Gamelin, Synthesis of colloidal Mn2+:ZnO quantum dots and high-Tc ferromagnetic nanocrystalline thin films[J]. J. Am. Chem. Soc., 2004, 126:9387-9398.
    [91] S. W. Jung, S.–J. An, G. Yi, C. U. Jung, and S. Lee, Ferromagnetic properties of Zn1-xMnxO pitaxial thin films[J]. Appl. Phys. Lett., 2002, 80:4561-4563.
    [92] S.–W. Lim, M.-C. Jeong, M.-H. Ham, and J.-M. Myoung, Hole-mediated ferromagnetic properties in Zn1-xMnxO epitaxial thin films[J]. Jan. J. Appl. Phys., 2004,43:L280-L283.
    [93] P. Norton, S. J. Pearton, A. F. Hebard, N. Theodoropoulou, L. A. Boatner, R. G. Wilson, Ferromagnetism in Mn-implanted ZnO:Sn single crystals[J]. Appl. Phys. Lett., 2003, 82:239-241.
    [94] M. Ivill, S. J. Pearton, D. P. Norton, J. Kelly, and A. F. Hebard, Magnetization dependence on lectron density in epitaxial ZnO thin films codoped with Mn and Sn[J]. J. Appl. Phys., 2005, 97:053904.
    [95] W. M. H. Oo, L. V. Saraf, M. H. Engelhard, V. Shutthanandan, L. Bergman, J. Huso, and M. D. McCluskey, Suppression of conductivity in Mn-doped ZnO thin films[J]. J. Appl. Phys., 2009, 013715(4p).
    [96] X. D. Wu, Q. Liang, D. Weng, J. Fan, R. Ran, Synthesis of CeO2-MnOx mixed oxides and catalytic performance under oxygen-rich condition[J]. Catal Today, 2007, 126: 430-435.
    [97] J. Li, Z. Chen, X. X. Wang, D. M. Proserpio, A novel two-dimensional mercury antimony lluride: low temperature synthesis ans characterization of RbHgSbTe3[J]. J. Alloys Compd. 997, 262: 28-263.
    [98] L. Levy, J. F. Hochepied, M. P. Pileni, Control of the Size and Composition of Three imensionally Diluted Magnetic Semiconductor Clusters[J]. J. Phys. Chem., 1996, 100:18322.
    [99] R. B. Bylsma, W. M. Beeker, J. Kossut, U. Debska, K. Yoder-short, Dependence of energy gap n x and T in Zn1-xMnxSe: The role of exchange interacton[J]. Phys. Rev. B, 1986, 33: 207-8215.
    [100]叙榕,苏勉曾.发光学与发光材料[M].化学工业出版社,2004,43.
    [101]刘恩科.半导体物理学[M].西安交通大学出版社,1998,79.
    [102]方容川.固体光谱学[M].中国科学技术大学出版社,2001,98.
    [103] D. Wang, J. H. Yang, L. L. Yang, et al., Morphology and photoluminescence properties of ZnO nanostructures fabricated with different given time of Ar[J]. Cryst. Res. Technol., 2008, 43: 1041-1045.
    [104] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, B. E.Gnade, Green photoluminescence efficiency and free-carrier density in ZnO phosphor powders prepared by spray pyrolysis[J]. J. Appl. Phys., 1996, 79: 7983.
    [105] D. M. Bagnall, Y. F. Chen, Z. Zhu , Room temperature excitonic stimulated emission from zinc oxide epilayers grown by plasma-assisted MBE[J]. J. Crystal. Growth., 1998, 184/185:605-609.
    [106] M. S. Mo, M. W. Shao, H. M. Hu, L. Yang, W. C. Yu, Y. T. Qian, Growth of single-crystal PbS nanorods via a biphasic solvothermal interface reacton route[J]. J. Cryst. Growth, 2002, 244:364-368.
    [107] J. B. Liang, J. W. Liu, Q. Xie, S. Bai, W. C. Yu, and Y. T. Qian, Hydrotheromal Growth and Optical Properties of Doughnut-Shaped ZnO Microparticles[J]. J. Phys. Chem. B, 2005,109:9463-9467.
    [108]张喜田,肖芝燕,刘益春等.高质量纳米ZnO薄膜的光致发光特性研究[J].物理学报,2003,vol.52,No.3:740-743.
