有序介孔碳改性:合成与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近来,介孔碳的发展引起人们极大兴趣。这类碳材料有很高的表面积,均匀可调的孔径,高的热稳定性,可变的结构组成以及高的化学稳定性。这些特点使得介孔碳成为用来检测某些物质电化学行为的新型材料。尽管已有一些工作用来研究介孔碳的电催化应用,但是了解它的电化学活性仍然是很重要的。此外改善这些介孔材料的物理化学以及电催化性质也是很重要的。在这个工作中,在改善这些性质以前,我们试着应用它的电化学活性去探测一些物质。
     在论文第一部分中,我们介绍了介孔碳在硫醇类物质的电催化活性中所起的重要作用,以及介孔碳结构的变化导致这些性质的下降。结果显示,在介孔碳修饰的电极上,谷胱甘肽的氧化过程与半光氨酸有很大的不同,在此电极上半光氨酸的峰电位在0.47 V处。这个差异对于检测谷胱甘肽时减少半光氨酸的干扰是有帮助的。高表面积,有序的介孔结构,高灵敏度以及低的检测限使得介孔碳成为一种新颖的无酶安培葡萄糖传感器。
     论文第二部分介绍了介孔碳改性。结果显示将二茂铁固定在介孔碳上,介孔碳的有序结构未被破坏。介孔碳-二茂铁的电化学表征显示二茂铁是电化学活性的。在pH 7.3的缓冲溶液中,介孔碳-二茂铁修饰电极对抗坏血酸有很高的电催化活性,与裸的玻碳电极相比过电位有很大的下降,并且阳极电流有显著的增强。抗坏血酸是测定尿酸的主要干扰物,在抗坏血酸存在的条件下我们用介孔碳-二茂铁修饰电极检测了尿酸。由于抗坏血酸和尿酸的伏安信号能被很好的区分,峰电位差为308 mV,所以修饰电极能够同时检测抗坏血酸和尿酸。我们用一个新颖的方法实现了将氧化铁粒子掺杂在介孔碳中,并且没有降低介孔碳的表面积。通过分解二茂铁衍生物在有序介孔碳结构中产生了铁粒子。我们还对比了介孔碳包含铁粒子材料与介孔碳的性质,发现该新材料的物理化学性质得到改善。由于介孔碳大的表面积以及在碳的结构中出现了氧化铁粒子,使得介孔碳-铁材料对过氧化氢的电催化得到增强。
Recently, there has been interest in the development of ordered mesoporous carbons (OMC). Those carbon materials exhibit high surface area, well- defined pore size, high thermal stability, flexible framework composition and chemical inertness. Those properties make OMC potential novel materials for investigating electrochemical behavior of substances. Although some works have been done on the application of OMC in the electrocatalysis, understanding its electrochemical activity is of great importance. It is also important to improve the physico-chemical and electrocatalytic properties of these porous carbon materials. In this work, before the improvement of these properties, we tried to understand how the electrochemical activity is applied in the determination of some biomolecules.
     In the first part of this work, it has been demonstrated that the ordered mesostructure of OMC plays an important role in the electrocatalytic activity towards the thiols and the destruction of this structure results in the decrease of such properties. Results showed that the oxidation process of glutathione (GSH) at OMC electrode is different from that of cysteine (CySH) at the same electrode by a peak at 0.47 V associated to CySH and this difference helped to reduce the interference of GSH during the determination of CySH in the presence of GSH. The high active surface area of OMC and its ordered mesostructure allowed fabricating a novel nonenzymatic amperometric glucose sensor based on the OMC with high sensitivity and low detection limit.
     The second part corresponds to the improvement of the properties of OMC. The results showed that, after anchoring ferrocene on the mesoporous, the ordered mesostructure of the material (OMC-Fc) remains intact. The electrochemical characterization of OMC-Fc showed that Fc is electrochemically accessible. In aqueous buffer solution (pH 7.3), the OMC-Fc modified electrode exhibits a high electrocatalytic activity towards ascorbic acid (AA) oxidation with a decrease of overpotential and a drastic enhancement of the anodic currents compared to the bare glassy carbon (GC) electrode. The detection and determination of uric acid (UA) in the presence of ascorbic acid (AA), the main interferent, were achieved at this OMC-Fc modified electrode. The voltammetric signals due to UA and AA were well separated with a potential difference of 308 mV, a separation that can allow the simultaneous determination of UA and AA.
     A novel method for the incorporation of iron oxide species in the carbon framework of OMC without decreasing the surface area has also been possible. The decomposition of ferrocene derivative yields iron species that facilitate the formation of the carbon framework. The performance of ordered mesoporous carbon containing iron oxide (OMC-Fe) has been compared to OMC and the properties of the new material were found to be improved. Electrocatalytic properties towards hydrogen peroxide were enhanced because of the large surface area of the mesoporous carbon and the presence of iron oxide species incorporated in the carbon framework of OMC-Fe.
引文
[1] Beck J S, Chu C T -W, Jonson I D, et al. WO Patent, 91/11390, 1991.
    [2] Kresge C T, Leonowiez M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism [J]. Nature, 1992, 359: 710-712.
    [3] Sing K S W, Everett D H, Haul R A W, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity [J]. Pure Appl Chem, 1985, 57: 603-619.
    [4] Vinu A, Hossain K Z. Ariga K. Recent advances in functionalization of mesoporous silica [J]. J Nanosci Nanotechnol, 2005, 5: 347-375.
    [5] Huo Q, Margolese D, Ciesla U, et al. Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays [J]. Chem Mater, 1994, 6: 1176-1191.
    [6] Attard G S, Glyde J C, Goltner C.G. Liquid-crystalline phases as templates for the synthesis of mesoporous silica [J]. Nature, 1995, 378: 366- 368.
    [7] Ryoo R, Joo S H, Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation [J]. J Phys Chem B, 1999, 103: 7743- 7746.
    [8] Lu A H, Schmidt W, Tagushi A, el al. Taking nanocasting one step further: Replicating CMK-3 as a silica material [J]. Angew Chem Int Ed, 2002, 41: 3489- 3492.
    [9] Beck J S, Vartuli J W, Roth W J, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates [J]. J Am Chem Soc, 1992, 114: 10834- 10843.
    [10] Israelachivili J N, Mitchell D J, Ninham B W. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers [J]. J Chem Soc Faraday Trans, 1976, 72 (2):1525- 1568.
    [11] Firouz A, Kumar D, Bull L M, et al. Cooperative organization of inorganic-surfactant and biomimetic assemblies [J]. Science, 1995, 267: 1138- 1143.
    [12] Q. Huo, R. Leon, P.M. Petroff, et al. Mesostructure design with gemini surfactants: Supercage formation in a three-dimensional hexagonal array, Science, 268 (1995) 1324-1327.
    [13] Huo Q, Margolese D I, Stucky G D. Surfactant control of phases in the synthesis of mesoporous silica-based materials [J]. Chem Mater, 1996, 8: 1147- 1160.
    [14] Che S, Garcia-Bennet A E, Yokoi T, et al. A novel anionic surfactant templating route for synthesizing mesoporous silica with unique structure [J]. Nature Mater, 2003, 2: 801- 805.
