卤代芳烃的Suzuki与Heck偶联反应的新催化体系探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钯催化的芳基溴或芳基碘的Suzuki及Heck偶联反应是现代有机合成中重要的反应。这些偶联反应在材料、天然产物及生物活性物质的制备中有着极其重要的地位。发展无膦配体的可循环使用的非均相催化剂以取代昂贵的对空气敏感的碱性膦配体有重要的实际应用价值。本论文发展了四种新的无配体型Heck及Suzuki反应催化剂。
     水滑石(LDHs)是一种重要的无机层状材料,其在催化剂、催化剂前驱体及载体、吸附、纳米复合材料以及药物控释等领域有广泛的使用价值。本文利用离子交换的方法将十二烷基磺酸根(DS~-)插层进入到水滑石的层板间(即MgAl-LDH-DS)。对该十二烷基磺酸根插层的LDHs进一步以PdCl_4~(2-)交换即可得到DS~-和PdCl_4~(2-)双插层的LDHs(即PdCl_4~(2-)/MgAl-LDH-DS)。层间PdCl_4~(2-)进一步以抗坏血酸(Vc)还原即得到层间插有金属Pd~0团簇的水滑石(即Pd~0/MgAl-LDH-DS)。由于十二烷基磺酸根插层后在水滑石层板间形成的空间有限(2-3 nm),在这有限空间限制了Pd~0团簇的进一步生长。这种限域作用对于维持pd~0的催化活性及其稳定性起到了至关重要的作用。此外,十二烷基磺酸根(DS~-)在水滑石层板间形成的微空间具有亲水亲油两性,有机反应物分子可以自由出入于该微空间,与其间的Pd~0发生催化反应,相当于在LDHs层板间制备了一个两亲性的微反应器。试验表明,这是一种高效的Suzuki偶联反应催化剂。
     由于层状材料层板结构被剥离后,其内表面将充分向外界暴露,这种现象在催化及吸附领域有重要的应用价值。LDHs是由层板带正电的二价及三价羟基化物及层间带负电荷的阴离子交替叠加形成的层状结构。对这种层状结构的剥离,可以使剥离后的LDHs比表面积理论值达到1000 m~2/g。水滑石的剥离研究相对滞后,实际上,水滑石之外的其它层状材料的剥离已有不少实际应用的报道。在水滑石的剥离方面,虽然从2000年的首例报道后已有不少文献报道,但绝大多数侧重于LDHs剥离的方法学上的研究,而忽略了其实际应用方面的研究。本论文首次报道了共沉淀法制备所得的甘氨酸(Gly)插层的层板含钯的三元水滑石MgPdAl-LDH([Mg_(0.95)Pd_(0.05_Al_(1/3)(OH)_2][Gly_(1/3)·mH_2O])在甲酰胺中的完全剥离,并将该剥离后的层板呈单分散态的MgPdAl-LDH用于催化Heck偶联反应。由于MgPdAl-LDH被剥离后其内表面全面向反应物分子开放,这些MgPdAl-LDH单一层板对众多卤代芳烃的Heck偶联反应均表现出优异的催化活性。在这些单一的MgPdAl-LDH层板中,钯位点和碱性位点处于分子水平上的混合,因此,MgPdAl-LDH层板中的碱性位点充当了碱性配体的角色。碱性位提供的富电子氛围促进了卤代芳烃对钯的氧化加成,从而完成对卤代芳烃的活化。这种先将催化元素引入到LDHs层板中再进行剥离的思想可望延伸到钯以外的其他过渡金属。
     本论文还发展了一种简易的磁性Fe_3O_4纳米粒子负载Pd~0的方法。利用FeO3_O4溶胶带正电荷的特性,将负离子PdCl_4~(2-)通过静电作用吸附在Fe_3O_4胶体粒子表面(记为PdCl_4~(2-)/Fe_3O_4),以抗坏血酸(Vc)进一步还原即得到负载有金属Pd团簇的Fe_3O_4胶体粒子(记为Pd~0/Fe_3O_4)。这种磁性载体负载的Pd催化剂对Suzuki反应表现出良好的催化活性,并且在反应后,可以简单地通过永久磁铁将催化剂从反应体系中分离出来,进行循环使用。循环试验表明,该催化剂在循环使用五次后反应活性没有明显的下降。
     酞菁化合物是一类被广泛研究的功能性分子。作为功能材料,酞菁的固载化(载体一般为金属氧化物半导体)对于充分实现其功能具有关键性作用。磁性Fe_3O_4纳米粒子是另一重要功能材料。酞菁与Fe_3O_4纳米粒子在性质和功能上有很好的互补性。两者的有效结合在催化、光催化以及抗癌治疗上均有潜在的应用价值。本文利用超临界乙醇干燥所得的Fe_3O_4纳米粒子的表面活性Fe原子与酞菁前驱体邻苯二腈[Ph(CN)_2]反应直接得到表面包覆有酞菁铁(FePc)单分子层的Fe_3O_4纳米粒子(记为FePc@Fe_3O_4)。这是一种全新的酞菁铁修饰氧化铁的方法,该方法有望延伸到其他金属氧化物纳米粒子(如TiO_2和Fe_2O_3)及邻苯二腈的其他衍生物。有趣的是,这种原位生成的FePc@Fe_3O_4纳米复合材料对Heck偶联反应同样表现出催化活性。该非钯体系催化的Heck反应对于Heck反应机理的探索将起到促进作用。
The palladium catalyzed coupling of bromo- and iodoarenes by Heck and Suzuki reactions is a well-established methodology in modem organic synthesis.The coupling products find good applications as intermediates in the preparation of materials,natural products and bioactive compounds.It is highly desirable to develop a phosphine-free new recyclable heterogeneous catalytic system to dispense the use of expensive and air-sensitive basic phosphines for palladium catalyzed coupling reactions of haloarenes.Four types of novel ligandless Pd or non-palladium catalysts for Heck and Suzuki reactions were developed in the current dissertation.
     Layered double hydroxides(LDHs),an important family of inorganic layered materials,have been found wide applications as catalysts,catalyst precursors or supports,adsorption,nanocomposite and drug delivery.Herein,surfactant (DS')-intercalated LDHs(MgAl-LDH-DS)were prepared via ions exchange method. Further exchange of DS~- with PdCl_4~(2-)resulted in LDHs intercalated by both DS" and PdCl_4~(2-)(PdCl_4~(2-)/MgAl-LDH-DS).Pd~0/MgAl-LDH-DS were further obtained via the reduction of PdCl_4~(2-)/MgAl-LDH-DS with Vc.The Pd~0 clusters were intercalated between the LDHs layers;hence the growth of Pd~0 clusters would be effectively hindered by the limited space of the inter-layers created by the pre-intercalation of DS~-.The micro-space between LDH layers created by surfactant was hydrophobic,so the organic reactants could enter freely into these micro-reactors and interact with the pre-implanted Pd~0 cluster,resulted in effective catalysis toward Suzuki reaction.