    [109] Z.W. Jin, Y. Z. Yoo, T. Sekiguchi, T. Chikyow, H. Ofuchi, H. Fujioka, M. Oshima, H.Koinuma, Blue ultraviolet cathodoluminescence from Mn-doped epitaxial ZnO thin films[J]. Appl. Phys. Lett., 2003, 83:39.
    [110] S. Bethke, H. Pan, B. W. Wessels. Luminescence of heteroepitaxial zinc oxide. [J]. Appl. Phys. Lett. 1988, 52: 138.
    [111] D. C. Look, J. W. Hemsky, J. R. Sizelove, Point defect character-rization of GaN and ZnO[J]. Phys. Rev. Lett., 1999, 82: 2552.
    [112] P. S. Xu, Y. M. Sun, S. C. Shu, Electronic structure of ZnO and its defect[J]. Science in China(A), 2001, 44(9):1174-1181.
    [113]缪世群.ZnO薄膜的光谱及能级[J].南通工学院学报(自然科学版),2003,2(3):25-28.
    [114] N. H. Hong, J. Sakai, A. Hassini, Magnetic properties of V-doped ZnO thin films[J]. J. Appl. Phys., 2005,97(10):10D312.
    [115] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, T. Steiner, Recent progress in processing and properties of ZnO[J]. Superlattices Microstrct., 2003,34(1-2):3-32.
    [116] M. Venkatesan, C. B. Fitzgerald, J. M. D. Coey, Unexpected magnetism in a dielectric oxide[J]. Nature, 2004, 430:630.
    [117] Eriksson, L. Bergqvist, B. Sanyal, J. Kudmovsky, V. D. rchal, P. Korzhavyi, I.Turek, Electronic structure and magnetism of diluted magnetic semiconductors[J]. J. Phys. Condens. Matter., 2004,16:S5481-S5489.
    [118] Chartier, P. D. Arco, R. Dovesi, V. R. Saunders, Ab initio Hartree-Fock investigation of the structural,electronic,and magnetic properties of Mn3O4[J]. Phys.Rev.B,1999,60(20): 14042-14048.
    [119] L. W. Guo, D. L. Peng, H. Makino, K. Inaba, H. J. Ko, K. Sumiyama, T. Yao, Structural and magnetic properties of Mn3O4 films grown on MgO(001) substrates by plasma-assisted MBE[J]. J. Magn. Magn. Mater., 2000, 213:321-325.
    [120] J. M. D. Coey, M. Venkatesan, C. B. Fitzgerald, Donor impurity band exchange in dilute ferromagnetic oxides[J]. Nat. Mater., 2005, 4:173-179.
    [121] J. Antony, S. Pendyala, A. Sharma, X. B. Chen, J. Morrison, L. Bergman, Y. Qiang, Room temperature ferromagnetic and ultraviolet optical properties of Co-doped ZnO nanocluster films[J]. J. Appl. Phys., 2005, 97(10):10D307.
    [122] N. H. Hong, V. Brizé, J. Sakai.Mn-doped ZnO and(Mn,Cu)-doped ZnO thin films: Does the Cu doping indeed play a key role in tuning the ferromagnetism?[J]. Appl. Phys. Lett., 2005, 86(08):082505.
    [123] D. A. Schwartz, D. R. Gamelin, Reversible 300 K Ferromagnetic Ordering in a Diluted Magnetic Semiconductor[J]. Adv. Mater., 2004, 16(23-24):2115-2119.
    [124] Z. Yin, N. Chen, F. Yang, S. Song, C. Chai, J. Zhong, H. Qian, K. I brahim. Structural, magnetic properties and photoemission study of Ni-doped ZnO[J]. Solid State Commun., 2005, 135(7):430-433.
    [125] Z. G. Yin, N. F. Chen, F. Yang, S. L. Song, C. L. Chai, J. Zhong, H. J. Qian, K. Ibrahim, Structural, magnetic properties and photoemission study of Ni-doped ZnO[J]. Solid State Commun., 2005,135:430-433.
    [126] B.B.Li, X. Q. Xiu, R. Zhang, Z. K. Tao, L. Chen, Z. L. Xie, Y. D. Zheng, Z. Xie, Study of structure and magnetic properties of Ni-doped ZnO-based DMSs[J]. Materials Science in Semiconductor Processing, 2006, 9:141-145.
