溶胶凝胶法制备聚合物/无机杂化纤维的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物/无机杂化材料是一种新型复合材料,具有聚合物和无机材料的综合性能。聚合物/无机杂化纤维结合了杂化材料与纤维材料的性能特点,越来越受到人们的关注。对杂化纤维的开展研究具有重要的理论意义和应用前景。
     本文研究了一系列聚合物/SiO_2(TiO_2)杂化溶胶的粘度特性及其杂化纤维的制备、机理、微观结构与性能。主要内容如下:
     1.采用溶胶凝胶方法,以正硅酸乙酯(TEOS)和钛酸四丁酯(TBOT)为原料,制备PVA/SiO_2、PAA/SiO_2、PAN/SiO_2、蔗糖/SiO_2、HPMC/SiO_2、PVA/SiO_2/TiO_2等杂化溶胶,系统研究了它们的粘度特性和成纤性能,并通过拉丝法制备杂化纤维。杂化溶胶粘度随时间的变化规律与纯SiO_2溶胶相似,粘度均呈现缓慢增加、逐渐加快、急剧上升等三个阶段。在粘度变化的第二阶段,杂化溶胶中聚合物具有适当的分子量和以线性分子为主的化学结构,赋予杂化溶胶良好的成纤性能。为聚合物杂化纤维的制备提供了实验基础。
     2.对制备PVA/SiO_2杂化纤维的杂化机理、化学结构和性能进行了研究。PVA中的-OH与TEOS的水解产物的-OH缩合形成了Si-O-C相连的化学键,耐热性能和耐水性能均得到明显改善,SiO_2网络使PVA的结晶受到限制,杂化纤维呈无规结构。为PVA纤维性能的提高提供了一种方法。
     3.对制备PVA/ SiO_2/TiO_2杂化纤维的杂化机理、化学结构和性能进行了研究。随着PVA含量的增加,PVA/SiO_2/TiO_2杂化溶胶的可纺性能明显改善;随着TBOT含量的增加,杂化溶胶的水解时间明显下降;制得的杂化纤维相分布十分均匀,具有良好的耐热和耐水性能。研究为PVA杂化纤维制备工艺改进和性能的提高具有重要的参考价值。
     4.用TEOS与乙烯基三乙氧基硅烷共缩聚,采用溶胶凝胶原位聚合法制备了PAA/SiO_2杂化纤维。对制备上述杂化纤维的杂化机理、化学结构和性能进行了研究。PAA/SiO_2杂化溶胶粘度在1400- 3000 mPa·s范围时,成纤性能好,杂化纤维表面光滑,尺寸均匀,透明度较好,PAA与SiO_2之间通过偶联剂形成化学键结合,杂化纤维具有良好的耐水和耐热性能。采用PAA/SiO_2杂化纤维的制备研究尚未见有报道。对水溶性的聚合物耐水和耐热性能的提高提供了一种新方法。
     5. SiC纤维介电常数和电阻率与玻璃纤维相近的,强度与模量与碳纤维相当的,具有碳纤维、芳纶等无法比拟的耐高温氧化性能,是高性能复合材料的理想增强剂,在航空航天、核工业等高科技领域有着广泛的应用。采用溶胶凝胶法制备了蔗糖/SiO_2杂化纤维,对其作为Si-C纤维的新型前躯体的可行性进行了初步研究。杂化纤维中蔗糖与SiO_2之间以化学键连接,形成了结构均匀的非晶杂化网络;杂化纤维经800℃处理后形成SiO_2与石墨微晶共存的结构。该研究未见报道,对拓展SiC纤维的制备新工艺具有重要的理论意义。
     6.分别采用溶胶凝胶共混法和溶胶凝胶原位聚合法两种工艺路线,分别制备了两种PAN/SiO_2杂化纤维。对两种溶胶的杂化机理与成纤性能及杂化纤维的结构进行了重点研究。两种不同制备方法对于杂化纤维的化学结构、微观形态和性能具有显著影响。其中,原位聚合法制得的杂化纤维中,PAN中的CN基团发生了水解且杂化纤维内部结构更加均匀。共混法制得的PAN杂化纤维中的CN基团基本不发生水解。两种杂化纤维的耐热性能均优于纯PAN。研究对于制备耐热型的PAN功能纤维具有重要的参考价值。
     7.采用TEOS和羟丙基甲基纤维素(HPMC)为主要原料、KH570为偶联剂,用溶胶凝胶法制备HPMC/SiO_2杂化溶胶。对其成纤性能和杂化纤维的结构与性能进行了研究。用HPMC/SiO_2杂化溶胶浸涂SiO_2凝胶纤维,制备了HPMC/SiO_2梯度结构杂化纤维。重点研究了杂化溶胶粘度对HPMC/SiO_2梯度结构杂化纤维的形成和表面形态的影响。HPMC/SiO_2杂化溶胶的粘度对于形成表面均一的梯度纤维影响显著,当杂化溶胶粘度为6000mPa·s左右时,浸涂效果较为理想。研究对于制备梯度结构的杂化纤维提供了新的思路。
Polymer/inorganic hybrid material is a kind of new composite, which has both merits of organic polymer material and inorganic material. Polymer/inorganic hybrid fiber combines merits of hybrid materials with fiber materials, whcih implies important theoretical significance and has vast application vistas.
     In this paper, a series of hybrid sols and hybrid fibers based on polymer/silica/(titania) were prepared by Sol-Gel and drawing method. The viscosity and spinnability of the hybrid sols were researched, the preparation, mechanism, microstructure, and property of the hybrid fibers was investigated systemically. The main investigations are compiled below.
     1. A series of hybrid sols of PVA/SiO_2, PAA/SiO_2, PAN/SiO_2, Sucrose/SiO_2, HPMC/SiO_2 and PVA/SiO_2/TiO_2 were prepared with tetraethorylsilane(TEOS) and tetrabutylorthotitanate(TBOT) as raw materials by Sol-Gel method respectively, and the change rules in viscosity versus aged time and spinnability of which were studied. The results showed that the hybrid sols were similar to SiO_2 sols in viscosity change rules, that is, three distinct change rate stages of viscosity were found in all the sols, the characteristic of which was changed slowly, quickly and drastically, respectively. Among these, in the second stage, polymers in the hybrid sols were almost linear molecules with proper molecular weight, and the hybrid sols were spinnable. The conclusion provided experimental foundations for the research on preparation of hybrid fibers.
     2. The hybrid mechanism, chemical structure and performance of PVA/SiO_2 hybrid fibers were researched. The results showed that PVA was linked with silica by Si-O-C bonds, which formed by the condensation between -OH groups of PVA and the hydrolysates of TEOS, the performance of resistance to heat and to water of PVA were improved greatly, the crystallinity of PVA was limited by SiO_2 networks, and the hybrid fibers were amorphous. The results will afford a new route of modification of PVA fibers.
     3. The hybrid mechanism, chemical structure and performance of PVA/SiO_2/TiO_2 hybrid fibers were studied. The results showed that spinnability of the hybrid sols were improved gradually with increasing of PVA content, and the hydrolysis time of the hybrid sols decreased markedly with increasing of TBOT content. In the interior of the hybrid fibers, the distribution of polymer and silica-titania was very homogeneous, the hybrid fibers had better resistance to heat and to water. The results are of important reference value for the preparation and modification of PVA/SiO_2 hybrid fibers.