     Delaminating layered materials is of tremendous practical importance in applications due to the largely enhanced accessibility of their inner surface.Layered double hydroxides are layered materials constituted by a stacking of positive hydroxylated layers[M~(2+)_(1-x)M~(3+x)_x(OH)_2]~(x+)separated by interlayered anionic species and water molecules[A_(x/n)~(n-)·m H_2O]~(x-).As a consequence of its structure,the delaminated LDH phase would reach a theoretical specific surface area of 1,000 m~2/g. Actually,applications of delaminated layered materials rather than LDHs have been developed previously.However,the practical application of delaminated LDH is still in its infancy,despite that the strategies for delaminations of LDHs have been relatively well-documented and well-established since the first case of the LDH delamination by use of surfactant was reported in 2000.In the present work,A novel ligand-free catalyst,Pd(Ⅱ)-doped colloidal layered double hydroxide(LDH),has been prepared from delamination of glycinate intercalated ternary-component MgPdAI-LDH([Mg_(0.95)Pd_(0.05)Al_(1/3)(OH)_2][Gly_(1/3)·mH_2O])in formamide.Subsequently, the catalytic performance of these mono-dispersed ultrathin nanosheets of LDH for Heck reaction was evaluated.Owing to the largely enhanced accessibility for reactant molecules resulting from the nature of high inner surface area of LDHs,these palladium-bearing nanosheets showed excellent efficiency for Heck reactions to a wide range of substrate molecules.The Pd sites and basic sites on the brucite-like nanosheets are combined at a molecular level and interact with each other closely because of the co-precipitation method employed;so the basic sites on the LDH monolayers might function as basic ligands.The electron-rich environment derived from basic sites of LDH layers would provide the requisite electron density on palladium to undergo oxidative addition of in situ formed Pd(0)with haloarene, accounting for the highly catalytic efficiency.This method of combination of catalytically active sites with LDHs might be extended to transition metals other than Pd(Ⅱ).
     The present work also developed a simple way to combine Pd~0 with Fe_3O_4 nanoparticles(NPs),PdCl_4~(2-)was immobilized directly on the cationic Fe_3O_4 colloids through electrostatic interaction.Further reduction of these PdCl_4~(2-)/ Fe_3O_4 NPs resulted in Pd~0/Fe_3O_4 NPs.These magnetic NPs-supported Pd~0 clusters showed high efficiency toward Suzuki reactions.After reactions,the Pd~0/ Fe_3O_4 NPs could be simply recycled by permanent magnet.This catalyst could be re-used for 5 times without significant loss in catalytic activity.
     Phthalocyanines(Pcs)are one of the most extensively studied functional materials. As functional materials,the immobilization of Pcs on some supports(e.g.,metal oxides)is essential for fully exploiting their functionalities.Both Fe_3O_4 nanoparticles (NPs)and Pcs are important functional materials,they are complementary in both properties and functions.The effective combinations of these two kinds of materials have potential application in catalysis,photo-catalysis and anticancer therapy.In the present work,SCFD-derived Fe_3O_4 nanoparticles were chose as substrate to react with phthalic nitrile(Ph(CN)_2)superficially to form FePc monolayer on the surface of Fe_3O_4 NPs.Using these two simple starting materials,Fe_3O_4 NPs chemically coated with FePc monolayer were obtained just in one step.To our best of knowledge,it is a totally new strategy to functionalize iron oxides with FePc.Also this method may be extended to other metal oxide(e.g.,TiO_2 and Fe_2O_3)nanoparticles and other phthalic nitrile derivatives.More interestingly,this in situ formed FePc@Fe_3O_4 nano-composite also exhibited catalytic activity toward Heck reaction;it is a non-palladium-catalyzed Heck reaction.This finding will lay a foundation to understand more accurately the mechanism of Heck reactions.
引文
1. (a)R. F. Heck, Acylation, methylation, and carboxyalkylation of olefins by Group VIII metal derivatives. J. Am. Chem. Soc. 1968; 90(20); 5518;
    (b) R. F. Heck, The arylation of allylic alcohols with organopalladium compounds. A new synthesis of 3-aryl aldehydes and ketones. J. Am. Chem. Soc. 1968; 90(20); 5526;
    (c) R. F. Heck, Allylation of aromatic compounds with organopalladium salts. J. Am. Chem. Soc. 1968; 90(20); 5531.
    2. (a)Fitton, P. McKeon, J. E. Reactions of tetrakis(triphenylphosphine)palladium(0) with olefins bearing electron-withdrawing substituents Chem. Commun., 1968, 4;
    (b) Fitton, P. Johnson, M. P. McKeon, J. E. Oxidative additions to palladium(O). Chem. Commun., 1968,6.
    
    3. (a)R. F. Heck, Nolley, J. P. Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides. J. Org. Chem.; 1972; 37; 2320;
    (b) Dieck, H. A. Heck, R. F. Organophosphinepalladium complexes as catalysts for vinylic hydrogen substitution reactions. J. Am. Chem. Soc.; 1974; 96(4); 1133-1136.
    4. Mizoroki, T.;Mori, K.; Ozaki, A. Bull. Chem. Soc. Jpn. 1971,44, 581.
    5. Brown, J. M. Hii, K. K. Characterization of Reactive Intermediates in Palladium-Catalyzed Arylation of Methyl Acrylate (Heck Reaction) Angew. Chem. Int. Ed. 1996, 35(6)657.
    6. Felpin, F.-X. Ayad, T.Mitra, S. Pd/C: An Old Catalyst for New Applications - Its Use for the Suzuki-Miyaura Reaction. Eur. J. Org. Chem.;
    (b) Heidenreich, R. G Kohler, K. Krauter, G. E. Pietsch, J. Pd/C as a highly active catalyst for Heck, Suzuki and Sonogashira Reactions. Synlett, 2002, 7, 1118-1122.
    (c) Mukhopadhyay, S. Rothenberg, G. Joshi, A. Baidossi, M. Sasson, Y. Heterogeneous palladium-catalyzed Heck reaction of aryl chlorides and styrene in water under mild conditions. Adv. Synth. Catal., 2002, 344,348;
    (d) Seki, M. Recent Advances in Pd/C -Catalyzed coupling Reactions. Synthesis, 2006, 18, 2975.
    7. (a) Djakovitch, L. Koehler, K. Heck reaction catalyzed by Pd-Modified Zeolites. J. Am. Chem. Soc. 2001,123, 5990;
    (b) Mandal, S. Roy, D. Chaudhari, R. V. Sastry, M. Pt and Pd nanoparticles immobilized on amine-functionalized: excellent catalyst for hydrogenation and Heck reactions. Chem. Mater. 2004,16, 3714.
    8. (a) Kantam, M. L. Surabindu, M. S. Roy, S. Roy, M. Layered double hydroxide-supported nanoparticle:an efficient and reusable catalyst for Suzuki coupling of aryl iodides and bromides at roon temperature. Synlett 2006, 4, 0633;
    (b) Bennur, T. H.; Ramani, A.; Bal, R.; Chanda, B. M.; Sivasanker, S. Palladium(II) containing hydrotalcite as an efficient heterogeneous catalyst for Heck reaction. Catal. Comm. 2002,3,493;
    (c) Zhou, H.; Zhuo, G. L.; Jiang, X. Heck reaction catalyzed by Pd supported on LDH-F hydrotalcite. J. Mol. Catal.: A 2006,248,26;
    (d) Choudary, B. M.; Madhi, S.; Chowdari, N. S.; Kantam, M. L.; Sreedhar, B. Layered Double Hydroxide Supported Nanopalladium Catalyst for Heck-, Suzuki-, Sonogashira-, and Stille-Type Coupling Reactions of Chloroarenes . J. Am. Chem. Soc. 2002,124, 14127.
    9. Wang, H. Zheng, X. Chen, P. Zheng, X. The fabrication of reactive hollow polysiloxane capsules and their application as an recyclable heterogeneous catalyst for the Heck reaction. J. Mater. Chem. 2006,16,4701.
    10. Meier, M. A. R. Filali, M. Gohy, J. Schuberr, U. S. Star shaped block copolymer stabilized palladium nanoparticles for efficient Heck cross-coupling reactions. J. Mater. Chem. 2006,16,3001.