    [127] Liu, P. Xiao, J. S. Chen, B. C. Lim, L. Li, Ni doped ZnO thin films for diluted magnetic semiconductor materials[J]. Current Applied Physics 2008, 8:408-411.
    [128] Wang, Y. Chen, H. B. Wang, C. Zhang, F. J. Yang, J. X. Duan, and C. P. Yang, High resolution transmission electron microscopy and Raman scattering studies of room temperature ferromagnetic Ni-doped ZnO nanocrystals[J]. 2007, 90:052505.
    [129] J. Cong, J. H. Hong, Q. Y. Liu, L. Liao, K. L. Zhang, Synthesis, structure and ferromagnetic properties of Ni-doped ZnO nanoparticles[J]. Solid State Communication 2006, 138:511-515.
    [130] D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, Hand-book of X-ray Photoelectron spectroscopy[J]. Perkin Elmer, Eden Prairie, (1979) 81.
    [131] M. Chen, Z. L. Pei, X. Wang, et al., Intrinsic limit of electrical properties of transparent conductive oxide films[J]. J. Phys. D-Appl. Phys., 2000, 33: 2538-2548.
    [132] J. C. C. Fan, J. B. Goodenough, X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films[J]. J. Appl. Phys., 1977, 48: 3524-3531.
    [133] J. S. Kang, H. S. Kang, S. S. Pang, E. S. Shim, S. Y. Lee, Investigation on the origin of green luminescence from laser-ablated ZnO thin film[J]. Thin Solid Films, 2003, 443, 5-8.
    [134] B. X. Lin, Z. X. Fu and Y. B. Jia, Appl. Phys. Lett. 79 (2001) 943.
    [135] H. Zhang, Z. Y. Xue, Q. P. Wang, The mechanisms of blue emission from ZnO films deposited on glass substrate by r. f. magnetron sputtering[J]. J. Phys. D: Appl. Phys., 2002, 35: 2837-2840.
    [136] S. Kang, J. S. Kang, J. W. Kim, S. Y. Lee, Annealing effect on the property of ultraviolet and green emissions of ZnO thin films[J]. J. Appl. Phys. 2004, 95:1246-1250.
    [137] T. B. Hur, G. S. Jeen, Y. H. Hwang, H. K. Kim, Appl. Phys. Lett. 2003, 94:5787.
    [138] K. Vanheusden, C. H. Seager, W. L. Warren, et al., Correlation between photoluminescence and oxygen vacancies in ZnO phosphors[J]. Appl. Phys. Lett., 1996, 68: 403-405.
    [139] Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, S. Q. Feng, Ultraviolet-emitting ZnO nanowiressynthesized by a physical vapor deposition approach[J]. Appl. Phys. Lett., 2001, 78: 407-409.
    [140] K. Sato, H. Katayama-Yoshida, Material design for transparent ferromagnets with ZnO-Based magnetic semiconductors[J]. Jpn J Appl Phys, Part 2,2000,39:L555.
    [141] K. PotzgerK, S. Q. Zhou, H. ReutherH, Appl.Phys.Lett., 2006,88:052508(1-3).
    [142] H. Shim, T. Hwang, S. Lee, Origin of ferromagnetism in Fe- and Cu-codoped ZnO[J]. Appl. Phys. Lett. 2005, 86: 082503.
    [143] S.Kumar, Y. J. Kim, B. H. Koo, S. K. Sharma, J. M. Vargas, M. Knobel, S. Gautam, K. H. Chae, D. K. Kim, Y. K. Kim, C. G. Lee, Structural and magnetic properties of chemically synthesized Fe doped ZnO[J]. J. Appl. Phys., 2009, 105:07C520.
    [144] G. Y. Ahn, S.-I Park, In-Bo Shim, C. S. Kim, Mossbauer studies of ferromagnetism in Fe-doped ZnO magnetic semiconductor[J]. J. Magn. Magn. Mater,, 2004, 282:166-169.
    [145] S. K. Mandal, T. K. Nath, D. Karmakar, Magnetic and optical properties of Zn1-xFexO (x=0.05 and 0.10) diluted magnetic semiconducting nanoparticles[J]. Philos. Mag., 2008, 88(2):265-275.