    [15]. Garcia-Bennet A E, Terasaki O, Che S, et al. Structural investigations of AMS-n mesoporous materials by transmission electron microscopy [J]. Chem Mater, 2004, 16: 813- 821.
    [16] Tanev P T, Pinnavaia T J. Neutral templating route to mesoporous molecular sieves [J]. Science, 1995, 267: 865.
    [17] Tanev P T, Chibwe M, Pinnaviaa T J. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds [J]. Nature, 1994, 368: 321-323.
    [18] Bagshaw S A, Prouzet E, Pinnaviaa T J. Templating of mesoporous molecular sieves by nonionic polyethylene 0xide surfactants [J]. Science, 1995, 269: 1242- 1244.
    [19] Zhao D, Huo Q, Feng J, et al. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures [J]. J Am Chem Soc, 1998, 120: 6024- 6036.
    [20] Zhao D, Feng J, Huo Q,et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Science, 1998, 279: 548- 552.
    [21] Yang P, Zhao D, Magolese D I, et al. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks [J]. Nature, 1998, 396 152- 155.
    [22] Yang P, Zhao D, Magolese D I, et al. Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework [J]. Chem Mater, 1999, 11: 2813- 2826.
    [23] Attard G S, Bartlett P N, Coleman N R B, et al. Mesoporous platinum films from lyotropic liquid crystalline phases [J]. Science, 1997, 278: 838- 840.
    [24] Tagushi A, Schuth F. Ordered mesoporous materials in catalysis [J]. Micropor Mesopor Mater, 2005, 77: 1- 45.
    [25] Johnson S A, Khushalani D, Coombs N et al. Polymer mesofibres [J]. J Mater Chem, 1998, 8: 13- 14.
    [26] Kim J Y, Yoon S B, Kooli F et al. Synthesis of highly ordered mesoporous polymer networks [J]. J Mater Chem, 2001, 11: 2912- 2914.
    [27] Laha S C, Ryoo R. Synthesis of thermally stable mesoporous cerium oxide with nanocrystalline frameworks using mesoporous silica templates [J]. Chem Commun, 2003: 2138- 2139.
    [28] Zhu K, Yue B, Zhou W et al. Preparation of three-dimensional chromium oxide porous single crystals templated by SBA-15 [J]. Chem Commun, 2003: 98-99.
    [29] Tian B, Liu X, Yang H et al. General synthesis of ordered crystallized metal oxide nanoarrays replicated by microwave-digested mesoporous silica [J]. Adv Mater, 2003, 15: 1370- 1374.
    [30] Lee K, Kim Y-H, Han S B et al. Osmium replica of mesoporous silicate MCM-48: Efficient and reusable catalyst for oxidative cleavage and dihydroxylation reactions [J]. J Am Chem Soc, 2003, 125: 6844-6845.
    [31] Yang H, Shi Q, Tian B et al. One-step nanocasting synthesis of highly ordered single crystalline indium oxide nanowire arrays from mesostructured frameworks [J]. J Am Chem Soc, 2003, 125: 4724- 4725.
    [32] Tian B, Liu X, Solovyov L A, et al. Facile synthesis and characterization of novel mesoporous and mesorelief oxides with gyroidal structures [J]. J Am Chem Soc, 2004, 126: 865- 875.
    [33] Mokaya R. Ultrastable mesoporous aluminosilicates by grafting routes [J]. Angew Chem Int Ed, 1999, 38: 2930- 2934.
    [34] Landmesser H, Kosslick H, Kurschner U et al. Acidity of substituted mesoporous molecular sieve MCM-48 [J]. J ChemSoc Faraday Trans, 1998, 94 (1998): 971-977.
    [35] Alba M D, Luan Z, Klinowski J. Titanosilicate mesoporous molecular sieve MCM-41: Synthesis and characterization [J]. J Phys Chem, 1996, 100: 2178- 2182.
    [36] Zhang Q, Wang Y, Ohishi Y, et al. Vanadium-containing MCM-41 for partial oxidation of lower alkanes [J]. J Catal, 2002, 202: 308- 318.
    [37] Junges U, Jacobs W, Voigt-Martin I et al. MCM-41 as a support for small platinum particles: A catalyst for low-temperature carbon monoxide oxidation [J]. J Chem Soc Chem Commun, 1995: 2283- 2284.
    [38] Aramendia M A, Borau V, Jimenez C et al. Supramolecular templated synthesis of platinum-supported silica, Chem. Commun, 1999: 873-874.
    [39] Yao N, Pinckney C, Lim S et al. Synthesis and characterization of Pt/MCM-41 catalysts [J]. Micropor Mesopor Mater, 2001, 44–45: 377-384.
    [40] Suvanto S, Pakkanen T A, Backman L. Controlled deposition of Co2(CO)8 on silica in a fluidized bed reactor: IR, chemisorption and decomposition studies [J]. Appl Catal A: Gen,1999, 177: 25- 36.
    [41] Eswaramoorthy M. High catalytic efficiency of transition metal complexes encapsulated in a cubic mesoporous phase [J]. Chem Commun, 1998: 615- 616.
    [42] Kozhevnikov I V, Kloetstra K R, Sinnema A et al. Study of catalysts comprising heteropoly acid H3PW12O40 supported on MCM-41 molecular sieve and amorphous silica [J]. J Mol Catal A: Chem, 1996, 114: 287- 298.
    [43] Rivera-Munoz E, Lardizabal D, Alonso G et al. Silica Gel- and MCM-41-Supported MoS2 Catalysts for HDS Reactions [J]. Catal Lett, 2003, 85: 147- 151.
    [44] Bianchini C, Burnaby D G, Evans J et al. Preparation, characterization, and performance of tripodal polyphosphine rhodium catalysts immobilized on silica via hydrogen bonding [J]. J Am. Chem Soc, 1999, 121: 5961- 5971.
    [45] Nagl I, Widenmeyer M, Grasser S et al. Surface confined ketyl radicals via samarium(II)-grafted mesoporous silicas [J]. J Am Chem Soc, 2000, 122: 1544- 1545.
    [46] Ryoo R, Joo S H, Kruk M et al. Ordered mesoporous carbons [J]. Adv Mat, 2001, 13: 677- 681.
    [47] Fan S, Chapline M G, Franklin N R et al. Self-Oriented regular arrays of carbon nanotubes and their field emission properties [J]. Science, 1999, 283: 512.
    [48] Subramoney S. Novel nanocarbons - structure, properties, and potential applications [J]. Adv Mater, 1998, 10: 1157- 1171.
    [49] Delacote C, Bouillon J-P, Walcarius A. Voltammetric response of ferrocene-grafted mesoporous silica [J]. Electrochim Acta, 2006, 51: 6373- 6383.
    [50] Diaz J F, Balkus K J, Bedioui F et al. Synthesis and characterization of cobalt-complex functionalized MCM-41 [J]. Chem Mater, 1997, 9: 61- 67.
    [51] Zheng S, Gao L, Guo J. Synthesis and characterization of cunctionalized MCM-41 with copper– and manganese–phenanthroline Complexes [J]. J Solid State Chem, 2000, 152: 447- 452.