     4. Continuous PAA/SiO_2 hybrid fibers were prepared by co-condensation reaction of TEOS and vinyl triethorylsilane(VTEOS) and Sol-Gel polymerization in situ processes. The hybrid mechanism, chemical structure and performance of PAA/SiO_2 hybrid fibers were researched. The results showed that the PAA/SiO_2 hybrid sol possesses well spinnability when its viscosity become 1400-3000mPa·s, the fibers had smooth appearance and their diameters were symmetric with well transparency, PAA were linked with SiO_2 networks by chemical bonds via coupling agents, and the hybrid fiber had good resistance to heat and to water. The results will suggest a new method for modification of water soluble polymers, especially, in heat resistance and water resistance.
     5. SiC fiber is a kind of excellent reinforcer for high performance composites, which has similar insulating constant and electric resistivity to glass fiber, similar strength and modulus to carbon fiber, and superior heat-oxidation resistance than carbon fiber and aromatic fiber. It has been widely used in high-technical areas as aviation, spaceflight and atomic energy industry. Continuous sucrose/SiO_2 hybrid fibers were prepared via Sol-Gel method by drawing, the feasibility of using it as a new candidate for the precursor of continuous SiC fiber was investigated preliminary. The results showed that sucrose was linked with silica by chemical bonds, in the interior of the fibers, homogeneous and amorphous networks were formed, and after the hybrid fibers had been heated to 800℃, co-existence of silica and micro-crystals of graphite were formed. Up till now, no reports about this research have been found. And this research will provide theoretical basis for new route of SiC fiber.
     6. Two kinds of hybrid sols of PAN/SiO_2 were prepared via sols blend and Sol-Gel in-situ polymerization respectively. The hybrid mechanism, the spinnability of the two kinds of hybrid sols and structures of the hybrid fibers prepared were researched. The results indicated that the chemical structures, the micro-morphology and the performance of the hybrid fibers were influenced greatly by their preparation method and conditions. Among these, CN groups hydrolyzed in the hybrid fibers via in-situ polymerization, and the interior structures of the hybrid fibers via in-situ polymerization were more homogeneous, the structure of PAN could be well kept via sols blend, and both of the hybrid fibers had better resistance to heat than pure PAN. The results will provide theoretical basis for the development of PAN fibers with good performance, especially, in heat-resistance.
     7. HPMC/SiO_2 hybrid sols were prepared via Sol-Gel method with TEOS and HPMC as raw materials and KH570 as coupling agent. In the basis of investigation on the spinnability of the hybrid sols and the structure and performance of HPMC/SiO_2 hybrid fibers, gradient HPMC/SiO_2 hybrid fibers were prepared with silica gel fiber and HPMC/SiO_2 hybrid sols as raw materials. The influences of viscosity on the micro-morphology and on formation of the gradient HPMC/SiO_2 hybrid fibers were investigated. The results indicated that the preparation of gradient hybrid fiber was greatly influenced by the viscosity of the hybrid sol, the gradient hybrid fiber could be well prepared when the viscosity of HPMC/SiO_2 hybrid sol was kept at about 6000mPa·s. The results provide a new idea for the preparation of gradient hybrid fiber.
引文
[1]刘晓蕾,刘孝波.溶胶-凝胶法制备有机/无机杂化材料研究进展.高分子材料科学与工程. 2004,20(2):28-31
    [2]黄剑峰.溶胶-凝胶原理与技术.北京:化学工业出版社, 2005
    [3]肖明艳,陈建敏.有机-无机杂化材料研究进展.高分子材料科学与工程, 2001, 17 (5): 6-12
    [4]李旭华,袁荞龙,王得宁,应圣康.杂化材料的制备、性能及应用.功能高分子学报, 2000, 13(2): 211-218
    [5]P.B. Messersmith, S.I. Stupp. Synthesis of nanocomposites: Organoceramics. J. Mater. Res., 1992, 7(9):2599-2611
    [6]马海红,史铁钧,宋秋生. PMMA/SiO_2杂化纤维的制备及表征.高分子材料科学与工程, 2008, 24(12): 46-49
    [7]T. Seagusa. Organic polymer-silica gel hybrid. A precursor of highly porous silica gel. J. Macromol. Sci.: Chem., 1991, A28(9) :817-829
    [8]B.M. Novak, M. Ellsworth, T.I. Wallow, C. Davids. Simultaneous interpenetrating networks of inorganic glasses and organic polymers. Polym. Prepr., 1990, 31:698-699
    [9]Y. Shen, J. Swiatkiewicz, P.N. Prasad, R.A.Vaia. Hybrid near-field optical memory and photofabrication in dye-doped polymer film. Opt. Commun., 2001, 200(1-6):9-13
    [10]S. Wu, L.M. Ellerby, J.S. Cohan, et al. Bacteriorhodopsin encapsulated in transparent sol-gel glass: A new biomaterial. Chem. Mater., 1993, 5:115-120
    [11]王华林,余锡宾,訾振军. PMMA/SiO_2有机无机杂化玻璃的研究.高分子材料科学与工程,2000, 16(4):114 114-116
    [12]石智强,李赛,刘孝波.溶胶-凝胶法制备聚氨酯/二氧化硅杂化材料.四川大学学报(工程科学版), 2004, 36(4):60-64
    [13]王华林,余锡宾,王长友,史铁钧. PMTES/SiO_2有机无机杂化材料的研究.高分子材料科学与工程, 1999,15(6):92-94
    [14]王华林,史铁钧,李学良,宋继法,王长有. PMTES/Fe2O3有机无机杂化材料的研究.高分子材料科学与工程. 2000,16(6):160-162