    [146] P. Wu, G. Saraf, Y. Lu, D. H. Hill, R. Gateau, L. Wielunski, R. A. Bartynski, D. A. Arena, J. Dvorak, A. Moodenbaugh, Ferromagnetism in Fe-implantedα-plane ZnO films[J]. Appl. Phys. Lett., 2006, 89:012508.
    [147] R. Kumar, A. P. Singh, P. Thakur, K. H. Chae, W. K. Choi, B. Angadi, S. D. Kaushik, S. Patnaik, Ferromagnetism and metal-semiconducting transition in Fe-doped ZnO thin films[J]. J. Phys. D: Apll. Phys. 2008, 41:155002.
    [148] P. K. Sharma, R. K. Dutta, A. C. Pandey, S. Layek, H. C. Verma, Effect of iron doping concentration on magnetic properties of ZnO nanoparticles[J]. J. Magn. Magn. Mater., 2009, 321:2587-2591.
    [149] P. Sagar, P. K. Shishodia, R.M. Mehra, H. Okada, Akihiro Wakahara, Akira Yoshida, J. Lumin., Photoluminescence and absorption in sol-gel-derived ZnO films[J]. J. Lumin., 2007, 126: 800-806 .
    [150] H. Kang, Y. R. Park, K. J. Kim, Spectroscopic ellipsometry study of Zn1-xMgxO thin films deposited on Al2O3(0001) [J]. Solid State Commu., 2000, 115: 127-130.
    [151] J. Zhuge, Z.C. Chen, X. M. Wu, Y. D. Meng, Initial study on the structure and optical properties of Zn1-xFexO films[J]. Thin Solid Films, 2007, 5462-5.
    [152] Changzheng Wang, Zhong Chen, Ying He, Lanying Li, Dong Zhang, Appl. Surf. Sci. 255 (2009) 6881.
    [153] J. Spalek, A. Lewicki, Z. Tarnawski, Magnetic-susceptibility of semimagnetic semiconductors-the high-temperature regime and the role of superexchange[J]. Phys. Rev. B.,1986, 33:3407-3418.
    [154] Z.B. Fang, Y. Y. Wang, D. Y. Xu, Y. S. Tan, X. Q. Liu, Blue luminescent center in ZnO films deposited on silicon substrates[J]. Opt. Mater., 2004, 26:239-242.
    [155] J. H. Li, D. Z. Shen, J. Y. Zhang et al, Magnetism origin of Mn-doped ZnO nanoclusters[J]. J. Magn. Magn. Mater., 2006, 302(1):118-121.
    [156]王漪,孙雷,韩德栋,刘力锋,康晋锋,刘晓彦,张兴,韩汝琦. ZnCoO稀磁半导体的室温磁性[J].物理学报, 2006, 55(12): 6651-6655.
    [157] T. S. Herng, S. P. Lau, S. F. Yu, J. S. Chen, K. S. Teng, Zn-interstitial-enhanced ferromagnetism in Cu-doped ZnO films[J]. J. Magn. Magn. Mater., 2007, 315: 107-110.
    [158] J. Owens, Room temperature ferromagnetism in Cu-doped ZnO synthesized from CuO and ZnO nanoparticles[J]. J. Magn. Magn. Mater., 2009, 321: 3734-3737.
    [159]朋兴平,兰伟,谭永胜,终立国,王印月. Cu掺杂氧化锌薄膜的发光特性研究[J].物理学报,2003,53:2705.
    [160] Meda, G. Ranghino, G. Moretti, G. F. Cerofolini, XPS detection of some redox phenomena in Cu-zeolites[J]. Surf. Interface Anal., 2002, 33: 516-521.
    [161] D. Chakraborti, G. R. Trichy, J. T. Prater, J. Narayan, The effect of oxygen annealing on ZnO: Cu and ZnO Cu, Al) diluted magnetic semiconductors[J]. J. Phy. D: Appl. Phys., 2007, 40: 7606-7613.
    [162] T.Robert, M. Bartel, G. Offergel, Characterization of oxygen species adsorbed on copper and nickel oxides by X-ray photoelectron spectroscopy[J]. Surf. Sci., 1972, 33: 123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700