    [52] Walcarius A, Luthi N, Blin J-L et al. Electrochemical evaluation of polysiloxane-immobilized amine ligands for the accumulation of copper(II) species [J]. Electrochim Acta, 1999, 44: 4601- 4610.
    [53] Sayen S, Etienne M, Bessiere J et al. Tuning the sensitivity of electrodes modified with an organic-inorganic hybrid by tailoring the structure of the nanocomposite material [J]. Electroanalysis, 2002, 14: 1521- 1525.
    [54] Li L, Li W, Sun C et al. Fabrication of carbon paste electrode containing 1:12 phosphomolybdic anions encapsulated in modified mesoporous molecular sieve MCM-41 and its electrochemistry [J]. Electroanalysis, 2002, 14: 368- 375.
    [55] Bertolo J M, Bearzotti A, Falcaro P et al. Sensoristic Applications of Self-assembled Mesostructured Silica Films [J]. Sens Lett, 2003, 1: 64-70.
    [56] Jia N, Wang Z, Yang G et al. Electrochemical properties of ordered mesoporous carbon and its electroanalytical application for selective determination of dopamine [J]. Electrochem Comm, 2007, 9: 233-238.
    [57] Wan Y, Shi Y, Zhao D. Supramolecular Aggregates as Templates: Ordered Mesoporous Polymers and Carbons [J]. Chem Mater, 2008, 20: 932- 945.
    [58] Lu A H, Li W C, Salabas E L et al. Low temperature catalytic pyrolysis for the synthesis of high surface area, nanostructured graphitic carbon [J]. Chem Mater, 2006, 18: 2086- 2094.
    [59] Lu A H, Schuth F. Nanocasting: A versatile strategy for creating nanostructured porous materials [J]. AdV Mater, 2006, 18: 1793- 1805.
    [60]] Yang H F, Zhao D Y. Synthesis of replica mesostructures by the nanocasting strategy [J]. J Mater Chem, 2005, 15: 1217- 1231.
    [61] Joo S H, Choi S J, Oh I et al. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles [J]. Nature, 2001, 412:169- 171.
    [62] Jun S, Joo S H, Ryoo R et al. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure [J]. J Am Chem. Soc, 2000, 112: 10712- 10713.
    [1] Hignett G, Threlfell S, Wain A et al. Electroanalytical exploitation of quinone–thiol interactions: application to the selective determination of cysteine [J]. Analyst, 2001, 126: 353- 357.
    [2] Lawrence N, Deo R, Wang J. Detection of homocysteine at carbon nanotube paste electrodes [J]. Talanta, 2004, 63: 443- 449.
    [3] Zen J, Kumar A, Chen Y. Electrocatalytic Oxidation and Sensitive Detection of Cysteine on a Lead Ruthenate Pyrochlore Modified Electrode [J]. Anal Chem, 2001, 73: 1169- 1175.
    [4] Sp?taru N, Sarada B V, Popa E et al. Voltammetric Determination of L-Cysteine at Conductive Diamond Electrodes [J]. Anal Chem, 2001, 73: 514-519.
    [5] Teixeira M, Dockalb E, Cavalheiro E. Sensor for cysteine based on oxovanadium(IV) complex of Salen modified carbon paste electrode [J]. Sens Actuat B, 2005, 106: 619- 625.
    [6] Ralph T R, Hitchman M L, Millington J P et al. The electrochemistry of -cystine and -cysteine : Part 1: Thermodynamic and kinetic studies, J Electroanal Chem, 1994, 375: 1- 15.
    [7] Ralph T R, Hitchman M L, Millington J P et al. The electrochemistry of -cystine and -cysteine part 2 : Electrosynthesis of -cysteine at solid electrodes [J]. J Electroanal Chem, 1994, 375: 17- 27.
    [8] Terashima C, Rao T N, Sarada B V et al. Direct Electrochemical Oxidation of Disulfides at Anodically Pretreated Boron-Doped Diamond [J]. Anal Chem, 2003, 75: 1564- 1572.
    [9] Fei S, Chen J, Yao S et al. Electrochemical behavior of l-cysteine and its detection at carbon nanotube electrode modified with platinum [J]. Anal Biochem, 2006, 339: 29- 35.
    [10] Chen Z, Zheng H., Lu C et al. Oxidation of L-Cysteine at a Fluorosurfactant-Modified Gold Electrode: Lower Overpotential and Higher Selectivity [J]. Langmuir, 2007, 23: 10816- 10822.
    [11] Pacsial- Ong E J, McCarley R L, Wang W et al. Electrochemical Detection of Glutathione Using Redox Indicators [J]. Anal Chem, 2006, 78: 7577- 7581.
    [12] Jia N, Wang Z, Yang Get al. Electrochemical properties of ordered mesoporous carbon and its electroanalytical application for selective determination of dopamine [J]. Electrochem Commun, 2007, 9: 233- 238.
    [13] Ryoo R, Joo S H, Jun S. Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation [J] J Phys Chem B, 1999, 103: 7743-7746.
    [14] Liang C, Dai S. Synthesis of Mesoporous Carbon Materials via Enhanced Hydrogen-Bonding Interaction [J]. J Am Chem Soc, 2006, 128: 5316- 5317.
    [15] Zhou M, Guo J, Guo L P et al. Electrochemical Sensing Platform Based on the Highly Ordered Mesoporous Carbon?Fullerene System [J]. Anal Chem, 2008, 80: 4642- 4650.
    [16] Walcarius A. Impact of mesoporous silica-based materials on electrochemistry and feedback from electrochemical science to the characterization of these ordered materials [J]. C R Chimie, 2005, 8: 693- 712.
    [17] Jun S, Joo S H, Ryoo R et al. Synthesis of New Nanoporous Carbon with Hexagonally Ordered Mesostructure [J]. J Am Chem Soc, 2000, 122: 10712-10713.
    [18] Feng J J, Xu J J, Chen H Y. Direct electron transfer and electrocatalysis of hemoglobin adsorbed on mesoporous carbon through layer-by-layer assembly [J]. Biosens Bioelectron, 2007, 22: 1618- 1624.
    [19] Zhou M, Ding J, Guo L P et al. Electrochemical behavior of L-cysteine and its detection at ordered mesoporous carbon-modified glassy carbon electrode [J]. Anal Chem 2007, 79: 5328- 5335.
    [20] Zhao D, Huo Q, Feng J et al. Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures [J]. J Am Chem Soc, 1998, 120: 6024- 6036.
    [21] Gong K, Zhu X, Zhao R et al. Rational attachment of synthetic triptycene orthoquinone onto carbon nanotubes for electrocatalysis and sensitive detection of thiols [J]. Anal Chem 2005, 77: 8158- 8165.
    [22] Bazula P A, Lu A H, Nitz J J et al. Surface and pore structure modification of ordered mesoporous carbons via a chemical oxidation approach [J]. Micropor Mesopor Mater, 2008, 108: 266- 275.
    [23] Nekrassova O, Lawrence N S, Compton R G. Analytical determination of homocysteine: a rev, Talanta, 2006, 60: 1085- 1095.