    [15]王华林,余锡宾,王长友.甲基三乙氧基硅烷/TiO_2有机无机杂化材料的制备.应用化学,1998,15(5):101-103
    [16]B.M. Novak, R.H. Grobbs. Catalytic organometallic chemistry in water: The aqueous ring-opening polymerization of 7-oxanorbornene derivatives. J. Am. Chem. Soc.,1988, 110: 7542-7543
    [17]U.W. Eusworkth, B.M. Novak. Mutually interpenetrating inorganic-organic networks newroutes into nonshrinking sol-gel composite materials. J. Am. Chem. Soc., 1991, 113:2756-2758
    [18]王华林,史铁钧,杨善中,翟林峰,杭国培. PHPMA/SiO_2有机无机杂化材料的研究.高分子材料科学与工程, 2005,21(4):250-253
    [19]王华林,程继贵,王长友.聚烯丙醇/SiO_2有机无机杂化材料的研究.应用化学,1999, 16(4):91-93
    [20]王华林,史铁钧,李学良,余锡宾.聚烯丙醇/SiO_2有机无机杂化材料的研究.高分子材料科学与工程, 2001,17(4):163-165
    [21]王华林,史铁钧,翟林峰.疏水型多孔PVA/SiO_2有机无机杂化材料的研究.高分子材料科学与工程, 2005, 21(3):250-252
    [22]D. Tian, P. Dubois, R. Jerome. A new poly(E-caprolactone) containing hybrid ceramic prepared by the sol-gel process. Polymer, 1996, 37(17):3983-3987
    [23]E.J.A. Pope, M. Asami, J.D. Mackemize. Transparent silica gel-PMMA composition. J. Mater. Res., 1989, 4:1018-1022
    [24]S. Kazuya, Y. Takeshi, T. Yuko. Thermo-responsive release from interpenetrating porous silica -poly(N-isopropylacrylamide) hybrid gels. J. Control Release, 2001, 75:183-189
    [25]Y. Kim. W.K. Lee, W.J.Chou, C.S. Ha, M. Ree, T. Chang. Morphology of organic-inorganic hybrid composites in thin films as multichip packing materials. Polymer inter., 1997, 43:129-136
    [26]B. Wang, G.L. Wilkes. Novel hybrid inorganic-organic abrasion-resistant coatings prepared by a sol-gel process. J. Macromol. Sci. Pure Appl. Chem., 1994, A31(2):249-255
    [27]S. Yano. Preparation and characterization of hydroxypropyl cellulose/silica micro-hyhrid. Polymer, 1994, 35(25):5565-5570
    [28]A. Morikawa, Y. Lyoku, M. Kakamito, Y. Imai. Preparation of a new class of polyimide-silica hyhide films by sol- gel process. Polymer, 1992. 33(1):107-113
    [29]Y. Kim. W.K. Lee, W.J.Chou, C.S. Ha, M. Ree, T. Chang. Morphology of organic-inorganic hybrid composites in thin films as multichip packing materials. Polymer inter., 1997, 43:129-136
    [30]A. Morikawa, H. Yamaguchi, M. Kakamito. Formation of interconnected globular structure of silica phase in polyimide-silica hybrid. Chem. Mater., 1994. 6: 913-917
    [31]张隽,罗胜成,桂琳琳,唐有祺. PMMA-TiO_2有机-无机杂化玻璃的制备.物理化学学报, 1996.12: 289-292
    [32]Z. Yang, C. Xu, B. Wu, T. Chen, C.T. Wang. Anchoring both ends of chromophores into sol-gel networks for large and stable second-order optical nonolinearities. Chem. Mater., 1994. 6: 1899-1901
    [33]S. Amberg-Schwab, M. Hoffmann. Inorganic-organic polymers with barrier properties for water vapor, oxygen moflavor. J. Sol-Gel Sci. Techn., 1998. 1/2: 141-146
    [34]潘伟,翟普,刘立志.碳黑/硅橡胶/二氧化硅纳米复合材料的制备与性能研究.材料研究学报, 1997. 4:397-399
    [35]P. Aranda, E. Ruiz-Hitzky. Poly(ethylene oxide)-silicate intercalation materials. Chem. Mater., 1992. 4: 1395-1403
    [36]S.W. Muh, T. Pinnaviaia. Synthesis end properties of organic-inorganic layered hybrid. Chem. Mater., 1994, 6: 468-471
    [37]B. Tony, D.D. Morais, H.W. Williams. Hybrid organic-inorganic light-emitting diodes. Adv. Mater., 1999, 11(2):107-112
    [38]史铁钧,徐鼐,吴德峰,王华林,周亚斌,任强.双单体原位接枝插层法制备聚丙烯纳米复合材料的研究I.制备、表征及力学性能的研究.高分子学报, 2003, 4:559-564
    [39]史铁钧,吴德峰,王华林,徐鼐,周亚斌.两步法制备剥离型聚丙烯/蒙脱土纳米复合材料((I)制备、表征及力学性能.化工学报, 2004, 2: 259-263
    [40]任强,史铁钧,王华林,周亚斌,翟林峰.丙烯酸-丙烯酸胺原位插层共聚制备高吸水性蒙脱土纳米复合材料的研究.功能高分子学报, 2003,16(4): 469-474
    [41]鲁德平,熊传溪,闻荻江,王浩.以超微细A12O3作种子的乙酸乙烯酯乳液聚合的研究.高分子材料科学与工程, 1995.11(6):49-52
    [42]S.W. Shang. J.W. Wiuiams, K. Dusuh. Preparation and properties of EVA/SiO_2 hybrid materials,J. Mater. Sci., 1992, 27: 4949-4954
    [43]G. Liu, N. Hu. X. Xu, Y. M. Chen, X.G. Hang. Cross-linked polymer brushes I: Synthesis of poly[β-(vinyloxy)ethyl cinnamate]-b-poly(isobutyl vinyl ether). Macromolecules, 1994, 27: 3892-3896
    [44]邹小平,张良莹,姚熹,王丽坤,张福学.溶胶-凝胶法有机-无机精细复合材料P(VDF/TeFE)/SiO_2的制备与显微结构.功能材料, 1998. 29(3):327-329
    [45]F. Suzuki, K. Onozato. A formation of compatible poly(vinylacohol)/alumina gel composite and its properties. J. Appl. Polym. Sci.,1990, 39: 371-381
    [46]N.H. Park, K. Dusuh. Polyethylene toughened by CaCO3 particle: Brittle- ductile transition of CaCO3 toughened HDPE, J. Appl. Polym. Sci., 1996, 71: 1597-1561
    [47]B.A. Vaia, E.P. Giarnnelis. Synthesis and properties of two-dimensional nanostructues by direct intercalation of polymer melts in layered silicates. Chem. Mater., 1993. 5: 1694-1696
    [48]胡平,范守善,万建伟.碳纳米管/UHMWPE复合材料的研究.工程塑料应用, 1998, 26(1):1-3
    [49]C. Sanchez, B. Lebeau, F. Ribol, M. In. Molecular design of sol-gel derived hybrid organic- inorganic nanocomosites. J. Sol-Gel Sci. Techn., 2000, 19(1):31-38
    [50]杨南如,余桂郁.溶胶-凝胶的基本原理与过程.硅酸盐通报, 1992,(2):56-62
    [51]芦贻春,李再耕. pH值对硅溶胶凝胶化过程的影响.耐火材料, 1995, 29(6):326-328,335
    [52]张贻瑞,王建.基础材料与新材料.天津:天津大学出版社, 1994
    [53]G. Liu, J. Ding, A. Cuo, H.P. Wang. Potential skin layers for membrmres with tunable nanochannels, Macromolecules, 1997, 30:1851-1855