    11. Mukhopadhyay, S. Rothenberg, G. Joshi, A. Baidossi, M. Sasson, Y. Heterogeneous palladium-catalyzed Heck reaction of aryl chlorides and styrene in water under mild conditions. Adv. Synth. Catal., 2002, 344, 348.
    12. (a) Scrivanti, A. Bertoldini, M. Matteoli, U. Beghetto, V. Antonaroli, S. Marini, A. Crociani, B. Highly efficient Heck olefin arylation in the presence of iminophosphine-palladium(O) complexes. Journal of Molecular Catalysis A: Chemical. 2005,235, 12;
    (b) de Vries, A. H. M. Mulders, J. M. C. A. Mommers, J. H. M. Henderickx, H. J. W. de Vries, J. G. Homepathic ligand-free palladium as a catalyst in the Heck reaction. A comparison with a palladacycle. Org. Lett. 2003,5, 3285.
    13. Djakovitch, L. Wagner, M. Hartung, C.G. Beller, M. Koehler, K.Pd-catalyzed Heck arylation of cycloalkenes—studies on selectivity comparing homogeneous and heterogeneous catalysts. Journal of Molecular Catalysis A: Chemical 2004, 219,121.
    14. Pr6ckl, S. S. Kleist, W. Gruber, M. A. Kohler, K. In Situ Generation of Highly Active Dissolved Palladium Species from Solid Catalysts - A Concept for the Activation of Aryl Chlorides in the Heck Reaction. Ang. Chem. Inter. l Ed. 2004,43,1881.
    15. Reetz, M. T. Westermann, E. Phosphane-Free Palladium-Catalyzed Coupling Reactions: The Decisive Role of Pd Nanoparticles. Ang. Chem. Inter.l Ed. 2000, 39, 165.
    16. Reetza, M. T. de Vries, J. G Ligand-free Heck reactions using low Pd-loading. Chem. Comm. 2004,1559.
    17. Suzuki, A. Palladium -catalyzed cross-coupling reactions of organoboron. Chem. Review 1995, 95,2457.
    18. Smith G B, Dezeny G C, Hughes D L, King A O, Verhoeven T R. Mechanistic studies of the Suzuki cross-coupling reaction. J. Org. Chem. 1994,59, 8151.
    19. Suzuki A. Recent advances in the cross-coupling reactions of organoboron derivatives with organic electrophiles, 1995-1998. J. Organomet. Chem. 1999, 576, 147.
    20. Hassan J, Sevignon M, Gozzi C, Schulz E, Lemaire M. Aryl-aryl bond formation one century after the discovery of the Ullmann Reaction. Chem. Rev. 2002, 102, 1359.
    21.Kotha S, Lahiri K, Kashinath D, Recent applications of the Suzuki-Miyaura cross-coupling reaction in organic synthesis. Tetrahedron 2002, 58, 9633.
    22.Littke A F,Dai C,Fu G C.Versatile catalysts for the Suzuki Cross-coupling of arylboronic acids with aryl and vinyl halides and triflates under mild conditions.J.Am.Chem.Soc.2000,122,4020.
    23.Herrmann W A,Bohm V P W,Reisinger C P.Application of palladacycles in Heck type reactions J.Organomet.Chem.1999,576,23.
    24.Old,D.W.Wolfe,J.P,Buchwald,S.L.A Highly active catalyst for palladium-catalyzed cross-coupling reactions:Room-Temperature Suzuki couplings and amination of unactivated aryl chlorides.J.Am.Chem.Soc.1998,120,9722.
    25.(a)Basile,F.;Fornasari,G.;Gazzano,M.;Vaccari,Synthesis and thermal evolution of hydrotalcite-type compounds containing noble metals.A.Appl.Clay.Sci.2000,16,185;
    (b)Basile,F.;Basini,L.;Fornasari,G.;Gazzano,M.;Trifiro',F.;Vaccari,A.New hydrotalcite-type anioic clays containing noble metals.J.Chem.Soc.Chem.Commun.1996,2435.
    26.Brindley,G.W,Kikkawa,S.Acrystal chemiacal study of Mg,Al and Ni,Al hydroxyperchlarates and hydroxyl-carbonates.Amer.Min.,1979,64:836
    27.Miyata s.Anion-exchange properties of hydrotalcite-like compound.Clay clay Miner,1983,31:305.
    28.Miyata s.The synthsis of hydrotalcite-like compounds and their structures and physico-chemical properties I:The system of Mg~(2+)-Al~(3+)-Cl~-,Mg~(2+)-Al~(3+)-NO_3~-,Ni~(2+)-Al~(3+)-Cl~-,and Zn~(2+)-Al~(3+)-Cl~-.Clay Clay Miner,1975,23:369.
    29.赵芸,何静,矫庆泽,段雪.双羟基复合金属氧化物的晶面生长选择性及晶粒尺寸控制.无机化学学报,2001,17(4):573.
    30.(a)Bravo-Suarez,J.J.Paez-Mozo,E.A.Oyama,S.T.Intercalation of Decamolybdodicobaltate(Ⅲ)Anion in Layered Double Hydroxides.Chem.Mater.,2004,16:1214;
    (b)A.-Pagano M.,Forano C.Besse J.-P.Synthesis of Al-rich hydrotalcite-like compounds by using the urea hydrolysis reaction-control of size and morphology.J.Mater.Chem.2003,13:1988.
    31.(a)Shen,J.Guang,B.Tu,M.Chen Y.Preparation and characterization of Fe/MgO catalysts obtained from hydrotalcite-like compounds.Catal.today,1996,30:77;
    (b)O.Clause,Coelho,M.G.Gazzano,M.Matteuzzi,Trifiro D.F.Vaccari,A.Synthesis and thermal reactivity of nickel-containing anionic clays.Appl.Clay Sci.1993,8:169;
    (c)Yun S.K.,Pinnavaia T.J.Water Content and Particle Texture of Synthetic Hydrotalcite-like Layered Double Hydroxides.Chem.Mater 1995,7:348;
    (d)Wei,M.Shi,S.Wang,J.Li Y.Duan X.Studies on the intercalation of naproxen into layered double hydroxide and its thermal decomposition by in situ FT-IR and in situ HT-XRD.Ji Wang,J.Solid State Chem.,2004,177:2534;
    (e)Wei,M.Rao,G.Evans D.G.Duan X.Structure and thermal decomposition of sulfated β-cyclodextrin intercalated in a layered double hydroxide J Solid State Chem.,2004,177:366.
    32.(a)Fomasari,G.Gazzano,M.Matteuzzi,D.Trifiro,F.Vaccari,A.Structure and reactivity of high-surface-area Ni/Mg/Al mixed oxides.Appl.Clay Sci.,1995,10:69;
    (b)Millange,F.Walton,R.I.O'Hare,D.Time-resolved in situ X-ray diffraction study of the liquid-phase reconstruction of Mg-Al-carbonate hydrotalcite-like compounds,J.Mater Chem.2000,10:1713;
    (c)Aramendia,M.A.Aviles,Y.Borau,V.Luque,J.M.Marinas,J.M.Ruiz,J.R.Urbano,F.J.Thermal decomposition of Mg/Al and Mg/Ga layered-double hydroxides:a spectroscopic study,J.Mater Chem.1999,9:1603;
    33.Zhao,Y.;Li,F.;Zhang,R.;Evans,D.G.;Duan,X.Preparation of Layered Double-Hydroxide Nanomaterials with a Uniform Crystallite Size Using a New Method Involving Separate Nucleation and Aging Steps.Chem.Mat e r 2002,14:4286.
    34.赵芸,矫庆泽,李峰,Evans D G,段雪.非甲衡晶化控制水滑石晶粒尺寸,无机化学学报,2001,17,830.