    [24] Oshea T J, Lunte S. M. Selective detection of free thiols by capillary electrophoresis-electrochemistry using a gold/mercury amalgam microelectrode [J]. Anal Chem, 1993, 65: 247- 250.
    [25] Zhou H, Xie Q J, Wu Y H et al. Study of the Adsorption of Glutathione on a Gold Electrode by Using Electrochemical Quartz Crystal Impedance, Electrochemical Impedance Spectroscopy, and Cyclic Voltammetry [J]. J Colloid Interface Sci, 2000, 229: 12- 20.
    [26] Tang H, Chen J, Nie L et al. Electrochemical oxidation of glutathione at well-aligned carbon nanotube array electrode, Electrochim Acta, 2006, 51: 3046- 3051.
    [27] Georgakilas V, Voulgaris D, Vazquez E, et al. Purification of HiPCO Carbon Nanotubes via Organic Functionalization [J]. J Am Chem Soc, 2002, 124: 14318- 14319.
    [28] Ferrari A C, Robertson J, Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B 2000, 61: 14095- 14107.
    [29] Musameh M, Lawrence N S, Wang J. Electrochemical activation of carbon nanotubes [J] Electrochem Commun, 2005, 7: 14- 18.
    [30] Bowling R J, Packard R T, McCreery R L. Activation of highly ordered pyrolytic graphite for heterogeneous electron transfer: relationship between electrochemical performance and carbon microstructure [J]. J Am Chem Soc, 1989, 111 (1989): 1217- 1223.
    [31] Goss C A, Brumfield J C, Irene E A et al. Imaging the incipient electrochemical oxidation of highly oriented pyrolytic graphite [J]. Anal Chem 1993, 65: 1378- 1389.
    [32] Gewirth A A, Bard A J. In situ scanning tunneling microscopy of the anodic oxidation of highly oriented pyrolytic graphite surfaces [J]. J Phys Chem, 1988, 92: 5563- 5566.
    [33] Sljukic B, Banks C E, Compton R G. Iron Oxide Particles Are the Active Sites for Hydrogen Peroxide Sensing at Multiwalled Carbon Nanotube Modified Electrodes [J]. Nano Lett, 2006, 6 (2006): 1556- 1558.
    [34] Salimi A, Hallaj R. Catalytic oxidation of thiols at preheated glassy carbon electrode modified with abrasive immobilization of multiwall carbon nanotubes: applications to amperometric detection of thiocytosine, l-cysteine and glutathione [J]. Talanta, 2005, 66: 967- 975.
    [35] Salimi A, Pourbeyram S. Renewable sol–gel carbon ceramic electrodes modified with a Ru-complex for the amperometric detection of -cysteine and glutathione [J]. Talanta, 2003, 60: 205- 214.
    [1] Vassilyev Y B, Khaazova O A, Nikolaeva N N. Kinetics and mechanism of glucose electrooxidation on different electrode catalysts: Part I Adsorption and oxidation on platinum [J]. J Electroanal Chem, 1985, 196: 105- 125.
    [2] Beden B, Largeaud F, Kokoh K B et al. Fourier transform infrared reflectance spectroscopic investigation of the electrocatalytic oxidation of -glucose: Identification of reactive intermediates and reaction products [J]. Electrochim Acta, 1996, 41: 701-709.
    [3] Bae I T, Yeager E, Xing X et al. In situ infrared studies of glucose oxidation on platinum in an alkaline medium [J]. J Electroanal Chem, 1991, 309: 131-145.
    [4] Sakamoto M, Takamura K. Catalytic oxidation of biological components on platinum electrodes modified by adsorbed metals: Anodic oxidation of glucose [J]. Bioelectrochem Bioenerg, 1982, 9: 571-582.
    [5] Kokkinidis G, Xonoglou N. Comparative study of the electrocatalytic influence of underpotential heavy metal adatoms on the anodic oxidation of monosaccharides on Pt in acid solutions [J]. Bioelectrochem Bioenerg, 1985, 14: 375-387.
    [6] Wittstock G, Strubing A, Szargan R et al. Glucose oxidation at bismuth-modified platinum electrodes [J]. J Electroanal Chem, 1998, 444: 61-63.
    [8] Sun Y, Buck H, Mallouk T E. Combinatorial Discovery of Alloy Electrocatalysts for Amperometric Glucose Sensors [J]. Anal Chem, 2001, 73: 1599-1604.
    [9] Shoji E, Freund M S. Potentiometric Sensors Based on the Inductive Effect on the pKa of Poly(aniline): A Nonenzymatic Glucose Sensor [J]. J Am Chem Soc, 2001, 123: 3383-3384.
    [10] Reach G, Wilson G S. Anal Chem, 1992, 64: 381A.
    [11] Aoun S B, Bang G S, Koga T et al. Electrocatalytic oxidation of sugars on silver-UPD single crystal gold electrodes in alkaline solutions [J]. Electrochem Commun, 2003, 5: 317-320.
    [12] Adzic R R, Hsiao M W, Yeager E B. Electrochemical oxidation of glucose on single crystal gold surfaces [J]. J Electroanal Chem, 1989, 260: 475-485.
    [13] Hsiao M W, Adzic R R, Yeager E.B. Electrochemical Oxidation of Glucose on Single Crystal and polycrystalline Gold Surfaces in Phosphate Buffer [J]. J Electrochem Soc, 1996, 143: 759-767.
    [14] Matsumoto F, Harada M, Koura N, et al. Electrochemical oxidation of glucose at Hg adatom-modified Au electrode in alkaline aqueous solution [J]. Electrochem Commun, 2003, 5: 42-46.
    [15] Ernst S, Heitbaum J, Hamann C H. The electrooxidation of glucose in phosphate buffer solutions: Part I. Reactivity and kinetics below 350 mV/RHE [J]. J Electroanal Chem, 1979, 100: 173- 183.
    [16] Park S, Chung T D, Kim H C, Nonenzymatic glucose detection using mesoporous platinum [J]. Anal Chem, 2003, 75: 3046- 3049.
    [17] Ye J S, Wen Y, Zhang W D et al. Nonenzymatic glucose detection using multi-walled carbon nanotube electrodes [J]. Electrochem Commun, 2004, 6: 66-70.
    [18] Joo S H, Choi S J, Oh I et al. Ordered Nanoporous Arrays of Carbon Supporting High Dispersions of Platinum Nanoparticle [J]. Nature, 2001, 412:169-172.
    [19] Jun S, Joo S H, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O. Synthesis of New Nanoporous Carbon with Hexagonally Ordered Mesostructure [J]. J. Am. Chem. Soc. 2000, 122: 10712-10713.
    [20] Jia N, Wang Z, Yang G et al.. Electrochemical properties of ordered mesoporous carbon and its electroanalytical application for selective determination of dopamine, Electrochem Comm, 2007, 9: 233-238.
    [21] Zhou M, Ding J, Guo L P et al. Electrochemical Behavior of L-Cysteine and Its Detection at Ordered Mesoporous Carbon-Modified Glassy Carbon Electrode [J]. Anal Chem, 2007, 79: 5328- 5335.