    [54]张剑锋,郑强,高长有.溶胶凝胶法制备高分子无机复合材料.功能材料, 2000, 31(4):357-360
    [55]赵竹第,高宗明,欧玉春,漆宗能,王佛松.苯乙烯-马来酸酚共聚物/聚硅氧烷纳米尺度复合材料的研究.高分子学报, 1996. 2. 228-233
    [56]应圣康,袁荞龙,喻志刚.纳米复合微粒-有机聚合物混杂复合体系的制备.中国专利申请号:99119829.8
    [57]张留成,刘玉成.聚合物互穿网络.北京:烃加工出版社, 1990
    [58]H. Schmidt. Some aspects of phase separation in glass. J. Non-Cryst. Solids, 1989, 112: 48-57
    [59]H.G. Sowman. A new era in ceramic fibers via sol-gel technology. Ceram. Bull., 1988, 67: 1911 -1916
    [60]丁子上,翁文剑,杨娟.化学络合法在溶胶-凝胶过程中的应用.硅酸盐学报, 1995, 23 (5), 571-579
    [61]卢旭辰,徐廷献.溶胶-凝胶法及其应用.陶瓷学报, 1998, 19(1):53-57
    [62]S. Sakka, H. Kozuka. Rheology of sols and fiber drawing. J. Non-Cryst.Solids, 1988, 100: 142 -153
    [63]S. Sakka, K. Kamiya. The sol-gel transition in the hydrolysis of metal alkoxids in relation to the formation of glass fibers and films. J. Non-Cryst. Solids, 1982,48:31-46
    [64]T. Nishio, Y. Fujiki. Preparation of mullite fiber by sol-gel method. J. Ceram. Soc. Jpn., 1991, 99, 654-659
    [65]林健.催化剂对正硅酸乙酯水解-聚合机理的影响.无机材料学报, 1997,12(3),363-369
    [66]丁子上,翁文剑.溶胶-凝胶技术制备材料的进展.硅酸盐学报, 1993,20(5):443-450
    [67]黄剑峰.溶胶-凝胶原理与技术.北京:化学工业出版社, 2005
    [68]B.G. Muralidharan, D.C. Agrawal. Sol-gel derived TiO_2-SiO_2 fibers. J. Sol-Gel Sci. Techn., 1997, 9:85-93
    [69]D.Y. Shin, S.M. Han. Spinnability and rheological properties of sols derived from Si(OC2H5)4 and Zr(O-nC3H7)4 solutions. J. Sol-Gel Sci. Techn., 1994;1:267-273
    [70]D.M. Wilson, D.C. Luenburg, S.L. Lieder. High temperature properties of Nextel 610 and alumina-based nanocomposite fibers. Ceram. Eng. Sci. Proc, 1993, 14, 609-621
    [71]白木,顾利霞.氧化铝纤维的生产和应用.江苏陶瓷, 2003, 36(2):31-37
    [72]T. Maki, S. Sakka. Preparation of alumina fibers by sol-gel method. J. Non-Cryst. Solids, 1988, 100, 303-308
    [73]王徳刚,仲蕾兰,顾利霞.氧化铝纤维的制备与应用.化工新型材料, 2002,30(4):17-19
    [74]姚元媛.氧化铝纤维的制造与性能及其在高温炉上的应用.工业加热, 1999, (5):42-47
    [75]陈立富,严永军,高桂英.氧化铝纤维先驱体的化学合成.硅酸盐学报, 1997, 25(3): 339 -344
    [76]刘久荣,潘梅,许东.由二氯氧锆-醇-醋酸盐体系制备氧化锆纤维.硅酸盐通报,2001,(3):66-69
    [77]I.N. Yermolenko, P.A. Vityaz, T.M. Ulyanova. Synthesis and sintering of ZrO_2 fiber. Sprechsaal, 1985,(4):118-122
    [80]Y.Kudo, T. Tomioka. Preparation of continuous zirconia fibers from polyzirconoxane synthesized by the facile one-pot reaction. J. Mater. Sci.,1998, 33:1863-1870
    [81]G. De, A. Chatter, D. Ganguli. Zirconia fibers from the zirconium-propoxide-acetylacetone- water-isopropanol system, J. Mater. Sci. lett., 1990,(9):845-846
    [82]Y. Abe, H. Tomioka, T. Gunbi. A one-pot synthesis of polyzirconoxane as an precursor for continuous zirconia fibers. J. Mater. Sci., 1994,(13):960-962
    [83]K.Kamiya, K. Thakashi, T. Maeda, H. Nasua, T. Yoko. Sol-gel-derived CaO-and CeO_2-stabilized ZrO_2 fibers-conversion process of gel to oxide and tensile strength. J. Europ. Ceram. Soc., 1991, 7,295-305
    [84]K. Kamiya, K. Tanimoto, Y. Toshinobu. Preparation of TiO_2 fibers by hydrolysis and polycondensation of Ti(O-i-C3H7)4. J. Mater. Sci. Lett., 1986, 5:402-404
    [85]T. Yoko, K. Kamiya, K. Kanaka. Preparation of multiple oxide BaTiO3 fibers by the sol-gel method. J. Mater. Sci., 1990, 25:3922-3929
    [86]U. Selvaraj, A. Prasadarao, S. Komarneni, K. Brooks, S.Kurtz. Sol-gel processing of PbTiO3 and Pb(Zr0.52Ti0.48)O3 fibers. J. Mater. Res., 1992, 7:992-996
    [87]Q. Lu, D. Chen, X. Jiao. Preparation and Characterization of BaTiO3 Long Fibers by Sol-gel Process Using Catechol-complexed Alkoxide. J. Sol-gel Sci. Technol., 2002, 25 ( 3):243- 248
    [88]K. Kamiya, M. Ohya, T. Yoko. Nitrogen-containing SiO_2 glass fibers prepared by ammonolysis of gels made from silicon alkoxides. J. Non-Cryst. Solids, 1986, 83:208-213
    [89]王德刚,刘润涛,仲蕾兰.水分散体系溶胶-凝胶法制备莫来石凝胶纤维的研究.东华大学学报(自然科学版),2002, 28(5):1-5
    [90]T. Yogo, L.A. Aksay. Synthesis of mullite fibre from an aluminosiloxane precursor. J. Mater. Chem., 1994, 4(2):353-359
    [91]A.K. Chakravorty. Effect of pH on 980-spinel phase-mullite formation of Al2O3-TiO_2-SiO_2 gels. J Mater Sci 1994, 29:1558-1568
    [92]K. Okada, S.Yasohama, S. Hayashi, A. Yasumori. Mullite long fibers prepared by Sol-Gel method using water solvent system. Key Eng. Mater., 1997,(132~136):1946-1949
    [93]C. Shao, H. Kim, J. Gong, B. Ding, D. Lee, S. Park. Fiber mats of poly(vinyl alcohol)/silica composite via electrospinning. Mater. Lett., 2003,57:1579-1584
    [94]史铁钧,周玉波,廖若谷,王华林.二氧化硅/聚乙烯醇杂化电纺纤维膜的制备与结构形态.高等学校化学学报, 2005, 26(12):2373-2376
    [95]曹金燕,史铁钧,王华林,翟林峰,曹康丽.可成纤PMMA/SiO_2杂化溶胶研究.高分子材料科学与工程, 2007, 23 (1): 204-207
    [96]翟林峰,史铁钧,王华林,于少明. ZrO_2/聚乙烯醇杂化电纺纤维的制备及其性能研究.材料研究学报, 2008, 22(2):182-186
    [97]杨华忠.溶胶凝胶法/电纺法制备硅氧聚合物电纺纤维的研究.合肥工业大学硕士论文, 2006
    [98]龚华俊,杨小平,隋刚,陈国强,唐劲天,邓旭亮.电纺丝法制备聚乳酸/多壁碳纳米管/羟基磷灰石杂化纳米纤维的研究.功能高分子学报, 2005, 2:297-300
    [99]李军平,翟尚儒,刘勇,徐耀,吴东,孙予罕.水热合成介观结构的ZnS纳米纤维.化学学报, 2004,62(22): 2273-2276