    35.Chibwe,K.Jones,W.Intercalation of Organic and Inorganic Anions into Layered Double Hydroxides.Chem.Comm.1989,14:926.
    36.Carlino,S.Hudson,M.J.Husain,S.W.Knowles,J.A.The reaction of molten phenylphosphonic acid with a layered double hydroxide and its calcined oxide.Solid State Ionics,1996,84:117.
    37.He,J.X.Kobayashi,K.Takahashi,M.Villemure G.Yamagishi A.Preparation of hybrid films of an anionic Ru(Ⅱ)cyanide polypyddyl complex with layered double hydroxides by the Langmuir-Blodgett method and their use as electrode modifiers.Thin Solid Films,2001,397,255.
    38.毛紸冰,李殿卿、张法智,David G E,段雪,γ-Al_2O_3载体孔内原位合成水滑石。无机化学学报,2004,20:596.
    39.杜以波,何静,李峰。Evans D G,段雪,王作新.微波技术在制备水滑石和柱撑水滑石中的应用.应用科学学报,1998,16:349.
    40.Christopher,O.Oriakhi,Isaac,V.Farr,Lerner,M.M.Incorporation of poly(acrylic acid),poly(vinylsulfonate)and poly(styrenesulfonate)within layered double hydroxides,J.Mater.Chem.1996,6:103.
    41.(a)Cavani,F.TrifiroF.Vaccari,A.Hydrotalcite-type anionic clays:Preparation,properties and applications.Catal Today 1991,11:173;
    (b)Prevot,V.;Forano,C.;Besse,J.P.;Abraham,F.Syntheses and Thermal and Chemical Behaviors of Tartrate and Succinate Intercalated Zn_3Al and Zn_2Cr Layered Double Hydroxides.Inorg.Chem.1998,37:4293.
    42.Tagaya,H.Ogata,S.Morioka,H.Kadokawa,J.Karasu,M.Chiba,K.New preparation method for surface-modified inorganic layered compounds.J.Mater.Chem.1996,6,1235.
    43.Chibwe,K.Jones,W.Intercalation of organic and inorganic anions into layered double hydroxides,J.Chem.Soc.,Chem.Commun.,1989,926.
    44.Arco;M.Gutierrez,S.Martin,C.Rives,V.Intercalation of[Cr(C_2O_4)_3]~(3-)Complex in Mg,Al Layered Double Hydroxides.Inorg.Chem.;2003;42;4232.
    45.(a)Corma,A.;Diaz,U.;Domine,M.E.;Fornes,V.New Aluminosilicate and Titanosilicate Delaminated Materials Active for Acid Catalysis,and Oxidation Reactions Using H_2O_2.J.Am.Chem.Soc.2000,122,2804;
    (b) Corma, A.; Fornes, V.; Jorda, J. L.; Rey, F.; Fernandez-Lafuente, R.; Guisan, J. M.; Mateo, C. Electrostatic and covalent immobilisation of enzymes on ITQ-6 delaminated zeolitic materials. Chem. Commun. 2001, 419;
    (c) Pawelec, B.; Murcia-Mascaros, S.; G. Fierro, J. L. Surface and Structural Features of Pt/Pd-Loaded Mesoporous Silica-Delaminated Zirconium Phosphate Systems. Langmuir 2002,18,7953;
    (d) Corma, A.; Fornes, V.; Diaz, U. Chem. Commun. 2001, 2642.
    46. Albiston, L.; Franklin, K. R.; Lee, E.; Smeulder, J. B. A. F.; Rheology and microstructure of aqueous layered double hydroxide dispersions. J. Mater. Chem. 1996,6,871.
    47. (a) Xu, Z. P.; Stevenson, G. S.; Lu, C-Q Lu, G. Q.; Bartlett, P. F.; Gray, P. P. Stable Suspension of Layered Double Hydroxide Nanoparticles in Aqueous Solution. J. Am. Chem. Soc. 2006,128,36;
    (b) Xu, Z. P.; Stevenson, G.; Lu, C-Q ; Lu, G. Q.; Dispersion and Size Control of Layered Double Hydroxide Nanoparticles in Aqueous Solutions . J. Phys. Chem. B 2006,110,16923;
    (c) Liu, S.; Zhang, J.; Wang, N.; Liu, W.; Zhang, C.; Sun, D. Liquid-Crystalline Phases of Colloidal Dispersions of Layered Double Hydroxides. Chem. Mater. 2003,15,3240;
    (d) Zhang, J.; Luan, L.; Zhu, W.; Liu, S.; Sun D. Phase Behavior of Aqueous Suspensions of Mg_2Al Layered Double Hydroxide: The Competition among Nematic Ordering, Sedimentation, and Gelation. Langmuir 2007,23, 5331.
    48. (a) Adachi-Pagano, M.; Forano, C.; Besse, J-P.; Delamination of Layered double hydroxides by use of surfactants. Chem. Commun. 2000,91;
    (b) Leroux, F.; Adachi-Pagano, M.; Intissar, M.; ChauvieAre, S.; Forano, C.; Besse, J-P. Delamination and restacking of layered double hydroxides. J. Mater. Chem. 2001,11,105.
    49. Xu, Z. P. Braterman, P. S. High affinity of dodecylbenzene sulfonate for layered double hydroxide and resulting morphological changes. J. Mater. Chem., 2003, 13, 268.
    50. Hibino, T.; Jones, W.; New approach to the delamination of layered double hydroxides. J. Mater. Chem. 2001,11,1321.
    51. Hibino, T. Delamination of layered double hydroxides containing amino acids. Chem. Mater. 2004,16, 5482.
    52. (a)Wu, Q.; Olafsen, A.; Vistad, (?). B.; Roots, J.; P. Norby, Delamination and restacking of a layered double hydroxide with nitrate as counter anion. J. Mater. Chem. 2005, 75,4695;
    (b) Li, L.; Ma, R.; Ebina, Y.; Iyi, N.; Sasaki, T.; Positively charged nanosheets derived via toyal delamination of layered double hydroxides. Chem. Mater. 2005, 77,4386.
    53. Okamoto, K.; Sasaki, T.; Fujita, T.; Iyi, N. Preparation of highly oriented organic-LDH hybrid films by combining the decarbonation, anion-exchange, and delamination processes. J. Mater. Chem. 2006,16,1608.
    54. Heck, R. F.Palladium reagents in organic syntheses, Academic Press, London, 1985.
    55. Prinetto, F.; Manzoli, M.; Ghiotti, G.; Ortiz, M. J. M.; Tichit, D.; Coq, B. Pd/Mg(Al)O catalysts obtained from hydrotalcites: investigation of acid-base properties and nature of Pd phases. J. Catal. 2004,222,238.
    56. (a) Zhou, H.; Zhuo, G. L.; Jiang, X. Heck reaction catalyzed by Pd supported on LDH-F hydrotalcite. J. Mol. Catal.: A 2006,248,26;
    
    (b) Kakiuchi, N.; Maeda, Y.; Nishimura, T.; Uemura, S. Pd(II)-Hydrotalcite Catalyzed Oxidation of Alcohols to Aldehydes and Ketones Using Atmospheric Pressure of Air. J. Org. Chem. 2001,66,6620;
    
    (c) Choudary, B. M.; Kantam, M. L.; Reddy, N. M.; Gupta, N. M. Catal. Lett. 2002, 82, 79;
    
    (d) Nishimura, T.; Kakiuchi, N.; Inoue, M.; Uemura, S. Palladium(II)-supported hydrotalcite as a catalyst for selective oxidation of alcohols using molecular oxygen. Chem. Commun. 2000, 1245;
    
    (e) Choudary, B. M.; Madhi, S.; Chowdari, N. S.; Kantam, M. L.; Sreedhar, B. Layered Double Hydroxide Supported Nanopalladium Catalyst for Heck-, Suzuki-, Sonogashira-, and Stille-Type Coupling Reactions of Chloroarenes. J. Am. Chem. Soc. 2002,124,14127.