    [22] Wang J, Thomas D F, Chen A. Nonenzymatic Electrochemical Glucose Sensor Based on Nanoporous PtPb Networks [J]. Anal Chem, 2008, 80: 997- 1004.
    [23] Zhou M, Shang L, Li B, Huang L et al. The characteristics of highly ordered mesoporous carbons as electrode material for electrochemical sensing as compared with carbon nanotubes [J]. Electrochem Commun, 2008, 10: 859-863.
    [24] Zhao D, Huo Q, Feng J et al. Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures [J]. J Am Chem Soc, 1998, 120: 6024-6036.
    [25] Ndamanisha J C, Bai J, Qi B, Guo L P. Application of electrochemical properties of ordered mesoporous carbon to the determination of glutathione and cysteine [J]. Anal Biochem, 2009, 386: 79- 84.
    [26] Skoog D A, Holler F J, Nieman T A. Principles of Instrumental Analysis, 5th ed., Saunders College Publishing, 1998.
    [27] Zhou M, Guo L P, Hou Y et al. Immobilization of Nafion-ordered mesoporous carbon on a glassy carbon electrode: Application to the detection of epinephrine [J]. Electrochim Acta, 2008, 53: 4176-4184.
    [28] Ozcan L, Sahini Y, Turk Y. Non-enzymatic glucose biosensor based on overoxidized polypyrrole nanofiber electrode modified with cobalt(II) phthalocyanine tetrasulfonate [J]. Biosens Bioelectron, 2008, 24: 512- 517.
    [29] Rong L Q, Yang C, Qian Q Y et al. Study of the nonenzymatic glucose sensor based on highly dispersed Pt nanoparticles supported on carbon nanotubes [J]. Talanta, 2007, 72: 819-824.
    [30] Eggins B R. Chemical Sensors and Biosensors, John Wiley & Sons, UK, 2003, p. 111.
    [31] Zheng H, Xue H, Zhang Y et al. A glucose biosensor based on microporous polyacrylonitrile synthesized by single rare-earth catalyst [J]. Biosens Bioelectron, 2002, 17: 541-545.
    [1] Ryoo R, Joo S H, Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation [J]. J. Phys Chem B, 1999, 103: 7743- 7746.
    [2] Jun S, Joo S H, Ryoo R et al. Synthesis of new nanoporous carbon with hexagonally ordered mesostructure [J]. J Am Chem Soc, 2000, 122: 10712- 10713.
    [3] Joo S H, Choi S J, Oh I et al. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles [J]. Nature, 2001, 412: 169- 171.
    [4] Joo S H, Jun S, Ryoo R.Synthesis of ordered mesoporous carbon molecular sieves CMK-1 [J]. Micropor Mesopor Mater, 2001, 44-45: 153-158.
    [5] Taguchi A, Schuth F. Ordered mesoporous materials in catalysis. Micropor Mesopor Mater, 2005, 77: 1-45.
    [6] Takashi K. Control of pore structure in carbon [J]. Carbon, 2000, 38: 269-286.
    [7] Frackowiak E, Beguin F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon, 2001, 39: 937- 950.
    [8] Yang C, Weidenthaler C, Spliethoff B et al. Facile template synthesis of ordered mesoporous carbon with polypyrrole as carbon precursor, Chem Mater, 2005, 17: 355- 358.
    [9] Dai K, Toshiaki A, Yoshio K et al. Preparation of mesoporous carbon from organic polymer/silica nanocomposite, Chem. Mater, 2000, 12: 3397-3401.
    [10] Tamon H, Ishizaka H, Mikami M et al. Porous structure of organic and carbon aerogels synthesized by sol-gel polycondensation of resorcinol with formaldehyde [J]. Carbon, 1997, 35: 791- 796.
    [11] Ozaki J, Endo N, Ohizumi W et al. Novel preparation method for the production of mesoporous carbon fiber from a polymer blend [J]. Carbon, 1997, 35: 1031-1033.
    [12] Yoon S, Lee J, Hyeon T et al. Electric double-layer capacitor performance of a new mesoporous carbon [J]. J Electrochem Soc, 2000, 147: 2507- 2512.
    [13] Zhou H, Zhu S, Hibino M et al. Lithium storage in ordered mesoporous carbon (CMK-3) with high reversible specific energy capacity and good cycling performance [J]. Adv Mater, 2003, 15: 2107- 2111.
    [14] Prabaharan S R S, Vimala R, Zainal Z. Nanostructured mesoporous carbon as electrodes for supercapacitors [J]. J. Power Sources, 2006, 161: 730- 736.
    [15] Jia N, Wang Z, Yang G et al. Electrochemical properties of ordered mesoporous carbon and its electroanalytical application for selective determination of dopamine [J]. Electrochem Commun, 2007, 9: 233- 238
    [16] Aurbach D. Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries [J]. J Power Sources, 2000, 89: 206- 218.
    [17] Malinauskas A, Garjonyte R, Mazeikeine R et al. Electrochemical response of ascorbic acid at conducting and electrogenerated polymer modified electrodes for electroanalytical applications: a review. Talanta, 2004, 64:121- 129.
    [18] Bedioui F, Villeneuve N. Electrochemical nitric oxide sensors for biological samples - Principle, selected examples and applications [J]. Electroanalysis, 2003, 15: 5- 18.
    [19] Li L, Shi J, Yan J et al. Mesoporous SBA-15 material functionalized with ferrocene group and its use as heterogeneous catalyst for benzene hydroxylation [J]. Applied Catalysis A: General, 2004, 263 : 213- 217.
    [20] Furukawa H, Hibino M, Zhou H-S et al. Synthesis of mesoporous carbon-containing ferrocene derivative and its electrochemical property [J]. Chem Lett, 2003, 32: 132- 133.
    [21] Laurence N S, Tustin G J, Faulkner M et al. Ferrocene sulfonates as electrocatalysts for sulfide detection [J]. Electrochim Acta, 2006, 52: 499- 503.
    [22] Kang K, Mu S. Determination of hydrogen peroxide using amperometric sensor of polyaniline doped with ferrocenesulfonic acid [J]. Biosens Bioelectron, 2005, 21: 74- 78.
    [23] Ndamanisha J C, Wang H, Guo L P. Electrochemical behavior influenced by polyaniline incorporated with ferrocenecarboxylic acid [J]. Chem Res Chinese U, 2005, 21: 431- 435.
    [24] Zhao D, Feng J, Huo Q et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Science, 1998, 279: 548- 552.
    [25] Hongfang L,Xi H, Zhu S et al. Preparation, structural characterization, and electrochemical properties of chemically modified mesoporous carbon [J]. Micropor Mesopor Mater, 2006, 96: 357- 362.
    [26] Krishtalik I, Alpatova N M, and Ovsyannikova E V. Electrostatic ion-solvent interaction [J]. Electrochim Acta, 1991, 36: 435- 445.
    [27] Yurum Y, Altuntas N. Structure and reactions of Beypazari lignite. I: Characterization by 13C NMR and IR studies [J]. Fuel Sci Technol Int, 1994, 12: 1115- 1129.