    [100]I. Hasegawa, T. Nakamura. Synthesis of Continuous Silicon Carbide-Titanium Carbide Hybrid Fibers through Sol-Gel processing. Mater. Res. Bull., 1996, 31(7):869-875
    [101]翟林峰,史铁钧,于少明.可纺性锆溶胶的制备与应用, I.氧化锆连续纤维的制备.应用化学, 2008, 25(6):637-641
    [1]A.B. Bennan, G.L. Wilkes. Structure-property behavior of Sol-Gel derived hybrid materials. Polymer, 1991, 32(4):733-740
    [2]张剑锋,郑强,高长有.溶胶凝胶法制备高分子无机复合材料.功能材料, 2000, 31(4):357-360
    [3]肖明艳,陈建敏.有机-无机杂化材料研究进展.高分子材料科学与工程, 2001, 17 (5): 6-10
    [4]李旭华,袁荞龙,王得宁,应圣康.杂化材料的制备、性能及应用.功能高分子学报, 2000, 13(2):211-218
    [5]J. Wen, V.J. Vasudevan, G.L. Wilkes. Abrasion resistance inorganic/organic coating materials prepared by the sol-gel method. J. Sol-Gel Sci. Tech., 1995, (5) :115-120
    [6]C.J. Wang, Y. Pang, P.N. Prasad. Poly(p-phenylene vinylene)-silica composite. A novel sol-gel processed non-linear optical material for optical waveguides. Polymer,1991, 32 , 605-612
    [7]H. Schmidt, H. Scholze, G. Tunker. Acoustic properties and relationship with the low frequency light scattering in an optical glass. J. Non-Cryst. Solids, 1986,80 , 557-563
    [8]Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, O. Kamiqaito. Mechanical properties of nylon 6-clay hybrid. J. Mater. Res., 1993, 8(5), 1185-1189
    [9]M.M. Bergshoef, G.J. Vancso. Transparent nanocomposites with ultrathin, electrospun nylon-4,6 fiber reinforcement. Adv. Mater. 1999, 11 (16) :1362-1366
    [10]M. Bognitzki, W. Czado, T. Frese, A. Schaper, H. Scholze. Nanostructured fibers via electrospinning. Adv. Mater., 2001, 13 (1):70-76
    [11]L. Huang, R.A. Mcmillan, R.P. Apkarian, B. Pourdeyhimi. Generation of synthetic elastic- mimetic small diameter fibers and fiber networks. Macromolecules, 2000, 33:2989-2993
    [12]M. Bognitzki, H. Hou, M. Ishaque, T. Frese, S. Mcmillan. Polymer, metal, and hybrid nano- and mesotubes by coating degradable polymer template fibers (TUFT process). Adv. Mater., 2000, 12, 637-640
    [13]R.Y. Huang, J.W. Rhim. Modification of poly(vinyl alcohol) using maleic acid and its application to the separation of acetic acid-water mixtures by the pervaporation technique. Polym. Int., 1993, 30, 129-135
    [14]V. Gimenez, A. Mantecon, V. Cadiz. Modification of poly(vinyl alcohol) with acid chlorides and crosslinking with difunctional hardeners. J. Polym. Sci. Polym. Chem. Ed., 1996, 34, 925-931
    [15]M. Krumova, D. Lopez, R. Benavente, J.M. Perena. Effect of crosslinking on the mechanical and thermal properties of poly(vinyl alcohol). Polymer, 2000, 41, 9265-9272
    [16]张毅,汪明礼.聚乙烯醇及其应用.黄山学院学报, 2004, 6(3):71-75
    [17]N.A. Ibrahim. Optimization of desizing water soluble sizes. Part IV. Options for washing out PVA-size. Am. Dyes.Rep., 1991, 80(7):4-9
    [18]黄尚兵.聚乙烯醇系列产品的研发与生产.化工技术与开发, 2008, 37(7):31-35
    [19]W. Chiang, C. Hu. Studies of reactions with polymers.I. the reaction of maleic anhydride with PVA and the properties of the resultant. J. Appl. Polym. Sci., 1985,30, 3895-3910
    [20]C. Shao, H. Kim, J. Gong, B. Ding, D. Lee, S. Park. Fiber mats of poly(vinyl alcohol)/silica composite via electrospinning. Mater. Lett., 2003,(57):1579-1584
    [21]姜云鹏,王榕树.纳米二氧化硅-聚乙烯醇复合超滤膜的制备与表征.化学工程, 2003,31(1):38-41
    [22]刘郁杨,邵颖惠. PVA/SiO_2杂化材料的制备及表征.高分子材料科学与工程, 2002,18(1):123-126
    [23]陈永平,廖建和.溶胶-凝胶法制备PVA/SiO_2杂化材料.热带农业科学, 2002,22(3):32-34
    [24]史铁钧,周玉波,廖若谷,王华林.二氧化硅/聚乙烯醇杂化电纺纤维膜的制备与结构形态.高等学校化学学报, 2005, 26(12):2373-2376
    [25]王华林,史铁钧,翟林峰.疏水型多孔PVA/SiO_2有机无机杂化材料的研究.高分子材料科学与工程, 2005, 21(3):250-253
    [26]王德刚,刘润涛,顾利霞.溶胶-凝胶法在陶瓷/玻璃纤维制备中的应用.山东陶瓷, 2001,24(4):13-16
    [27]S. Sakka, H. Kozuka. Rheology of sols and fiber drawing. J. Non-Cryst. Solids, 1998,(100):142-153
    [28]徐永东,周万诚,张立同.溶胶凝胶法SiO_2玻璃纤维的制备及其析晶性.材料研究学报, 1994,8(4):343-347
    [29]I.Hasewaga, T. Nakamura, S.Motojima, M. Kajiwara. An Improved Procedure for Fabricating SiO_2-TiO_2-Phenolic Resin Hybrid Fibers as Precursors for Long Si-Ti-C Fibers by Sol-Gel Processing. J. Mater. Chem., 1995, (5):193-199
    [30]I. Hasewaga,Y. Fukuda, M. Kajiwara. Synthesis of Continuous Silicon Carbide-Titanium Carbide Hybrid Fibers through Sol-Gel processing, Ceram. Inter., 1999, (25):523-526
    [31]孟令芝,何永炳.有机波谱分析,武汉:武汉大学出版社, 1997
    [32]杨辉,丁子上,蒋仲华,许小平.正硅酸乙酯溶胶-凝胶过程动力学.硅酸盐学报, 1986, 17(3):204-208
    [33]林键.催化剂对正硅酸乙酯水解-聚合机理的影响.无机材料学报, 1997,12(3):363-369
    [1]黄尚兵.聚乙烯醇系列产品的研发与生产.化工技术与开发, 2008, 37(7):31-35
    [2]董丽娟,雷武,夏明珠,王风云.聚乙烯醇的生物降解.中国生物工程杂志, 2005,25(7):28-33
    [3]刘白玲,曾祥成,杨金华,贾艳伟,张颖,李坤福.聚乙烯醇生物降解的影响因素.材料研究学报, 2000,14:108-112
    [4]N. Tudorachi, C.N. Cascaval, M. Rusu. Testing of polyvinylalcohol and starch mixtures as biodegradable polymeric materials. Polymer Test., 2000, 19:785-799
    [5]牛海燕,堵国成,陈坚.一个降解聚乙烯醇混合菌系的降解特性及培养基碳氮源优化.化工进展, 2008, 27(2):274-278
    [6]盛野,王洪艳.改进聚乙烯醇基材料耐水性的研究.化学世界, 2001, 12: 633-634
    [7]邓国宏,余立新,郝继华,陈翠仙,李琳.聚乙烯醇/二氧化硅共混膜的制备及耐温、耐溶剂性能研究.高分子材料科学与工程, 2001, 17 (6) : 122-125
    [8]王华林,史铁钧,翟林峰.疏水型多孔PVA/SiO_2有机无机杂化材料的研究.高分子材料科学与工程, 2005, 21 (3): 250- 252.