    57. (a) Basile, F.; Fornasari, G.; Gazzano, M.; Vaccari, A. Appl. Clay. Sci. 2000, 16, 185;
    (b) Bennur, T. H.; Ramani, A.; Bal, R.; Chanda, B. M.; Sivasanker, S. Palladium(II) containing hydrotalcite as an efficient heterogeneous catalyst for Heck reaction. Catal. Comm. 2002,3,493.
    58. Narayanan, S.; Krishna, K.; Structure activity relationship in Pd/hydrotalcite: effect of calcination of hydrotalcite on palladium dispersion and phenol hydrogenatioa Catal. Today 1999,49, 57.
    59. (a) Komiyama, M.; Catal. Rev-Sci. Eng. 1985, 27, 341;
    (b) Geus, J. W.; van Veen, J. A. R.; Preparation of supported catalysts, Elsevier, Amsterdam, 1993.
    60. Liu, Z.; Ma, R.; Ebina, Y.; Iyi, N.; Takada, K.; T. Sasaki. General Synthesis and Delamination of Highly Crystalline Transition-Metal-Bearing Layered Double Hydroxides. Langmuir 2007,23, 861.
    61. Zhu, B. C. Jiang, X. Z. A new CuI-hydretalcite catalyzed homocoupling reaction of terminal alkynes at room temperature. Appl. Organometal. Chem. 2007; 21:345
    62. (a) Wang, Z. Shen, B. Zou, A. He, N. Synthesis of Pd/Fe_3O_4 nanoparticle-based catalyst for the cross-coupling of acrylic acid with iodobenzene. Chem. Engineering J. 2005,113, 27;
    (b) Wang, Z. Xiao, P. Shen, B. He, N. Synthesis of palladium-coated magnetic nanoparticle and its application in Heck reaction. Colloids and Surf. A: Physi. 2006,276,116.
    63. Stevens, P. D. Li, G Fan, J. Yen, M. Gao, Y. Recycling of homogeneous Pd catalysts using superparamagnetic nanoparticles as novel soluble supports for Suzuki, Heck, and Sonogashira cross-coupling reactions. Chem. Commun., 2005, 4435.
    64. Stevens, P. D. Fan, J. Gardimalla, H. M. R.Yen, M. Gao, Y. Superparamagnetic Nanoparticle-Supported Catalysis of Suzuki Cross-Coupling Reactions Org. Lett., 2005,7, 2085.
    65. Zheng, Y. Stevens, P. D. Gao, Y. Magnetic Nanoparticles as an Orthogonal Support of Polymer Resins: Applications to Solid-Phase Suzuki Cross-Coupling Reactions. J. Org. Chem. 2006, 71, 537.
    
    66. Zhu, Y, Peng, S. C. Emi, A. Su, Z. Monalisa, Kempd, R. A. Supported Ultra Small Palladium on Magnetic Nanoparticles Used as Catalysts for Suzuki Cross-Coupling and Heck Reactions. Adv. Synth. Catal 2007,349,1917.
    67. (a) T. Inabe and H. Tajima, Phthalocyanines-Versatile Components of Molecular Conductors. Chem. Rev. 2004, 104, 5503;
    (b) G de la Torre, P. Vazquez, F. Agullo-Lopez and T. Torres, Role of Structural Factors in the Nonlinear Optical Properties of Phthalocyanines and Related Compounds. Chem. Rev. 2004,104,3723;
    (c) N. B. McKeown, Phthalocyanine Materials: Synthesis, Structure and Function, Cambridge University Press, Cambridge, 1998.
    68. Fu-Ren F. Fan, Allen J. Bard. Spectral sensitization of the heterogeneous photocatalytic oxidation of hydroquinone in aqueous solutions at phthalocyanine-coated titanium dioxide powders [J]. J. Am. Chem. Soc. 1979, 101(20): 6139.
    69. (a) Andrew P. Hong, Detlef W. Bahnemann, Michael R. Hoffmann. Cobalt (II) tetrasulfophthalocyanine on titanium dioxide.2 Kinetics and mechanisms of the photocatalytic oxidation of aqueous sulfur dioxide[J]. J. Phys. Chem. 1987, 91: 6245-6251;
    (b) Andrew P.Hong, Detlef W. Bahnemann, Michael R. Hoffmann. Cobalt(II) tetrasulfophthalocyanine on titanium dioxide. 1 A new efficient electron relay for the photocatalytic formation and depletion of hydrogen peroxide in aqueous suspensions[J]. J. Phys. Chem. 1987, 91(8): 2109.
    70. (a) Caruntu, D.; Caruntu, G.; Chen, Y.; O'Connor, C. J.; Goloverda, G.; Kolesnichenko, V. L. Synthesis of Variable-Sized Nanocrystals of Fe_3O_4 with High Surface Reactivity. Chem. Mater.; 2004; 16(25); 5527;
    (b) Jolivet, J.-P. Chaneac, C. Tronc, E. Iron oxide chemistry. From molecular clusters to extended solid networks. Chem. Commun., 2004,481.
    71. (a) S. Mangematin and A. B. Sorokin, J. Porphyrins Phthalocyanines, 2001, 5, 674;
    (b) B. Gorlach, C. Hellriegel, S. Steinbrecher, H. Yuksel, K. Albert, E. Pliesb and M. Hanack, Synthesis, characterization and HPLC-applications of novel phthalocyanine modified silica gel materials. J. Mater. Chem., 2001,11, 3317;
    (c) M. K. I. Senevirathna, P. K. D. P. Pitigala, V.P.S. Perera and K. Tennakone, Molecular Rectification: Application in Dye-Sensitized Solar Cells. Langmuir, 2005,21,2997;
    (d) E. Palomares, M. V. Martinez-Diaz, S. A. Haque, T. Torres and J. R. Durrant. State selective electron injection in non-aggregated titanium phthalocyanine sensitised nanocrystalline TiO_2 films. Chem. Commun., 2004,2112;
    (e) Fu-Ren., F. Fan and A. J. Bard, Spectral sensitization of the heterogeneous photocatalytic oxidation of hydroquinone in aqueous solutions at phthalocyanine-coated titanium dioxide powders. J. Am. Chem. Soc, 1979, 101, 6139;
    (f) A. P. Hong, D. W. Bahnemann and M. R. Hoffmann, J. Phys. Chem., 1987, 91, 2109;
    (g) H. W. Gu, K. M. Xu, Z. M. Yang, C. K. Chang and B. Xu, Synthesis and cellular uptake of porphyrin decorated iron oxide nanoparticles—a potential candidate for bimodal anticancer therapy. Chem. Commun., 2005,4270;
    (h) J. C. O. Silva, M. H. Sousa, F. A. Tourinho and J. C. Rubim, Raman Spectroscopic Investigation of Maghemite Ferrofluids Modified by the Adsorption of Zinc Tetrasulfonated Phthalocyanine. Langmuir, 2002,18,5511;
    (i) D. C. Hone, P. I. Walker, R. Evans-Gowing, S. FitzGerald, A. Beeby, I. Chambrier, M. J. Cook and D. A. Russell, Generation of Cytotoxic Singlet Oxygen via Phthalocyanine-Stabilized Gold Nanoparticles: A Potential Delivery Vehicle for Photodynamic Therapy. Langmuir, 2002, 18,2985.