    [28] Hao X-Y, Zhang Y-Q, Wang J-W et al. A novel approach to prepare MCM-41 supported CuO catalyst with high metal loading and dispersion [J]. Micropor Mesopor Mater, 2006, 88: 38- 47.
    [29] Rubinson K A, Rubinson J F. Contemporary instrumental analysis Prentice Hall, 2002 p.468.
    [30] Sakintuna B, Yurum Y. Preparation and characterization of mesoporous carbons using a Turkish natural zeolitic template/furfuryl alcohol system [J]. Micropor Mesopor Mater, 2006, 93: 304- 312.
    [31] Rao C N R et al. Functionalised carbon nanotubes from solutions [J]. Chem Commun, 1996: 1525.
    [32] Brutchey R L, Ruddy D A, Anderson R K et al. Influence of surface modification of Ti- SBA 15 catalysts on the epoxidation mechanism for cyclohexene with aqueous hydrogen peroxide [J]. Langmuir, 2005, 21: 9576- 9583.
    [33] Ling X Y, Reinhoudt D N, Huskens J. Ferrocenyl-functionalized silica nanoparticles: Preparation, characterization, and molecular recognition at interfaces [J]. Langmuir, 2006, 22: 8777- 8783.
    [34] Delacote C, Bouillon J P, Walcarius A. Voltammetric response of ferrocene-grafted mesoporous silica [J]. Electrochim Acta, 2006, 51: 6373- 6383.
    [35] Rohlfing D F, Rathousky J, Rohlfing Y et al. Functionalized mesoporous silica films as a matrix for anchoring electrochemically active guests [J]. Langmuir, 2005, 21: 11320- 11329.
    [36] Ju H X, Leech D. Effect of electrolytes on the electrochemical behaviour of 11-(ferrocenylcarbonyloxy)undecanethiol SAMs on gold disk electrodes [J]. Phys Chem Chem. Phys, 1999, 1: 1549- 1554.
    [37] Sun N, Guan L, Shi Z et al. Ferrocene peapod modified electrodes: Preparation, characterization, and mediation of H2O2 [J]. Anal Chem, 2006, 78: 6050- 6057.
    [38] Tsiafoulis C G, Florou A B, Trikalitis P N et al. Electrochemical study of ferrocene intercalated vanadium pentoxide xerogel/polyvinyl alcohol composite films: Application in the development of amperometric biosensors [J]. Electrochem Commun, 2005, 7: 781- 788.
    [39] Fernandez L, Carrero H. Electrochemical evaluation of ferrocene carboxylic acids confined on surfactant–clay modified glassy carbon electrodes: oxidation of ascorbic acid and uric acid [J]. Electrochim Acta, 2005, 50: 1233- 2140.
    [40] Nicholson R S. Theory and application for measurement of electrode reaction kinetics [J]. Anal Chem, 1965, 37: 1351- 1355.
    [41] Chen H Y, Sun J J, Zhou D M et al. Electrochemical evaluation of ferrocene carboxylic acids confined on surfactant–clay modified glassy carbon electrodes: oxidation of ascorbic acid and uric acid [J]. Talanta, 1998, 45: 851- 856.
    [42] Zhou M, Ding J, Guo L P et al. Electrochemical behavior of L-cysteine and itts detection at ordered mesoporous carbon-modified glassy carbon electrode [J]. Anal Chem, 2007, 79: 5328- 5335.
    [43] Tian Y, Mao L Q, Okajima T et al. Electrochemistry and Electrocatalytic Activities of Superoxide Dismutases at Gold Electrodes Modified with a Self-Assembled Monolayer [J]. Anal Chem, 2004, 76: 4162- 4168.
    [44] Malem F, Mandler D. Self-assembled monolayers in electroanalytical chemistry: application of .omega.-mercapto carboxylic acid monolayers for the electrochemical detection of dopamine in the presence of a high concentration of ascorbic acid [J]. Anal Chem, 1995, 65: 37-41.
    [1] Harper H A. Review of Physiological Chemistry, Lange Medical Publications, Los Altos, CA, 13th edn., 1977, p. 406.
    [2] Heptinstall R H. Gout in Pathology of the Kidney, Little Brown, Boston, MA, 2nd edn., 1966, p. 495.
    [3] Krakoff I H. Studies of uric acid biosynthesis in the chronic leukemias [J]. Arthritis Rheum, 19965, 8: 722-729.
    [4] Puig J G, Mateos F A. Clinical and biochemical aspects of uric acid overproduction [J]. Pharm World Sci, 1994, 16: 40-54
    [5] Wu F, Yuming H, Qian L. Animal tissue-based chemiluminescence sensing of uric acid [J]. Anal Chim Acta, 2005, 536: 107-113.
    [6] Perello J, Sanchis P, Grases F. Determination of uric acid in urine, saliva and calcium oxalate renal calculi by high-performance liquid chromatography/mass spectrometry [J]. J Chromatogr B, 2005, 824: 175-180
    [7] Martinez P D, Ferrer M L, Reyes M C. A reagent less fluorescent sol–gel biosensor for uric acid detection in biological fluids [J]. Anal Biochem 2003, 322: 238-242.
    [8] Akyilmaz E, Kemal S M, Dinc K E. A biosensor based on urate oxidase–peroxidase coupled enzyme system for uric acid determination in urine [J]. Talanta, 2003, 61: 73-79
    [9] Senthilkumar S, Mathiyarasu J, Lakshminarashimha P. Exploration of synergism between a polymer matrix and gold nanoparticles for selective determination of dopamine [J]. J Electroanal Chem, 2005, 578: 95–103.
    [10] Ardakani M M, Akrami Z, Kazemian H et al. Electrocatalytic characteristics of uric acid oxidation at graphite–zeolite-modified electrode doped with iron (III) [J]. J Electroanal Chem, 2006, 586: 31-38.
    [11] Lin X Q, Jin G P. Monolayer modification of glassy carbon electrode by using propionylcholine for selective detection of uric acid [J]. Electrochim Acta, 2005, 50: 3210-3216.
    [12] Roy P R, Okajima T, Ohsaka T. Simultaneous electrochemical detection of uric acid and ascorbic acid at a poly(N,N-dimethylaniline) film-coated GC electrode [J]. J. Electroanal Chem, 2004, 561: 75-82.
    [13] Raj C R, Ohsaka T. Voltammetric detection of uric acid in the presence of ascorbic acid at a gold electrode modified with a self-assembled monolayer of heteroaromatic thiol [J]. J Electroanal Chem, 2003, 540: 69-77
    [14] Santhanam K S V, Sangoi R, Fuller L. A chemical sensor for chloromethanes using a nanocomposite of multiwalled carbon nanotubes with poly(3-methylthiophene) [J]. Sens Actuators B, 2005, 106: 766-771
    [15] Jun S, Joo S H, Ryoo R et al. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure [J]. J Am Chem Soc, 2000, 112: 10712- 10713.
    [16] Joo S H, Choi S J, Oh I et al. Ordered Nanoporous Arrays of Carbon Supporting High Dispersions of Platinum Nanoparticle [J]. Nature, 2001, 412:169-172.