    [9]宋秋生,史铁钧,王华林,杭国培. PVA/SiO_2杂化纤维的制备与表征.高分子材料科学与工程, 2007,23(6):216-219
    [10]C. Shao, H. Kim, J. Gong, B. Ding, D. Lee, S. Park. Fiber mats of poly(vinyl alcohol)/silica composite via electrospinning. Mater. Lett., 2003,(57):1579-1584
    [11]U. Diebold. Structure and properties of TiO_2 surfaces: A brief review. Appl. Phys. A: Mater. Sci. Proc., 2003, 76(5): 681-687
    [12]G.R. Raj, O. Hiroaki, T. Ryohei1, T. Shogo1. A novel use of TiO_2 fiber for photocatalytic ozonation of 2,4-dichlorophenoxyacetic acid in aqueous solution. J. Environ. Sci., 2008, 20: 1138-1145
    [13]X. Gao, I.E. Wachs. Structural characteristics and catalytic properties of highly dispersed TiO_2/SiO_2 catalysts. Langmuir, 1999, 15( 9): 3169-3178
    [14]张玉红,熊国兴,杨维慎,傅贤智.溶胶-凝胶法制备复合MxOy-TiO_2光催化剂.物理化学学报, 2001, 17(3):273-277
    [15]于永洲,杨毅,张晓燕,刘宏英,李凤生.二氧化钛-二氧化硅复合材料制备研究及应用.纳米科技, 2007, (2):51-55
    [16]T.K. Khalil, A.R. Boccaccini, O. Hiroaki. Heating microscopy study of the sintering behavior of glass powder compacts in the binary system SiO_2-TiO_2. Mater. Lett., 2002, 56(3):317-321
    [17]Q. Yang, C. Xie, Z. Xua, T.W. Zhang, K.X. Hu. Effects of synthesis parameters on the physico–chemical and photoactivity properties of titania-silica mixed oxide prepared via basic hydrolyzation. J. Mol. Catal. A-Chem., 2005,239(1/2):144-150
    [18]全燮,詹天珍,回滨,李新勇,陈硕. TiO_2-SiO_2-GF复合光催化剂对甲醛光催化降解研究.大连理工大学学报, 2005,45(4):522-526
    [19]黄智华,丘坤元.溶胶-凝胶法合成聚甲基丙烯酸甲酯/二氧化钛-二氧化硅杂化聚合物材料.高分子学报, 1997,4: 434-438
    [20]柯昌美,汪厚植,刘兴重,强敏,赵惠忠,李轩科.聚丙烯酸酯/TiO_2-SiO_2纳米杂化材料性能的研究.塑料工业, 2005,33(6):19-22
    [21]张玲,蔡涛,姚英政,伍青. TiO_2/SiO_2二元材料及其杂化材料的制备和表征.应用化学, 2005,22(9):984-988
    [22]C.J. Brinker, D.W. Scherer. Sol-Gel Science. Academic Press, New York: 1990
    [23]孟令芝,何永炳.有机波谱分析,武汉:武汉大学出版社, 1997
    [1]冯春祥,王应德,宋永才.连续SiC纤维应用概况.材料导报, 1997,11(6): 64-66, 59
    [2]R.Scholz, G.E. Youngblood. Irradiation creep of advanced silicon carbide fibers. J. Nucl. Mater., 2000, (12):283-287
    [3]刘振宇,郑经堂.超耐环境性的碳化硅.新型炭材料, 2000,15(2):75-79
    [4]石南林,刘清民,常新春,全荣,夏春. SiC纤维的强度与表而微观形貌.金属学报,1990, ( 31 ): 225-228
    [5]刘翠霞,杨延清,徐婷,马志军,陈彦.化学气相沉积法连续SiC纤维的研究现状和发展趋势.材料导报, 2006,20(8):35-38
    [6]薛金根,龙剑峰,宋永才,冯春祥.碳化硅纤维制备技术研究进展.合成纤维工业, 2001,24(3):41-44
    [7]冯春祥,宋永才,王应德.材料设计与加工(第二版),北京:化学工业出版社, 2007
    [8]刘军,冯春祥,宋永才,薛金根.先驱体转化法制备碳化硅纤维.现代化工, 2000, 20 (10):59-61
    [9]S. Yajima, J. Hayashi, M. Omori. Continuous silicon carbide fiber of tensile strengths. Chem. Lett. 1975,(9):931-936
    [10]W.Toreki. Polymer-derived silicon-carbide fiibers with improved thermo mechanical stability. Mater. Res. Soc. Symp. Proc., 1992, 271:761-764
    [11]何姣莲,李劲,陈振华,范群,胡启柏.以硅凝胶网络结构为模板制备多孔炭材料的研究.炭素技术,2006,25(3):6-9
    [12]林建新,郑勇,郑瑛,魏可镁.制备高比表面积碳化硅的几种影响因素.无机化学学报, 2006,22(10):1778-1782
    [13]张波,李建保,孙晶晶.溶胶-凝胶法制备纳米碳化硅粉的几种影响因素.炭素技术, 2000, (4): 50-53
    [14]郑勇,郑瑛,林良旭,魏可镁.新型双孔碳化硅的合成与表征.功能材料, 2006,37(12): 1498-1500
    [15]G.W. Meng, Z. Cui, L.D. Zhang, F. Phillipp. Growth and characterization of nanostructuredβ-SiC via carbothermal reduction of SiO_2 xerogels containing carbon nanoparticles. J. Cryst. Growth, 2000, 209:801-808
    [16]凌关庭,王亦芸,唐述潮.食品添加剂手册.北京:化学工业出版社, 1989
    [17]C.J. Brinker. Hydrolysis and condensation of silicates: effects on structure. J. Non-Cryst. Solids, 1988, 100(1-3) :31-50
    [18]Y. Xu, W. Zhou, L. Zhang, L. Cheng. Spinnability and crystallizability of silica glass fiber bythe sol-gel method. J. Mater. Process. Tech., 2000,101: 44-46
    [19]刘贵阳,黄正宏,康飞宇.沸石矿为模板制备多孔炭的研究.新型炭材料, 2005, 20 (1): 13-17
    [1]牛永生,卫爱民.聚丙烯酸系高效减水剂的研究进展.安阳工学院学报, 2005,(2):1-3
    [2]李真,刘瑾,周家勇,张志满.水溶性聚丙烯酸类高效减水剂的合成及表征.新型建筑材料, 2007.2:50-53
    [3]A.Ohta, T.Uomoto. Study on The Dispersing Mechanisms of Polycarboxylate-Based Dispersant. Cement Sci. Concrete Technol., 1998, 49 (10):137-143
    [4]王慧桂,陈慧.丙烯酸类聚合物鞣剂.皮革化工, 2004,21(1):10-13
    [5]E. Anton, L. Amma, J.J. Hodder, J.W. Ceoffrev. Lubricating Acrylic Syntans: A Review of the Technology and Practicall Applications. J. Am. Leather Chem. As., 2002. 91: 237-341
    [6]何曼君,陈维孝,董西侠.高分子物理.上海:复旦大学出版社, 1988