    72. (a) T. Rajh, L. X. Chen, K. Lukas, T. Liu, M. C. Thurnauer and D. M. Tiede, Surface Restructuring of Nanoparticles: An Efficient Route for Ligand-Metal Oxide Crosstalk. J. Phys. Chem. B, 2002, 106,10543;
    (b) L. X. Chen, T. Liu, M. C. Thurnauer, R. Csencsits and T. Rajh, Fe_2O_3 Nanoparticle Structures Investigated by X-ray Absorption Near-Edge Structure, Surface Modifications, and Model Calculations. J. Phys. Chem. B, 2002,106, 8539;
    (c) T. Rajh, Z. Saponjic, J. Liu, N. M. Dimitrijevic, N. F. Scherer, M. Vega-Arroyo, P. Zapol, L. A.Curtiss, M. C. Thurnauer, Charge Transfer Across the Nanocrystalline DNA Interface: Probing DNA Recognition. Nano Lett., 2004, 4, 1017.
    73. (a) C. J. Xu, K. M. Xu, H. W. Gu, R. K. Zheng, H. Liu, X. X. Zhang, Z. H. Guo and B. Xu, Dopamine as A Robust Anchor to Immobilize Functional Molecules on the Iron Oxide Shell of Magnetic Nanoparticles. J. Am. Chem. Soc., 2004, 126, 9938;
    (b) J. Xie, C. J. Xu, Z. C. Xu, Y. L. Hou, Kaylie L. Young, S. X. Wang, N. Pourmond and S. H. Sun, Linking Hydrophilic Macromolecules to Monodisperse Magnetite (Fe_3O_4) Nanoparticles via Trichloro-s-triazine. Chem. Mater., 2006, 18, 5401.
    74. Sh. K. Shaikhutdinov; Y. Joseph, C. Kuhrs, W. Ranke and W. Weiss, Structure and reactivity of iron oxide surfaces. Faraday Discuss., 1999,114, 363.
    75. (a) A. Prakash, A. V. McCormick and M. R. Zachariah, Aero-Sol-Gel Synthesis of Nanoporous Iron-Oxide Particles: A Potential Oxidizer for Nanoenergetic Materials. Chem. Mater., 2004,16,1466;
    (b) O. B. Koper, I. Lagadic, A. Volodin and K. J. Klabunde, Alkaline-Earth Oxide Nanoparticles Obtained by Aerogel Methods. Characterization and Rational for Unexpectedly High Surface Chemical Reactivities. Chem. Mater, 1997,9,2468.
    1.Xu,Z.P.;Stevenson,G.S.;Lu,C-Q Lu,G.Q.;Bartlett,P.F.;Gray,P.P.Stable Suspension of Layered Double Hydroxide Nanoparticles in Aqueous Solution.J.Am.Chem.Soc.2006,128,36.
    2.Xu,Z.P.;Stevenson,G.;Lu,C-Q;Lu,G.Q.;Dispersion and Size Control of Layered Double Hydroxide Nanoparticles in Aqueous Solutions.J.Phys.Chem.B 2006,110,16923.
    3.Liu,S.;Zhang,J.;Wang,N.;Liu,W.;Zhang,C.;Sun,D.Liquid-Crystalline Phases of Colloidal Dispersions of Layered Double Hydroxides.Chem.Mater.2003,15,3240.
    4.Zhang,J.;Luan,L.;Zhu,W.;Liu,S.;Sun D.Phase Behavior of Aqueous Suspensions of Mg_2Al Layered Double Hydroxide:The Competition among Nematic Ordering,Sedimentation,and Gelation.Langmuir 2007,23,5331.
    5.Tao B,Boykin D W.Simple Amine/Pd(OAc)_2-Catalyzed Suzuki Coupling Reactions of Aryl Bromides under Mild Aerobic Conditions.J.Org.Chem.2004,69,4330.
    6.Navarro O,Kaur H,Mahjoor P,Nolan S P.Cross-Coupling and Dehalogenation Reactions Catalyzed by(N-Heterocyclic carbene)Pd(allyl)Cl Complexes.J.Org.Chem.2003,69,3173-3180.
    7.Leadbeater N E,Marco M.Ligand-Free Palladium Catalysis of the Suzuki Reaction in Water Using Microwave Heating.Org.Lett.2002,4(17),2973-2976.
    8.Yamada Y M A,Takeda K,Takahashi H,Ikegami S.An Assembled Complex of Palladium and Non-Cross-linked Amphiphilic Polymer:A Highly Active and Recyclable Catalyst for the Suzuki-Miyaura Reaction.Org.Lett.2002,4,3371-3374.
    1. a) M. L. Kantam, S. Roy, M. Roy, B. Sreedhar, B. M. Choudary, Nanocrystalline Magnesium Oxide-Stabilized Palladium(0): An Efficient and Reusable Catalyst for Suzuki and Stille Cross-Coupling of Aryl Halides. Adv. Synth. Catal. 2005, 347, 2002;
    b) A. Cwik, Z. Hell, F. Figueras, Palladium/Magnesium-Lanthanum Mixed Oxide Catalyst in the Heck Reaction. Adv. Synth. Catal. 2006,348, 523;
    c) M. L. Kantam, K. B. S. Kumar, P. Srinivas, B. Sreedhar, Fluorapatite-Supported Palladium Catalyst for Suzuki and Heck Coupling Reactions of Haloarenes. Adv. Synth. Catal. 2007,349,1141;
    d) A. Cwik, Z. Hell, F. Figueras, Suzuki-Miyaura cross-coupling reaction catalyzed by Pd/MgLa mixed oxide.Org. Biomol. Chem. 2005, 24, 4307.
    e) B. M. Choudary, S. Madhi, N. S. Chowdari, M. L. Kantam, B. Sreedhar, Choudary, B. M.; Madhi, S.; Chowdari, N. S.; Kantam, M. L.; Sreedhar, B. Layered Double Hydroxide Supported Nanopalladium Catalyst for Heck-, Suzuki-, Sonogashira-, and Stille-Type Coupling Reactions of Chloroarenes. J. Am. Chem. Soc. 2002,124,14127.
    2. A. Dubey, Synthesis and catalytic applications of CMK-LDH (layered double hydroxides) nanocomposite materials. Green Chem., 2007, 9,424.
    3. B. M. Choudary, M. Lakshmi Kantam, Ch. Venkat Reddy, K. Koteswara Rao, F. Figueras. Henry reactions catalysed by modified Mg-Al hydrotalcite: an efficient reusable solid base for selective synthesis of b-nitroalkanols. Green Chemistry, 1999,187.
    4. N. Kakiuchi, Y. Maeda, T. Nishimura, S. Uemura, Pd(II)-Hydrotalcite-Catalyzed Oxidation of Alcohols to Aldehydes and Ketones Using Atmospheric Pressure of Air. J. Org. Chem. 2001, 66, 6620.
    5. Hibino, T.; Jones, W.; New approach to the delamination of layered double hydroxides. J. Mater. Chem. 2001, 11, 1321.
    6. (a) Basile, F.; Fornasari, G.; Gazzano, M.; Vaccari, Synthesis and thermal evolution of hydrotalcite-type compounds containing noble metals.A.Appl.Clay.Sci.2000,16,185;
    (b)Basile,F.;Basini,L.;Fornasari,G.;Gazzano,M.;Trifiro',F.;Vaccari,A.New hydrotalcite-type anioic clays containing noble metals.J.Chem.Soc.Chem.Commun.1996,2435.