    [17] Jia N, Wang Z, Yang G et al. Electrochemical properties of ordered mesoporous carbon and its electroanalytical application for selective determination of dopamine [J]. Electrochem Comm, 2007, 9: 233-238.
    [18] Zhou M, Guo L P, Lin F Y et al. Electrochemistry and electrocatalysis of polyoxometalate-ordered mesoporous carbon modified electrode [J]. Anal Chim Acta, 2007, 587: 124- 131
    [19] Zhou M, Ding J, Guo L P et al. Electrochemical behavior of L-cysteine and its detection at ordered mesoporous carbon-modified glassy carbon electrode [J]. Anal Chem, 2007, 79: 5328- 5335.
    [20] Jiao S, Li M, Wang C et al. Fabrication of Fc-SWNTs modified glassy carbon electrode for selective and sensitive determination of dopamine in the presence of AA and UA [J]. Electrochim Acta, 2007, 52: 5939- 5944.
    [21] Lin X Q, Kang G F, Lu L P. DNA/Poly(p-aminobenzensulfonic acid) composite bi-layer modified glassy carbon electrode for determination of dopamine and uric acid under coexistence of ascorbic acid, Bioelectrochem, 2006, 70: 235–244.
    [22] He J–B, Jin G P, Chen Q Z et al. A quercetin-modified biosensor for amperometric determination of uric acid in the presence of ascorbic acid [J]. Anal Chim Acta, 2007, 585: 337–343.
    [23] Liu A, Honma I, Zhou H. Simultaneous voltammetric detection of dopamine and uric acid at their physiological level in the presence of ascorbic acid using poly(acrylic acid)-multiwalled carbon-nanotube composite-covered glassy-carbon electrode [J]. Biosens Bioelectron, 2007, 23: 74- 80.
    [24] Safavi A, Maleki N, Moradlou O, Tajabadi F. Simultaneous determination of dopamine, ascorbic acid, and uric acid using carbon ionic liquid electrode [J]. Anal Biochem, 2006, 359: 224-229.
    [25] Dryhurst G, Nguyen N T, Wrona M Z et al. Elucidation of the biological redox chemistry of purines using electrochemical techniques [J]. J Chem Edu, 1983, 60: 315–319
    [26] Chen Z F, Zu Y B. Simultaneous detection of ascorbic acid and uric acid using a fluorosurfactant-modified platinum electrode [J]. J Electroanal Chem, 2007, 603: 281-286.
    [27] Fernandez L, Carrero H. Electrochemical evaluation of ferrocene carboxylic acids confined on surfactant–clay modified glassy carbon electrodes: oxidation of ascorbic acid and uric acid, Electrochim Acta, 2005, 50: 1233–1240.
    [28] Zen J-M, Hsu C T, Hsu Y L et al. Voltammetric peak separation of dopamine from uric acid in the presence of ascorbic acid at Greater than ambient Sslution temperatures [J]. Anal Chem, 2004, 76: 4251-4255.
    [29] Huang X J, Im H S, Yarimaga O et al. Direct electrochemistry of uric acid at chemically assembled carboxylated single-walled carbon nanotubes netlike electrode [J]. J Phys Chem. B, 110: 21850-21856
    [30] Skoog D A, Holler F J, Nieman T A. Principles of Instrumental Analysis, 5th ed., Saunders College Publishing, 1998.
    [31] Zhang Y, Wen G, Zhou Y, Shuang S et al. Development and analytical application of an uric acid biosensor using an uricase-immobilized eggshell membrane [J]. Biosens Bioelectron, 2007, 22: 1791- 1797.
    [32] Nassef H M, Radi A E, O’Sullivan C. Simultaneous detection of ascorbate and uric acid using a selectively catalytic surface [J]. Anal Chim Acta, 2007, 583:182-189.
    [1] Joo S H, Choi S J, Oh I et al. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles [J]. Nature, 2001, 412:169- 171.
    [2] Jun S, Joo S H, Ryoo R et al. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure [J]. J Am Chem Soc, 2000, 112: 10712- 10713.
    [3] Jia N, Wang Z, Yang G et al. Electrochemical properties of ordered mesoporous carbon and its electroanalytical application for selective determination of dopamine [J]. Electrochem Commun, 2007, 9: 233- 238.
    [4] Ndamanisha J C, Guo L P, Wang G. Mesoporous carbon functionalized with ferrocenecarboxylic acid and its electrocalytic properties [J]. Micropor Mesopor Mater, 2008, 113:114- 121.
    [5] Dong X, Chen H, Zhao W et al. Synthesis and magnetic properties of mesostructuredγ-Fe2O3/carbon composites by a co-casting method [J]. Chem. Mater, 2007, 19: 3484- 3490.
    [6] Minchev C, Huwe H, Tsoncheva T et al. Iron oxide modified mesoporous carbons: Physicochemical and catalytic study [J]. Micropor Mesopor Mater, 2005, 81: 333- 341.
    [7] Furukawa H, Hibino M, Zhou H S et al. Synthesis of Mesoporous Carbon-Containing Ferrocene Derivative and Its Electrochemical Property [J]. Chem Lett, 32003, 2: 132- 133.
    [8] Wang L, Wang E. Novel hydrogen peroxide sensor based on horseradish peroxidase immobilized on colloidal Au modified ITO electrode [J]. Electrochem. Commun, 2004, 6: 225- 229.
    [9] Ferapontova E, Gorton. L. Effect of pH on direct electron transfer in the system gold electrode–recombinant horseradish peroxidase [J]. Bioelectrochem, 2002, 55: 83- 87.
    [10] Ferapontova E E, Grigorenko V G, Egorov A M et al. Mediatorless biosensor for H2O2 based on recombinant forms of horseradish peroxidase directly adsorbed on polycrystalline gold [J]. Biosens Bioelectron, 2001, 16: 147- 157.
    [11] Svensson S, Olin A C, Larstad M et al. Determination of hydrogen peroxide in exhaled breath condensate by flow injection analysis with fluorescence detection [J]. J Chromatogr B, 2004, 809: 199- 203.
    [12] Knorre H. Treatment of cyanide effluents [J]. Galvanotechnik, 1975, 66: 374- 383.
    [13] Shi G, Lu J, Xu F, et al. Liquid chromatography - electrochemical detector for the determination of glucose in rat brain combined with in vivo microdialysis [J]. Anal Chim Acta, 2000, 413: 131-136.
    [14] Kiba N, Tokizawa T, Kato S, et al. Flow-through micro sensor using immobilized peroxidase with chemiluminometric FIA system for determining hydrogen peroxide [J]. Anal Sci, 2003, 19: 823- 829.
    [15] Mulchandani A, Pan S. Ferrocene-conjugatedm-phenylenediamine conducting polymer-incorporated peroxidase biosensors [J]. Anal Biochem, 1999, 267: 141- 147.
    [16] Liu S Q, Ju H X. Renewable reagentless hydrogen peroxide sensor based on direct electron transfer of horseradish peroxidase immobilized on colloidal gold-modified electrode [J]. Anal Biochem, 2002, 307: 110- 116.