    [7]陈桂娥,阎剑,刘小珍,许振良. PAA络合-超滤耦合法分离镧和铕离子的研究.稀土, 2007,28(6):6-11
    [8]孙同明,汤艳峰,朱金丽.低分子量聚丙烯酸的制备工艺研究.南通大学学报(自然科学版),2008,7(1):58-61
    [9]黄晓南.络合剂对AA /AM共聚物阻垢的增效作用.工业用水与废水, 2007, 38(5):90-92
    [10]R. Ulrike, D. Kristina. Aq. aluminium-flaking pigment coating agent-obtd. by mixing aq. thickener based on polyacrylic acid with aluminium flake contg. mixt., and thermo-curable polyurethane dispersion, DE4025264. 1992-02-13
    [11]黎昌健,杨松,徐映红,曹新华,陈玲.聚丙烯酸树脂在牙膏中的应用研究.牙膏工业, 2006,(4): 22-24
    [12]崔建伟,邓文,周仁勇,张慧萍,晏雄.聚丙烯酸类浆料的纳米改性.纺织学报, 2007, 28(11): 65-68
    [13]范雪荣,顾蓉英,王强.聚丙烯酸浆料对淀粉浆液浆膜性能的影响.纺织学报, 2004, 25 (2): 37-41
    [14]途敏飞,程永清,张芹,刘振.聚丙烯酸类聚合物的生物可降解性研究.材料科学与工程学报, 2006, 24(6):894-897
    [15]黄静琳,陆锦芳,郭盛荣.生物粘附性聚丙烯酸类高分子在药剂中的应用.中国医药工业杂志, 2001, 32(2):90-91
    [16]崔宝国,李林军,黄杜华.丙烯酸树脂在微丸包衣中的应用.齐鲁药事, 2006, 25(10): 614- 616
    [17]钟世华,徐满才,常晓途.新型聚丙烯酸树脂的合成及其在井冈霉素纯化中的应用.湖南师范大学自然科学学报, 2006, 29(3): 58-60
    [18]聂王焰,周艺峰,沙鸿飞.药用肠溶性丙烯酸树脂的合成研究.安徽大学学报(自然科学版),2003,27(2):90-93
    [19]宋磊,张春娜,刘炯,张亚琼,郭圣荣.聚丙烯酸、聚乙烯吡咯烷酮对萘普生片释放度的影响.上海交通大学学报, 2005, 29(10): 1680-1684
    [20]刘平生,李利,周宁琳,魏少华,章峻,刘瑜之,沈健.蒙脱土/聚丙烯酸高吸树脂的合成.复合材料学报, 2006, 23(3): 44-48
    [21]孙莺,王海波,罗辉旭,雷泽广,彭俊清,郑穹.聚丙烯酸高吸水树脂的制备.武汉化工学院学报, 2004, 26(2):5-7
    [22]崔亦华,郭建维,崔英德,董奋强,秦建忠.可生物降解吸水剂分类及降解性能进展.化工新型材料,2007,35(7):1-4
    [23]宋秋生,史铁钧,王华林,杭国培. PVA/SiO_2杂化纤维的制备与表征.高分子材料科学与工程, 2007, 23(6): 216-219
    [24]C. Shao, H. Kim, J. Gong, B. Ding, D. Lee, S. Park. Fiber mats of poly(vinyl alcohol)/silica composite via electrospinning. Mater. Lett., 2003, 57, 1579-1584
    [25]刘晓蕾,刘孝波.溶胶-凝胶法制备有机/无机杂化材料研究进展.高分子材料科学与工程, 2004, 20(2):28-31
    [26]张启卫,章永化,陈守明,熊红兵,龚克成.聚甲基丙烯酸甲酯/二氧化硅杂化材料制备与性能.应用化学, 2002,19(9),874-877
    [27]沈德言.红外光谱在高分子研究中的应用.北京:科学出版社, 1988
    [1]C.T. Rixe. Polyacrylic Fibers. Chem. Fibers lnter., 2002, (11):232-253
    [2]任铃子.中国腈纶工业现状与前景展望.合成纤维工业, 2005, 28(1):46-49
    [3]金离尘.我国睛纶工业的发展.合成纤维工业, 2007,30(5):56-59
    [4]卫高明.聚丙烯腈纤维水泥砼在滑模摊铺桥面中的应用.山西交通科技, 2007, (4): 70-72
    [5]汤寄予,高丹盈,张启明.合成纤维对沥青混合料耐水性影响的试验研究,郑州大学学报(工学版), 2008, 29(2):5-9
    [6]陈俊珉,李嘉琳.聚丙烯腈纤维在旧路加铺混凝土面层工程中的应用.城市道桥与防洪, 2007,(7):167-170
    [7]邓宗才,何唯平,张国庆.聚丙烯腈纤维对混凝土的早期抗裂性能的影响.公路, 2003, (7):163-165
    [8]董晶,魏俊富,李海静,魏丽.聚丙烯腈基弱碱性离子交换纤维的制备.天津工业大学学报, 2007,26(1):8-11
    [9]孙小莉,曾庆轩,李明愉,冯长根.聚丙烯腈基离子交换纤维制备研究进展.合成纤维, 2008,(7):6-9
    [10]A. Shunkevich, Z.I. Akulich, G.V. Mediak. Acid-base properties of ion exchangers. III. An ion exchangers on the basis of polyacrylonitrile fiber. React. Funct. Polym., 2005, 63: 27-34
    [11]朱锐钿,严玉蓉,詹怀宇,彭锦荣.聚丙烯腈纤维的化学改性.化纤与纺织技术, 2007, (1):16-20
    [12]张旺玺.聚丙烯腈纤维的改性.合成技术及应用, 2000,15 (1): 27-31
    [13]Y. Chen. Study on structure and property of PAN/MWNTs fibers. China Synthetic Fiber Ind., 2006,29(6):30-31
    [14]洪炳墩,王彪,王华平,张玉梅.碳纳米管/聚丙烯腈原液的制备及可纺性.功能高分子学报,2005,18(4):617-622
    [15]潘玮,张慧勤,陈燕.碳纳米管/聚丙烯腈导电纤维的结构与性能.合成纤维, 2006, (10):1-4
    [16]韩晓建,黄争鸣,何创龙,刘玲,吴庆生.聚丙烯腈(PAN)/TiO_2超细纤维的制备与表征.高技术通讯, 2007,17(12):1262-1266
    [17]沈翔,丁运花,李鹏,杨小平,刘承坤.聚丙烯腈/二氧化钛杂化纳米活性碳纤维制备与结构变化规律.化工进展, 2007,26(7):974-979
    [18]J.Chen,I.Harrison. Modification of polyacrylonitrile(PAN) carbon fiber precursor via post- spinning plasticization and stretching in dimethyl formamide(DMF). Carbon, 2002. 40: 25-45
    [19]王艳芝,钱畅.聚丙烯腈的合成与碳纤维制备.中原工学院学报, 2006,17(6):20-22
    [20]陈方泉,陈惠芳,潘鼎.干湿法高性能聚丙烯腈基碳纤维原丝的制备.化工新型材料, 2003. 31 (11):11-15
    [21]贺福,王茂章.碳纤维及其复合材料.北京:科学出版社, 1995
    [22]冯春祥,王应德,宋永才.连续SiC纤维应用概况.材料导报,1997,11(6):64-66, 59
    [22]R.Scholz, G.E. Youngblood. Irradiation creep of advanced silicon carbide fibers. J. Nucl.Mater., 2000, 283-287, Part 1, (12): 372-375
    [23]刘振宇,郑经堂.超耐环境性的碳化硅.新型炭材料, 2000, 15(2):75-79
    [24]I. Hasegawa, T. Nakamura, M. Kajiwara. Synthesis of continuous silicon carbide-titanium carbide hybrid fibers through sol-gel processing. Mater. Res. Bull., 1996,31,869-876
    [25]陈建军,潘颐,林晶.硅气氛中PAN碳纤维原位生长碳化硅纳米纤维.高科技纤维与应用, 2006,31(3):11-14
    [26]S. Sakka, H. Kozuka. Rheology of sols and fiber drawing. J. Non-Cryst. Solids, 1998, (100) :142-153
    [27]Y. Xu, W. Zhou, L. Zhang, L. Cheng. Spinnability and crystallizability of silica glass fiber by the sol-gel method. J. Mater. Process. Tech., 2000, (101), 44-46