    7.关于FA剥离LDHs的机理,可见:Ma,R.;Liu,Z.;Li,L.;Iyi,N.;Sasaki,T.Exfoliating layered double hydroxides in formamide:a method to obtain positively charged nanosheets.J.Mater.Chem.2006,16,3809.
    8.Okamoto,K.;Sasaki,T.;Fujita,T.;Iyi,N.Preparation of highly oriented organic-LDH hybrid films by combining the decarbonation,anion-exchange,and delamination processes.J.Mater.Chem.2006,16,1608.
    9.(a)Jobbagy,M.;Regazzoni,A.E.J.Colloid Interface Sci.2004,275,345;
    (b)Okamoto,K.;Sasaki,T.;Fujita,T.;Iyi,N.Preparation of highly oriented organic-LDH hybrid films by combining the decarbonation,anion-exchange,and delamination processes.J.Mater.Chem.2006,16,1608.
    (c)Liu,Z.;Ma,R.;Ebina,Y.;Iyi,N.;Takada,K.;T.Sasaki.General Synthesis and Delamination of Highly Crystalline Transition-Metal-Beating Layered Double Hydroxides.Langmuir 2007,23,861.
    10.Hibino,T.Delamination of layered double hydroxides containing amino acids.Chem.Mater.2004,16,5482.
    11.Xu,Z.P.;Stevenson,G.;Lu,C-Q;Lu,G.Q.;Dispersion and Size Control of Layered Double Hydroxide Nanoparticles in Aqueous Solutions.J.Phys.Chem.B 2006,110,16923.
    12.(a)Wu,Q.;Olafsen,A.;Vistad,φ.B.;Roots,J.;P.Norby,Delamination and restacking of a layered double hydroxide with nitrate as counter anion.J.Mater Chem.2005,15,4695;
    (b)Li,L.;Ma,R.;Ebina,Y.;Iyi,N.;Sasaki,T.;Positively charged nanosheets derived via toyal delamination of layered double hydroxides.Chem.Mater.2005,17,4386.
    13.(a)Adachi-Pagano,M.;Forano,C.;Besse,J-P.;Delamination of Layered double hydroxides by use of surfactants.Chem.Commun.2000,91;
    (b)Leroux,F.;Adachi-Pagano,M.;Intissar,M.;ChauvieAre,S.;Forano,C.;Besse,J-P.Delamination and restacking of layered double hydroxides,J.Mater.Chem.2001,11,105.
    1.Ganesan,M.;Freemantle,R.G.;Obare,S.O.Monodispersed Thioether-Stabilized Palladium Nanopartieles:Synthesis,Characterization,and Reactivity.Chem.Mater.2007,19,3464.
    2.G.C-Trivino,K.J.Klabunde,E.B.Dale,Living colloidal palladium in nonaqueous solvents.Formation,stability,and film-forming properties.Clustering of metal atoms in organic media.14.Langmuir 1987,3,986.
    3.S.-T.Lin,M.T.Franklin,K.J.Klabunde.Nonaqueous colloidal gold.Clustering of metal atoms in organic media.12.Langmuir 1986,2,259.
    4.M.T.Reetz,G.Lohmer,Propylene carbonate stabilized nanostructured palladium clusters as catalysts in Heck reactions,chem.comm.1996,1921.
    5.M.T.Reetz,E,Westermann,Phosphane-Free Palladium-Catalyzed Coupling Reactions:The Decisive Role of Pd Nanoparticles.Angew.Chem.Int.Ed.2000,39,165.
    6.Zou,G.;Huang,W.;Xiao,Y.;Tang,J.Heck reaction catalysed by palladium supported with an electron-rich benzimidazolylidene generated in situ:remarkable ligand electronic effects and controllable mono-and di-arylation.New J.Chem.2006,30,803.
    7.a)M.L.Kantam,S.Roy,M.Roy,B.Sreedhar,B.M.Choudary,Nanocrystalline Magnesium Oxide-Stabilized Palladium(0):An Efficient and Reusable Catalyst for Suzuki and Stille Cross-Coupling of Aryl Halides.Adv.Synth.Catal.2005,347,2002;
    b)A.Cwik,Z.Hell,F.Figueras,Palladium/Magnesium-Lanthanum Mixed Oxide Catalyst in the Heck Reaction.Adv.Synth.Catal.2006,348,523;
    c)M.L.Kantam,K.B.S.Kumar,P.Srinivas,B.Sreedhar,Fluorapatite-Supported Palladium Catalyst for Suzuki and Heck Coupling Reactions of Haloarenes.Adv.Synth.Catal.2007,349,1141;
    d)A.Cwik,Z.Hell,F.Figueras,Suzuki-Miyaura cross-coupling reaction catalyzed by Pd/MgLa mixed oxide.Org.Biomol.Chem.2005,24,4307.
    e)B.M.Choudary,S.Madhi,N.S.Chowdari,M.L.Kantam,B.Sreedhar, Choudary, B. M.; Madhi, S.; Chowdari, N. S.; Kantam, M. L.; Sreedhar, B. Layered Double Hydroxide Supported Nanopalladium Catalyst for Heck-, Suzuki-, Sonogashira-, and Stille-Type Coupling Reactions of Chloroarenes. J. Am. Chem. Soc.2002, 124,14127.
    8. Zhang, Z.; Zha, Z.; Gan, C.; Pan, C.; Zhou, Y.; Wang, Z.; Zhou, M. Catalysis and Regioselectivity of the Aqueous Heck Reaction by Pd(0) Nanoparticles under Ultrasonic Irradiation. J. Org. Chem. 2006, 71,4339.
    9. Guo, Y.; Zhang, H.; Wang, Y.; Liao, Z.-L.; Li, G.-D.; Chen, J.-S. Controlled Growth and Photocatalytic Properties of CdS Nanocrystals Implanted in Layered Metal Hydroxide Matrixes. J. Phys. Chem. B. 2005,109,21602.
    10. a) Yin, L. X.; Liebscher, J. Carbon-Carbon Coupling Reactions Catalyzed by Heterogeneous Palladium Catalysts. Chem. Rev. 2007, 107, 133;
    (b) Phan, N. T. S.; Sluys, M. V. D.; Jones, C. W. On the Nature of the Active Species in Palladium Catalyzed Mizoroki-Heck and Suzuki-Miyaura Couplings -Homogeneous or Heterogeneous Catalysis, A Critical Review. Adv. Synth. Catal., 2006,348, 609.
    11. a) Djakovitch, L.; Koehler, K. Heck Reaction Catalyzed by Pd-Modified Zeolites. J. Am. Chem. Soc. 2001,123, 5990.
    b) Smith, M. D.; Stepan, A. F.; Ramarao, C.; Brennan, P. E.; Ley, S. V. Palladium-containing perovskites: recoverable and reuseable catalysts for Suzuki couplings. Chem. Commun. 2003,2652.
    12. a) N. Tian, Z-Y Zhou, S-G Sun, Y. Ding, Z. L. Wang, Synthesis of Tetrahexahedral Platinum Nanocrystals with High-Index Facets and High Electro-Oxidation Activity.Science 2007,316, 732;
    b) R. Narayanan, M. A. El-Sayed, Atomic Layer Deposition to Fine-Tune the Surface Properties and Diameters of Fabricated Nanopores. Nano Lett. 2004 4, 1333;
    c) J. Le Bars, U. Specht, J. S. Bradley, D. G Blackmond, A Catalytic Probe of the Surface of Colloidal Palladium Particles Using Heck Coupling Reactions Langmuir 1999, 15, 7621;
    d) R. Narayanan, M. A. El-Sayed, Effect of Colloidal Nanocatalysis on the Metallic Nanoparticle Shape: The Suzuki Reaction. Langmuir 2005, 21, 2027.