    [17] Liu X J, Xu Y, Ma X et al. A third-generation hydrogen peroxide biosensor fabricated with hemoglobin and Triton X-100 [J]. Sens Actuat B, 2005, 106: 284-288.
    [18] Ruan C M, Yang R, Chen X H et al. A reagentless amperometric hydrogen peroxide biosensor based on covalently binding horseradish peroxidase and thionine using a thiol-modified gold electrode [J]. J Electroanal Chem, 1998, 455: 121-125.
    [19] Yang Y, Mu S. Bioelectrochemical responses of the polyaniline horseradish peroxidase electrodes [J]. J Electroanal Chem, 1997, 432: 71- 78.
    [20] Li Z F, Chen J H, Li W et al. Improved electrochemical properties of prussian blue by multi-walled carbon nanotubes [J]. J Electroanal Chem, 2007, 603: 59- 66.
    [21] Sljukic B, Banks C E, Compton R G. Iron oxide particles are the active sites for hydrogen peroxide sensing at multiwalled carbon nanotube modified electrodes [J]. Nano Lett, 2006, 6: 1556- 1558.
    [22] Zhao D, Huo Q, Feng J et al. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures [J]. J Am Chem Soc, 1998, 120: 6024- 6036.
    [23] Ozaki J, Mitsui M, Nishiyima Y et al. Effects of ferrocene on production of high performance carbon electrodes from poly(furfuryl alcohol) [J]. Chem Mater,1998, 10: 3386- 3392.
    [24] Rubinson K A, Rubinson J F. Contemporary instrumental analysis, Prentice Hall, 2002.
    [25] Sakintuna B, Yurum Y. Preparation and characterization of mesoporous carbons using a Turkish natural zeolitic template/furfuryl alcohol system [J]. Micropor Mesopor Mater, 2006, 93: 304- 312.
    [26] Barrodo E, Prieto F, Medina J et al. Characterisation of solid residues obtained on removal of Cr from waste water [J]. J Alloys Compd, 2002, 335: 203- 209.
    [27] Martin de Vidales J L, Lopez-Delgado A, Vila E, et al. The effect of the starting solution on the physico-chemical properties of zinc ferrite synthesized at low temperature [J]. J Alloys Compd, 1999, 287: 276- 283.
    [28] Chen D H, Liao M H. Preparation and characterization of YADH-bound magnetic nanoparticles [J]. J Mol Catal B Enzyme, 2002, 16: 283- 291.
    [29] Walker J D, Tannenbaum R. Characterization of the sol?gel formation of iron(III) oxide/hydroxide nanonetworks from weak base molecules [J]. Chem Mater, 2006, 18: 4793- 4801.
    [30] Masarapu C, Wei B. Direct growth of aligned multiwalled carbon nanotubes on treated stainless steel substrates [J]. Langmuir, 2007, 23: 9046- 9049.
    [31] Brown N M D, Hewitt J A, Meenan B J. X-ray-induced beam damage observed during X-ray photoelectron spectroscopy (XPS) studies of palladium electrode ink materials [J]. Surf Interface Anal, 1992, 18: 187- 198.
    [32] Li X Q, Zhang W X. Iron nanoparticles: the core?shell structure and unique properties for Ni(II) sequestration [J]. Langmuir, 2006, 22: 4638- 4642.
    [33] Tandon R K, Payling R, Chenhall B E et al. Application of X-ray photoelectron spectroscopy to the analysis of stainless-steel welding aerosols [J]. Appl Surf Sci, 1985, 20: 527-537.
    [34] Hou H, Schaper A K, Weller F et al. Carbon nanotubes and spheres produced by modified ferrocene pyrolysis [J]. Chem Mater, 2002, 14: 3990.
    [35] Zhang W, Shi J, Chen H et al. Synthesis and Characterization of Nanosized ZnS Confined in Ordered Mesoporous Silica [J]. Chem Mater, 2001, 13: 648- 658.
    [36] Li L, Shi J, Zhang L et al. Adv Mater, 2004, 16: 1079.
    [37] Zhu S, Zhou H, Hibino M et al. Synthesis of MnO nanoparticles confined in ordered mesoporous carbon using a sonochemical method [J]. 2Adv Funct Mater, 2005, 15: 381- 386.
    [38] Morgan S, Mokaya R. Aligned bundles of carbon nanotubes are easily grown on as-synthesized mesoporous silicate substrates, [J]. J Phys Chem C, 2008, 112: 15157- 15162.
    [39] Zhou M, Guo L P, Hou Y et al. Immobilization of Nafion-ordered mesoporous carbon on a glassy carbon electrode: Application to the detection of epinephrine [J]. Electrochim Acta, 2008, 53: 4176-4184.
    [40] Lin M S, Leu H J. A Fe3O4-Based Chemical sensor for cathodic determination of hydrogen peroxide [J]. Electroanlysis, 2005, 17: 2068- 2073.
    [41] Zhou M, Ding J, Guo L P et al. Electrochemical behavior of L-cysteine and its detection at ordered mesoporous carbon-modified glassy carbon electrode [J]. Anal Chem, 2007, 79: 5328- 5335.
    [42] Gong K, Zhu X, Zhao R et al. Rational attachment of synthetic triptycene orthoquinone onto carbon nanotubes for electrocatalysis and sensitive detection of thiols [J]. Anal Chem, 2005, 77: 8158- 8165.
    [43] Qu S, Wang J, Kong J et al. Magnetic loading of carbon nanotube/nano-Fe3O4 composite for electrochemical sensing, Talanta, 2007, 71: 1096- 1102.
    [44] Kruusma J, Mould N, Jurkschat K et al. Single walled carbon nanotubes contain residual iron oxide impurities which can dominate their electrochemical activity [J]. Electrochem Comm, 2007, 9: 2330- 2333.
    [45] Zhou M, Guo L P, Lin F Y et al. Electrochemistry and electrocatalysis of polyoxometalate-ordered mesoporous carbon modified electrode [J]. Anal Chim Acta, 2007, 587: 124- 131
    [46] Yang X, Feng T, Jiao Y et al. A novel hydrogen peroxide biosensor based on the synergistic effect of gold-platinum alloy nanoparticles/polyaniline nanotube/chitosan nanocomposite membrane [J]. Electroanalysis, 2009, 21: 819- 825.
    [47] Lai G S, Zhang H L, Han D Y, A novel hydrogen peroxide biosensor based on hemoglobin immobilized on magnetic chitosan microspheres modified electrode [J]. Sens Actuators B, 2008, 129: 497- 503.
    [48] Miao Y, Tan S N. Amperometric hydrogen peroxide biosensor with silica sol–gel/chitosan film as immobilization matrix [J]. Anal Chim Acta, 2001, 437: 87- 93.
    [49] Domenech A, Alarcon J. Determination of hydrogen peroxide using glassy carbon and graphite/polyester composite electrodes modified by vanadium-doped zirconias [J]. Anal Chim Acta, 2002, 452:11- 22.
    [50] Eftekhari A. Aluminum electrode modified with manganese hexacyanoferrate as a chemical sensor for hydrogen peroxide [J]. Talanta, 2001, 55: 395- 402.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700