    [28]宋秋生,史铁钧,王华林,杭国培. PVA/SiO_2杂化纤维的制备与表征.高分子材料科学与工程, 2007, 23(6): 216-219
    [29]宋秋生,史铁钧,王华林.聚丙烯酸/SiO_2杂化纤维的制备与表征.应用化学, 2007, 24 (8): 953-956
    [30]黎晓琼,韩京雷.聚丙烯腈纤维热性能的表征.现代科学仪器, 2001,(1):60-61
    [31]沈德言.红外光谱在高分子研究中的应用.北京:科学出版社, 1988
    [32]张利珍,吕春祥,吕永根,吴刚平,贺福.聚丙烯腈纤维在预氧化过程中的结构和热性能转变.新型炭材料, 2005,20(2):144-150
    [33]龚勇明,徐华,刘淑金,赵振文,刘岳新. PAN分子环化行为对纤维结构及性能的影响.北京化工大学学报, 2004, 31(6): 44-46
    [1]M. Niino, T. Hirai, P. Watanabe. Fabrication of a high pressure thrust chamber by the cip forming method. Jpn. J. Soc. Comp. Mater., 1987. 13: 257-261
    [2]武安华,曹文斌,葛昌纯,李江涛.α-β-sialon FCM的制备研究.硅酸盐学报, 2001, 29(3):210-213
    [3]R.Landauer, In: J.Garland, D.Tanner. Electrical transport and optical properties of inhomogenous media. New York: Amer. Inst. of Phys. Conf. No. 40. 1978: 2-9
    [4]王迎军,宁成云,赵子衷,沈式希,高能先,陈锴,刘正义.等离子喷涂生物活性梯度涂层的设计与研究.硅酸盐通报, 1997,(4):23-26
    [5]刘正林,丁彰雄,黄文玲,曹强. ZrO_2隔热梯度涂层制备技术及涂层性能研究.武汉交通科技大学学报, 1997,21(2):141-147
    [6]王永康,王伟民,顾晓红,程祥宇,李炳生.耐烧蚀梯度涂层材料的研究.兵器材料科学与工程, 1994,17(4):7-11
    [7]张帆,张其锦.梯度折射率塑料光纤的研究进展.高分子通报, 2000,(1):33-38
    [8]蔡春平,高秀敏.梯度折射率纤维透镜玻璃的研究.应用化学, 2001,22(4):26-29
    [9]F. Zhang, X. Wang, Q. Zhang. Refractive index distribution of graded poly(methyl methacrylate) preform described by self-diffusion approaches of free-volume theory in a ternary system. Polymer, 2000, 41: 9155-9161
    [9]E. Nihei, T. Ishigure, Y. Koike. High-bandwidth, graded-index polymer optical fiber for near- infrared use. Appl. Optics. 1996, 20:7085-7093
    [10]W.A. Gambing, H. Matsumura. In: DB Ostrowshy, editor. Fiber and integrated optics, New York: Plenum, 1978
    [11]W. Chen, J. Chen, S. Yang, J. Cheng. Preparation of gradient-index (GRIN) polymer fibers for imaging applications. J. Appl. Polym. Sci. 1996, 60:1379-1383
    [12]Y.Ohtsuka, Y.Koike, H.Yamazaki. Studies on the light-focusing plastic rod EM dash 10. A light-focusing plastic fiber of methyl methacrylate-vinyl benzoate copolymer. Appl. Optics. 1981, 20: 2726-2730
    [13]B. Liu, W. Chen, J. Hsu. Mathematical modeling of a co-extrusion process for preparing gradient-index polymer optical fibers. Polymer, 1999, 40 :1451-1457
    [14]F. Zhang, X. Wang, Q. Zhang. Refractive index distribution of graded poly(methyl methacrylate) preform described by self-diffusion approaches of free-volume theory in a ternary system. Polymer, 2000, 41 :9155-9161
    [15]陈大为,翟林峰,杨华忠,史铁钧.梯度GF/SAN复合材料的制备.现代塑料加工应用,2007, 19(3):23-26
    [16]Q. Xing, M. Zhu, Y. Wang, Y. Chen, S. Tan. In situ gradient nano-scale fibril formation during polypropylene (PP)/polystyrene (PS) composite fine fiber processing. Polymer, 2005, 46: 5406 -5416
    [17]N. Toyoda, Y. Mishina, R. Murata, Y. UoZu. Distributed graded index type optical transmission plastic article and method of manufacturing same. US5390274,1995-7-16
    [18]Y. Koike(Nippon Petrochemicals Company Limited). Method of manufacturing a graded optical transmission medium made of synthesis resin. US5253323, 1993-12-12
    [19]Y. Koike(Nippon Petrochemicals Company Limited). Method of manufacturing optical transmission medium from synthesis resin. US5382448,1995-01-17
    [20]李军平,翟尚儒,刘勇,徐耀,吴东,孙予罕.水热合成介观结构的ZnS纳米纤维.化学学报, 2004,62(22): 2273-2276
    [21]The Regents of the University of California. Centrifugal synthesis and processing of functionally graded materials. US6136452,2000-10-24
    [22]Boston Optical Fiber Inc. Method for producing a graded index plastic optical material. US6086999, 2000-07-11
    [23]The Dow Chemical Company. Plastic optical fiber for in vivo use having a biocompatible polysiloxane cladding. US4867531, 1989-09-19
    [24]The Trustees of the University of Pennsylvania. Graded index optical fibers. US5729645, 1998-03-17
    [25]The Trustees of the University of Pennsylvania. Method for the preparation of optical fibers. US5911025,1999-06-08
    [26]S. Sakka, H. Kozuka. Rheology of sols and fiber drawing. J. Non-Cryst. Solids,1988, 100: 142-153

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700