    1. a) Wang, Z. Shen, B. Zou, A. He, N. Synthesis of Pd/Fe_3O_4 nanoparticle-based catalyst for the cross-coupling of acrylic acid with iodobenzene. Chem. Engineering J. 113(2005)27-34;
    b) Wang, Z. Xiao, P. Shen, B. He, N. Synthesis of palladium-coated magnetic nanoparticle and its application in Heck reaction. Colloids and Surf. A: Physi. 276 (2006)116-121.
    2. Stevens, P. D. Li, G Fan, J. Yen, M. Gao, Y. Recycling of homogeneous Pd catalysts using superparamagnetic nanoparticles as novel soluble supports for Suzuki, Heck, and Sonogashira cross-coupling reactions. Chem. Commun., 2005, 4435-4437.
    3. Stevens, P. D. Fan, J. Gardimalla, H. M. R. Yen, M. Gao, Y. Superparamagnetic Nanoparticle-Supported Catalysis of Suzuki Cross-Coupling Reactions Org. Lett., 2005,7,2085.
    4. Zheng, Y. Stevens, P. D. Gao, Y. Magnetic Nanoparticles as an Orthogonal Support of Polymer Resins: Applications to Solid-Phase Suzuki Cross-Coupling Reactions. J. Org. Chem. 2006,71,537-542.
    5. Zhu, Y., Peng, S. C. Emi, A. Su, Z. Monalisa, Kempd, R. A. Supported Ultra Small Palladium on Magnetic Nanoparticles Used as Catalysts for Suzuki Cross-Coupling and Heck Reactions. Adv. Synth. Catal. 2007, 349,1917-1922.
    6. a) S. Mangematin and A. B. Sorokin, J. Porphyrins Phthalocyanines, 2001, 5, 674;
    b) B. Gorlach, C. Hellriegel, S. Steinbrecher, H. Yuksel, K. Albert, E. Pliesb and M. Hanack, Synthesis, characterization and HPLC-applications of novel phthalocyanine modified silica gel materials. J. Mater. Chem., 2001,11, 3317;
    c) M. K. I. Senevirathna, P. K. D. P. Pitigala, V.P.S. Perera and K. Tennakone, Molecular Rectification: Application in Dye-Sensitized Solar Cells. Langmuir, 2005, 21, 2997;
    d) E. Palomares, M. V. Martinez-Diaz, S. A. Haque, T. Torres, J. R. Durrant. State selective electron injection in non-aggregated titanium phthalocyanine sensitised nanocrystalline TiO_2 films. Chem. Commun., 2004,2112;
    e) Fu-Ren., F. Fan and A. J. Bard, Spectral sensitization of the heterogeneous photocatalytic oxidation of hydroquinone in aqueous solutions at phthalocyanine-coated titanium dioxide powders. J. Am. Chem. Soc., 1979, 101, 6139;
    
    f) A. P. Hong, D. W. Bahnemann and M. R. Hoffmann, Cobalt (II) tetrasulfophthalocyanine on titanium dioxide: A new efficient electron relay for the photocatalytic formation and depletion of hydrogen peroxide in aqueous suspensions. J. Phys. Chem., 1987,91,2109;
    
    g) H. W. Gu, K. M. Xu, Z. M. Yang, C. K. Chang and B. Xu, Synthesis and cellular uptake of porphyrin decorated iron oxide nanoparticles: a potential candidate for bimodal anticancer therapy. Chem. Commun., 2005,4270;
    
    h) J. C. O. Silva, M. H. Sousa, F. A. Tourinho and J. C. Rubim, Raman Spectroscopic Investigation of Maghemite Ferrofluids Modified by the Adsorption of Zinc Tetrasulfonated Phthalocyanine. Langmuir, 2002, 18, 5511;
    
    i) D. C. Hone, P. I. Walker, R. Evans-Gowing, S. FitzGerald, A. Beeby, I. Chambrier, M. J. Cook and D. A. Russell, Generation of Cytotoxic Singlet Oxygen via Phthalocyanine-Stabilized Gold Nanoparticles: A Potential Delivery Vehicle for Photodynamic Therapy. Langmuir, 2002, 18, 2985.
    
    7. Kang, Y. S. Risbud, S. Rabolt, J. Stroeve, F. P. Synthesis and Characterization of Nanometer-Size Fe_3O_4 and γ-Fe_2O_3 Particles. Chem. Mater. 1996, 8,2209.
    
    8. Y. Zhang, J. X. Cao, D. P. Nie and F. Liu, Modern Machinery, 2006, 1, 72. (in Chinese).
    9. a) A. Prakash, A. V. McCormick and M. R. Zachariah, Aero-Sol-Gel Synthesis of Nanoporous Iron-Oxide Particles: A Potential Oxidizer for Nanoenergetic Materials. Chem. Mater., 2004,16, 1466;
    b) O. B. Koper, I. Lagadic, A. Volodin and K. J. Klabunde, Alkaline-Earth Oxide Nanoparticles Obtained by Aerogel Methods. Characterization and Rational for Unexpectedly High Surface Chemical Reactivities. Chem. Mater, 1997, 9, 2468.
    10. Neil B. McKeown. Phthalocyanine Materials: Synthesis, structure and Function. [M] Cambridge University Press, 1998.
    11. a) T. Rajh, L. X. Chen, K. Lukas, T. Liu, M. C. Thurnauer and D. M. Tiede, Surface Restructuring of Nanoparticles: An Efficient Route for Ligand-Metal Oxide Crosstalk. J. Phys. Chem. B, 2002,106,10543;
    b) L. X. Chen, T. Liu, M. C. Thurnauer, R. Csencsits, T. Rajh, Fe_2O_3 Nanoparticle Structures Investigated by X-ray Absorption Near-Edge Structure, Surface Modifications, and Model Calculations. J. Phys. Chem. B, 2002,106, 8539;
    c) T. Rajh, Z. Saponjic, J. Liu, N. M. Dimitrijevic, N. F. Scherer, M. Vega-Arroyo, P. Zapol, L. A. Curtiss and M. C. Thurnauer, Charge Transfer Across the Nanocrystalline-DNA Interface: Probing DNA Recognition. Nano Lett., 2004, 4, 1017.
    12. P. Zhou, Y. Li, P. Sun, J. Zhou, J. Bao, A novel Heck reaction catalyzed by Co hollow nanospheres in ligand-free condition. Chem. Commun., 2007,1418.
    13. Leadbeater, N. E.; Marco, M.; Tominack, B. J. First Examples of Transition-Metal Free Sonogashira-Type Couplings. Org. Lett.; 2003; 5(21); 3919.
    14. a) Arvela, R. K.; Leadbeater, N. E.; Sangi, M. S.; Williams, V. A.; Granados, P.; Singer, R. D. A Reassessment of the Transition-Metal Free Suzuki-Type Coupling Methodology J. Org. Chem.; 2005; 70(1); 161.
    b) Leadbeater, N. E.; Marco, M. Transition-Metal-Free Suzuki-Type Coupling Reactions: Scope and Limitations of the Methodology. J. Org. Chem.; 2003; 68(14); 5660.
    15. Arvela, R. K.; Leadbeater, N. E. Microwave-Promoted Heck Coupling Using Ultralow Metal Catalyst Concentrations. J. Org. Chem.; 2005; 70(5); 1786.
    16. R. Scott Smith, Jay K. Kochi, Mechanistic studies of iron catalysis in the cross coupling of alkenyl halides and Grignard reagents. J. Org. Chem.; 1976; 41(3); 502.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700